

Table of Contents
Visual Basic .NET The Complete Reference...1

Foreword..3
 Acknowledgments...6

Introduction...8
 Chapter 1...10
 Chapter 2...10
 Chapter 3...10
 Chapter 4...11
 Chapter 5...11
 Chapter 6...12
 Chapter 7...12
 Chapter 8...12
 Chapter 9...12
 Chapter 10...13
 Chapter 11...13
 Chapter 12...13
 Chapter 13...13
 Chapter 14...14
 Chapter 15...14
 Chapter 16...14
 Chapter 17...15
 Conventions..15

 Part I: Introduction to Visual Basic .NET...16
Chapter List..16

 Chapter 1: Software Development and Visual Basic .NET..17
 Overview...17
 Visual Basic and the Difficulty of Developing Software...17

 Reducing Complexity and Time−to−Market with Reuse..18
 Software Development and Software Engineering...18
 The Classic Programming Models..19
 Structured Programming...20

 Bug−Reduced Code..21
 Divide and Conquer..21
 Reuse..21
 Teaming..22
 Structural Nada?...22
 Object−Based Programming..22

 Object−Oriented Software Development..22
 Real−World Reflections...24
 What Makes a Pure Object−Oriented Language..25

 Just Classes...25
 Classes for Modularity, Cohesion, and Coupling...26
 Classes for Abstraction...27
 Classes for Encapsulation...27
 Classes for Hiding Information..27
 Classes for Classification...28

i

Table of Contents
 Chapter 1: Software Development and Visual Basic .NET

 Class that Beget Classes: Inheritance...29
 Classes for Objects: Instantiation...29
 Classes for Association, Aggregation, and Composition...29
 Classes for Events..30
 Classes for Message Passing..30
 Classes for Polymorphism..30
 Classes for Interfaces..31

 Frameworks...31
 Patterns..32
 Observations...33

 Chapter 2: Visual Basic .NET and the .NET Framework..34
 Overview...34
 Getting to Know the Framework's Runtime...35

 The Common Type System..35
 The Common Language Specification...36

 The Common Language Runtime...38
 Microsoft Intermediate Language..40
 Metadata...41
 Executable Code...42
 Managed Execution..42
 Side−by−Side Execution..44
 Application Domains..44
 Automatic Memory Management..45
 Just−in−Time Deployment...46

 Understanding Assemblies..47
 Locating Assemblies, Anytime..48
 What's in an Assembly...49
 The Roles of the Assembly..53
 Attributes, Reflection, and Assemblies..55
 Strong Names...55

 The .NET Security Model...56
 Observations...58

 Part II: Visual Basic .NET Fundamentals...60
Chapter List..60

 Chapter 3: The Visual Basic .NET Development Environment..61
 Overview...61
 Working with the Visual Studio IDE..61

 Navigating the IDE...62
 Starting from the Start Page...69

 Creating a Visual Basic .NET Solution..72
 Loading the Vb7cr Solution...73
 Creating a New Project...73
 Solution Directory Structure..76
 File Extensions...76
 Working with the Base−Class Library...77
 A Minimal Visual Basic .NET Application...80

ii

Table of Contents
 Chapter 3: The Visual Basic .NET Development Environment

 Observations...82

 Chapter 4: The Elements of Visual Basic .NET..83
 Overview...83
 Visual Basic .NET: The Foundation...83

 Lexical Elements..83
 Preprocessing Directives..84
 General Concepts...84
 Option, Imports, and Namespaces Directives..84
 Types..85
 Type Members..85
 Statements and Statement Blocks...86
 Expressions...86
 Operators..87

 Visual Basic .NET Mini Style Guide..88
 Naming and Notation...88
 Hungarian Notation..89
 Word Choice...90

 Getting Started..90
 Character and Lines..91
 Statements and Blocks..95
 Nothing for Nothing or Something for Nothing...96

 Classes, Types, and Objects: What's the Difference?...97
 Classes: The View from Above..98

 The Class Declaration Space..99
 The Directive Space...102
 The Implementation Space...109
 Elemental Value Types..110

 Working with Numbers...112
 Integer Types..112
 Visual Basic 6 to Visual Basic .NET...113

 Point Types...113
 Characters...114
 Booleans..114
 Literal Notation...115
 Type Conversion...118
 Working with Variables and Constants..120

 Variable and Constant Declaration Shorthand...124
 Default Initialization...125
 Keeping Data Private..126
 Scope..128
 Variable and Constant Lifetimes..129

 Observations...131

 Chapter 5: Visual Basic .NET Operators..133
 Overview...133
 What an Operator Does...133
 Numbering Systems Reviewed...134

 Positional Notation...135

iii

Table of Contents
 Chapter 5: Visual Basic .NET Operators

 Converting from One System to Another...136
 Operator Precedence...138

 Changing Precedence Order with Parenthesis..139
 Unary Operators..140
 Arithmetic Operators..141
 Assignment Operators...141
 Comparison Operators..143
 Concatenation Operator..144
 Logical Operators..144

 Logical And, Or, and Xor...145
 Short−Circuit Logical Operators..146

 Bitwise Operators..147
Flag Sets..148
Shifting Bits...150

 Specialized Operators...154
 Is...155
 Like...155

 Operator Overloading...156
 Exceptions Referenced in this Chapter...158
 Observations...158

 Chapter 6: Software Design, Conditional Structures, and Control Flow...159
 Overview...159
 Control Structures...160
 Control Flow...160
 Fully Sketched Code...162

 Step−Form Notation...162
 Pseudocode...162
 Nassi−Schneiderman Charts..162
 Flowcharts..163
 Design Pitfalls..164

 Conditional Statements...165
 If...165
 Else...168
 Else If...168
 Tips for Else and Else If...169
 Select Case...171
 GoTo...173
 OnError...174

 Loops..174
 DoLoop...174
 For. . . Next...175
 For Each . . . Next...176
 While..177

 One or the Other Conditional Functions...177
 Choose..177
 IIF...178
 Switch...178

 Pausing, Resuming, and Exiting Iteration..179

iv

Table of Contents
 Chapter 6: Software Design, Conditional Structures, and Control Flow

 Exit Idiosyncrasies...180
 Observations...181

 Chapter 7: Methods...182
 Overview...182
 What Is a Method..182

 Types of Methods...184
 Synchronous vs. Asynchronous Method Calls...184

 Method Data..185
 Method Data: Global vs. Local..187
 Local Declarations..188
 Passing Arguments to Parameters..190
 Calling Methods...194
 Function or Sub Methods...196

 Method Access Characteristics...198
Public Methods..199
Protected Methods...200
Friend...200
Protected Friend..200
Private Methods...201
 Controlling Polymorphism Characteristics of Methods...201

 Mining the Framework's Methods..205
 The Methods of System.Math...206

 Programming with the Math Class...208
 Math−Related Exceptions..210

 Properties..211
 Properties vs. Fields...213
 Properties vs. Methods...214

 Introduction to Exception Handling..214
 The Exception Handler...216
 Try Catch Blocks...217

 Design and Construction of Methods...218
 Class and Method Cohesion...220
 Method Coupling..222
 The Length of a Method...222

 Recursive Design of Methods...223
 The Base Case..224
 The Stopping Condition...225
 The Impact of Recursion..226

 Understanding Method Performance..227
 Observations...231

 Part III: Classes and Objects..232
Chapter List..232

 Chapter 8: Types, Structures, and Enumerations..233
 Overview...233
 The Value−Type Model..233

 How Value Types Work...235

v

Table of Contents
 Chapter 8: Types, Structures, and Enumerations

 Boxing..236
 Why are Value Types Objects?..238
 Structs and Enums Ahoy: Creating New Value Types..239

 Structures..240
 Structure Behavior..246

 Enumerations..248
 Working with System.Enum..250
 Flags...253
 Final Words on Enums...255

 The Object−Reference Model...256
Null Reference...261
What the Reference Refers To..262
 The Object−Reference Model and Equality, Comparison, and Assignment...............................262

 Observations...263

 Chapter 9: Classes..265
 Overview...265
 Getting the Semantics Correct..266

 Of Classes and Types...267
 Semantics and Notation..267

 Modeling...267
 Software Modeling...268
 Viewpoints..269
 Unified Modeling Language..271
 UML Diagrams...272
 UML Notation for Class Diagrams..273
 UML Notation for Class Relationships..274

 Modularity..274
 Modularity Metrics: Coupling and Cohesion...275

 The Classes Are the System..275
 Class Characteristics...278
 In the Beginning Abstract Classes...279

 Factoring Out Commonality...280
 The Members of Abstract Classes..281

 Inheritance...282
 Inheritance and Polymorphism...284
 Inheritance and Coupling...284
 Multiple Inheritance...285
 Order and Control with Inheritance..286
 Reduction of Complexity...287
 Maintenance...288
 Code Reuse...288

 Implementing a Space Ship's Fuel Injector Software...289
 Instance Fields..290
 Instance Constructors...292
 Properties..293
 Methods..295
 Publishing the ShuttleInjector Class...297
 Activating the ShuttleInjector Class...298

vi

Table of Contents
 Chapter 9: Classes

 The Inherited Members of Object...300
 Testing for Reference Equality with Equals...300
 ToString..301
 Cloning...302
 GetHashCode..303
 GetType..303
 ReferenceEquals...304
 Finalize...304

 Aggregation and Composition: Reuse by Containment...304
 More Aggregation at Work: A Form for Testing..308
 Ending Inheritance with Sealed Classes...310
 Improved Performance with Shared Classes and Modules...311
 Observations...312

 Chapter 10: Interfaces...313
 Overview...313
 Abstraction and Interfaces in Object−Oriented Software Design..313
 Getting Passionate (or Radical) about Interfaces..315

 Interfaces and Inheritance..316
 Realizing the Benefits of Interfaces...318

 Implicit Interfaces...318
 Explicit Interfaces...320

 Abstract Class or Explicit Interface..321
 An Introduction to Interface Design and Implementation..322

 Accessing and Using the Implementation..324
 Compound Interfaces...325

 Designing and Defining Interfaces...327
 Interfaces, Once Published, Must Not Change...327
 Interface Invariance..327
 Constructing the Interface..328
 Getting Started with the Interface Definition...329

 Implementing Interfaces...331
 Interface Implementation Semantics..331
 Implementing ICloneable...332
 Implementing IComparable..333

 Exceptions Covered in this Chapter..334
 Observations...334

 Chapter 11: Exceptions: Handling and Classes..336
 Overview...336
 Why Do We Need Exception Handling?..337
 Structured Exception Handling 101..337
 Exception−Handling Models..340

 The Resumption Model..340
 The Termination Model..340

 Recovering from Exceptions...341
 Exception Statements..343

 Try..343
 Catch...344

vii

Table of Contents
 Chapter 11: Exceptions: Handling and Classes

 Finally...348
 When Filters...349
 Nesting Try Blocks...351
 Throw...352

 Exception−Handling Tips...357
 Creating Your Own Exception Classes...358

 The .NET Exception Hierarchy..358
 Choosing a Base Class from which to Inherit..359

 Observations...362

 Chapter 12: Collections, Arrays, and Other Data Structures...363
 Overview...363
 NET's Array and Collections Namespace...364

 Specialized Collections..366
 ICollection..366
 IEnumerator and IEnumerable...367
 IList..367

 Stacks..367
 How to Program Against a Stack...371

 Queues...372
 How to Program Against a Queue..374

 Arrays..376
 The Array Class..377
 Declaring and Initializing Arrays..378
 Declaring Multidimensional Arrays...381
 Jagged Arrays..381
 Programming Against Arrays...382

 The UBound Statement..383
 Redeclaring Arrays...384
 The Erase Statement...386
 The IsArray Function...386

 Array Exceptions..386
 Passing Arrays to Methods...388
 Receiving Arrays from Methods...389
 Searching and Sorting Arrays...389

 The BinarySearch Method..390
 The Basics of Sorting Arrays...392

 Bubble Sort...393
 Partition and Merge...397
 Quicksort...401
 Sorting Strings and Other Objects..406
 Populating Arrays...407
 Arrays for Objects...407
 Hash Tables...413
 Observations...417

 Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships...419
 Overview...419
 Designs on Classes..419

viii

Table of Contents
 Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships

 Singleton...420
 Bridge...423
 Strategy...427
 State..429

 Linked Lists and Trees..433
 Understanding the Linked List...434
 Designing a Base−Container Class for Lists (and Trees)..436
 Implementing the Node..437
 Implementing the Container...439
 Implementing the Iterator...456

 Observations...458

 Chapter 14: Advanced Interface Patterns: Adapters, Delegates, and Events..459
 Overview...459
 Adapters and Wrappers...461
 Interface Adaptation in ActionCOM− .NET Interop..462
 The Adapter Pattern in .NET..465
 The Adapter Pattern Event Model..470
 Delegation: Please Help Me!..471
 Delegates...475

 Understanding Delegates..477
 Declaring the Delegate...477
 Early Bound Delegate Declares...478
 Late Bound Delegate Declares...479

 Sorting Data with Delegates...481
 Multicast Delegates...484
 The .NET Framework Event Model: Delegates and Events...485
 Getting Ready to Wire−up: The Event Model in a Nutshell..489
 Delegate Events vs. Adapter Events...490
 Delegates vs. Function Pointers..492
 Observations...493

 Chapter 15: Data Processing and I/O..494
 Overview...494
 Data Processing...494
 Working with Strings..495
 Members of the String Class...496

 Clone..496
 Compare...497
 CompareTo...497
 Concat...498
 Copy...498
 CopyTo...499
 EndsWith, StartsWith...499
 Equals...500
 Format..500
 IndexOf, LastIndexOf..501
 Insert...501
 Intern, IsInterned..501

ix

Table of Contents
 Chapter 15: Data Processing and I/O

 Join, Split..502
 PadLeft, PadRight..503
 Remove...503
 Replace...503
 SubString..503
 ToCharArray..504
 ToLower, ToUpper...504
 Trim, TrimEnd, TrimStart..504

 Classic Visual Basic String Functions..504
 String Formatting..505

 NumberFormatInfo...506
 DateTimeFormatInfo..508
 Custom Formatters...510

 Building Strings with StringBuilder...512
 Capacity..513
 Append...513
 AppendFormat..514
 Insert...514
 Remove...514
 Replace...515

 Regular Expressions..515
 The .NET Framework Regex Metalanguage..517

 File, Stream, and Text IO Operations...519
 Files and Directories...520

 The File Class...521
 Path...521
 File Enumerations...524
 Basic File Class Operations..527
 Directory...529
 The FileInfo Class..530
 DirectoryInfo..531
 Using the Classic File System Object..532
 FileSystemWatcher..534

 Streams..537
 FileStream..538
 SeekOrigin Enumeration..542
 BufferedStream..543
 NetworkStream...544
 CryptoStream..544
 MemoryStream...544

 Readers and Writers..545
 Text Encoding..545
 StringReader/StringWriter..546
 StreamReader/StreamWriter..548
 BinaryReader/BinaryWriter...550

 XML I/O...550
 Reading XML Files..550
 Writing XML Files with XMLTextWriter...554

 Serialization with XML..557

x

Table of Contents
 Chapter 15: Data Processing and I/O

 Activating Serialization at Run Time...560
 Observations...561

 Part IV: Writing Software with VB .NET...562
Chapter List..562

 Chapter 16: Interfacing with the End User...563
 Overview...563
 Windows Forms..565

 A Form Is an Object...566
 The System.Windows.Forms Namespace..566
 Automatically Generated Code..568

 Introduction to Threading...569
 The User Interface and Thread Design...570
 The .NET Framework's Thread Model..571
 Getting Started with Basic Threading..571

 MDI Applications...573
 Creating the MDI Parent..573
 Creating the MDI Children...575
 The Active Child..576
 Arranging the Forms..577
 Delegating Application Startup and Shutdown..577
 Keeping a Form on Top..578
 Form Transparency...578
 Modality...579
 Changing Borders...580
 Changing the Size of Forms...581
 Screen Location..581

 Components and Controls...583
 Adding Components and Controls to Forms..583
 Layout and Grouping..584
 Positioning Controls...588
 Setting a Single Property for Multiple Controls...589
 Complex Property Pages..589
 Using The Property Grid..590

 Menus and Toolbars..590
 Adding Menus and Menu Items Programmatically...590
 Context−Changing Menus..591
 Enhancing Menus...593
 The Menu Class..594

 Responding to User Input...594
 Binding Events Dynamically..595
 Hot Spots..595
 Mouse and Keyboard Events..596
 Keyboard Events..597
 Using a Timer to Fire Events...597

 Collecting User Input..597
 Buttons..597
 Edit Text Boxes..598

xi

Table of Contents
 Chapter 16: Interfacing with the End User

 Check Boxes...600
 Radio Buttons...601
 Combo Boxes...601
 DomainUpDown..601
 NumericUpDown...601
 Date and Time Picker...601
 Calendar..602
 A Palette...602
 List Boxes...602
 CheckedListBox...602
 ListView...603
 Trackbars (Sliders)...603
 Toolbars..603
 TreeView..603

 Presentation and Informational Controls..603
 Labeling..604
 LinkLabel...604
 Status Bar...605
 Icons...605
 PictureBox..605
 ImageList..605
 Progress Bars..605
 Grids...606
 ToolTip...606
 The ErrorProvider Control...606
 Help Provider...607
 Printing Support...607

 Drag and Drop...607
 Dragging Data..607
 Dropping Data..608

 Using the Clipboard..609
 Observation...609

 Chapter 17: Getting Ready to Release...610
 Overview...610
 Thinking in Debug Terms...611
 The System.Diagnostics Namespace..611
 Enabling Debugging...615
 Run−time Configuration Files..616

 Machine Configuration File...617
 Application Configuration File..617
 Security Configuration File..618
 Working with Configuration Files...618

 Working with the Debug Class...618
 The Debug Write Methods...619
 Assertion...619
 Fail..622

 Tracing and the Trace Class..623
 Instrumentation...623

xii

Table of Contents
 Chapter 17: Getting Ready to Release

 Understanding the Phases of Code Tracing...624
 Listening to Your Code..624
 Developer−Defined Listeners..627
 Trace Switches...627

 Debugging with Visual Studio .NET..629
 What Species Is Your Bug...629
 Debugging Aids..630
 Breakpoints...631
 Getting Started..632

 The Visual Basic .NET Compiler...635
 Using a Response File for Compilation...637
 Managing a Class Library from the Command Line..638
 Conditional Compilation Directives...639

 Observations...640

List of Figures..641
 Chapter 1: Software Development and Visual Basic .NET..641
 Chapter 2: Visual Basic .NET and the .NET Framework...641
 Chapter 3: The Visual Basic .NET Development Environment...641
 Chapter 4: The Elements of Visual Basic .NET...641
 Chapter 6: Software Design, Conditional Structures, and Control Flow..641
 Chapter 7: Methods...642
 Chapter 8: Types, Structures, and Enumerations..642
 Chapter 9: Classes...642
 Chapter 10: Interfaces...642
 Chapter 12: Collections, Arrays, and Other Data Structures..642
 Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships....................................643
 Chapter 14: Advanced Interface Patterns: Adapters, Delegates, and Events.....................................643
 Chapter 16: Interfacing with the End User...644
 Chapter 17: Getting Ready to Release..644

List of Tables...645
 Chapter 2: Visual Basic .NET and the .NET Framework...645
 Chapter 3: The Visual Basic .NET Development Environment...645
 Chapter 4: The Elements of Visual Basic .NET...645
 Chapter 5: Visual Basic .NET Operators..645
 Chapter 6: Software Design, Conditional Structures, and Control Flow..646
 Chapter 7: Methods...646
 Chapter 8: Types, Structures, and Enumerations..646
 Chapter 9: Classes...646
 Chapter 10: Interfaces...646
 Chapter 11: Exceptions: Handling and Classes..646
 Chapter 12: Collections, Arrays, and Other Data Structures..647
 Chapter 15: Data Processing and I/O..647
 Chapter 16: Interfacing with the End User...648
 Chapter 17: Getting Ready to Release..648

xiii

Table of Contents
List of Sidebars..649

 Chapter 5: Visual Basic .NET Operators..649
 Chapter 7: Methods...649

xiv

Visual Basic .NET The Complete Reference
Jeffrey R. Shapiro

About the Author

Jeffrey R. Shapiro is a software architect and IT specialist who has written several books on software
development and technology, including SQL Server 2000: The Complete Reference.

McGraw−Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund−raisers, please contact
McGraw−Hill/Osborne at the above address. For information on translations or book distributors outside the
U.S.A., please see the International Contact Information page immediately following the index of this book.

Copyright © 2002 by The McGraw−Hill Companies. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

1234567890 DOC DOC 0198765432

ISBN: 0−07−213381−3

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Acquisitions Editor
Ann Sellers

Project Editor
Elizabeth Seymour

Acquisitions Coordinator
Timothy Madrid

Technical Editors
Lou Boni, Amir Liberman

Copy Editors
Mandy Erickson, Bill McManus

1

Proofreader
Pat Mannion

Indexer
Valerie Perry

Computer Designers
George Toma Charbak,
Melinda Moore Lytle

Illustrators
Michael Mueller, Lyssa Wald

Series Design
Peter Hancik

This book was composed with Corel VENTURA Publisher.

Information has been obtained by McGraw−Hill/Osborne from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw−Hill/Osborne, or others,
McGraw−Hill/Osborne does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such information.

This book is dedicated to the late Sabas (Saby) Blanco
November 13, 1975 to October 7, 2001

Visual Basic .NET The Complete Reference

2

Foreword
This book started over a burger in a downtown Seattle café in late 2001. I was reflecting with my editor, Ann
Sellers, about the discussions we had just had with the Microsoft .NET protagonists. We came to the
conclusion that if Microsoft could pull off the .NET Framework, it would change software developmentat
least for the Windows operating systemsforever. This book's publication is testimony to the achievement that
is the .NET Framework and, in particular, Visual Basic .NET.

Visual Basic .NET and the .NET Framework and I go back almost five years when I was an aggressive Java
programmer (of course, the framework was just a nameless, mysterious OO project at MS then). While I
worked with several flavors of Java, all my customers needed stuff for the Windows platform. Visual J++ was
my tool of choice (especially after programming Delphi for a few years). Then, delegates (those so−called
object−oriented function pointers) and other things that Microsoft was doing with Java hit a nerve center at
the house of Sun. The result was the Intifada between the two software makers that stopped VJ++ in its tracks.

For the next couple of years the Visual J++ Web site at Microsoft.com and "VJ" remained unchanged. The
Java world moved on with newer stuff from Sun, and VJ and Windows Foundation Classes (WFC) languished
in the lawsuits. I and tens of thousands of Windows VJ programmers lost a lot of faith in the software
development business.

Many of us felt passionate enough, and were hurt enough, to get some answers directly from Microsoft on
where they were heading. At the end of 1998 I was told "if you can wait for our new object−oriented software
to arrive you will really be pleased." My reply to that was "What should I do in the meantime?" "Go and
develop with Visual Basic and we'll call you when it's ready." Not knowing what they were baking, I took
their advice, and that's exactly what I did for the next few years. I went on to use VB for a number of major
projects.

While I developed some sophisticated stuff in VB, I also kept current with Java (not VJ). So it did not take me
long to finally "get" what had "set" so many VB programmers to refusing to use anything else to develop their
software (no matter how much certain technology lacking affected them).

When Visual Basic .NET emerged I realized I had the best of both worlds everything I loved about VJ and
VB in one package. Sure, I still have an affinity for curly braces, but no other language in the world is as
productive as Visual Basic .NET, not even C#. And I tell you that as a programmer who has coded in more
than just Java, Delphi, and Visual Basic . . . and C#.

Well, it is finally here, and it's the best thing since strawberry−flavored cranberries.

While chewing on my burger, I also reflected on what Microsoft had said to us earlier that day about how they
would like us to write about the .NET Framework. The one statement that stood out was that they were keen
to see books that did not simply rehash the tons of information that were going to be put out, or compete with
the online material (which is excellent). They were looking for books that would help people understand not
only the fundamentals of the framework and its many languages, but also how to use the extremely powerful
and complex constructs and technologies they were going to unleash.

It became apparent to me how different .NET in general and Visual Basic .NET in particular was going to be
from the current version of the language (VB 6) and the current Windows software development paradigms
and object models, such as COM and ActiveX. I was both surprised and amused at how familiar Visual Basic
.NET and the .NET Framework now looked to Java, Visual J++ and Delphi.

3

I found myself in a unique position, having arrived at Visual Basic (I skipped the earlier versions and cut my
teeth on VB 5 and 6) via C++, Delphi, and Java. I at once felt that Visual Basic .NET would appeal not only
to existing VB developers (or scare some of them half to death) but to the many Java and Delphi
programmers. The latter are of special interest to me because, like me, they are not only dedicated to the
Windows platform, but they have been programming in true object−oriented languages for almost a decade
now. After all, I learned Delphi back in the early 1990s, Java in 1995. Much of what's new to Visual Basic,
like true OO and free threading, has been part of the Delphi and Java arsenal for many years. You will see that
I talk not only to VB programmers (for the most part) but also to VJ and Delphi programmers.

What you now have in Visual Basic .NET is the marvelous utility and simplicity of Visual Basic coupled with
the incredible power of OO and Visual J++ (ten−fold). To put it in a nutshell: You can now do with Visual
Basic .NET what you once only dreamed was possible, and do it faster than with any other language. In many
cases, once you get up to speed with the syntax and semantics, you can just about write the software in your
sleep.

I have written a number of computer books, but it was a challenge to write a really good software
development book. The proverbial hat goes off to all those guys and gals who have penned something for
software developers.

Having my own library of software development books, I know that you need to strike a balance between
talking and showing. If you talk too much and don't provide enough examples, you lose your audience. If you
show too much you end up alienating everyone and might as well be writing in hieroglyphics. I especially
dislike books that provide a page of narrative and then throw 15 pages of unexplained code at you. I must
admit I have never learned much about writing software from any of those tomes.

It's also difficult to provide meaningful examples and enough of them. I believe the examples should be
plucked from live code in functioning products. They should not be examples knocked up in Notepad that
were obviously never compiled. While I have taken some shortcuts here and there to provide a quick and dirty
example, every line of code written in this book has been written and compiled in Visual Studio .NET and
then tested.

You will also find that there is more narrative than code in many places. I have gone to great lengths to
explore all the various facets of the constructs and technologies you will encounter as a .NET programmer.
The reason is simple. Computer books don't seem to get thinner, and this is compounded by there being so
much to talk about or explain. I decided that instead of publishing 1500 pages with hundreds of examples that
cannot be compiled from wood pulp, or compiled on the train to work, that it would be better to put as much
extra code as possible into the various projects that were created with this book.

A giant Visual Studio .NET solution, Vb7cr, is included with this book that by publication will have been
culled from more than 50 projects, some of them implemented for commercial applications. You will find a
lot in the projects, from the linked list classes to a full−blown ASP.NET application that implements a
sophisticated search facility, and more. They have all been compiled and tested with the released version of
Visual Studio and the .NET Framework. You can download the software from www.osborne.com and
www.sdamag.com. It's just code and downloads easily on a 56K connection, so Osborne and I deemed it
unnecessary to come out with a CD.

Of particular interest in the solution is a complete binary tree example, which extends the linked list project
covered in the book. Rather than publishing the 50 pages this particular project took, the code has been fully
tested and is available in the first version of the solution. Not only will you find the classes useful for building
sophisticated data structures, but the project provides an excellent learning tool for object−oriented
enthusiasts. It at once provides grounding in OO, inheritance, aggregation, composition, and polymorphism,

Foreword

4

and discusses how to use interfaces, delegates, exception handling, and some sophisticated algorithms. There
are a number of interesting killer methods in the classes (like recursing the tree nodes and using delegates to
speed up binary search), so you get to work at a high level of abstraction on the one hand and a very low level
on the other.

This book assumes you have some idea how to program. But it will also work for you if you have never so
much as written a While statement before and you are willing to learn. I have provided some grounding on
software development practices for newcomers, like what constitutes good method writing or class
construction. Experts will no doubt gloss over these areas, although those experts new to Visual Basic .NET
will do well to refresh themselves with the practices that can help them become very efficient OO
practitioners.

If you don't know the Unified Modeling Language (UML), you should get a guide to bring yourself up to
speed. I express many concepts using UML class diagrams. Visual Studio .NET for Enterprise Architects
ships with a version of Visio 2002 specifically geared for architecting .NET software using UML. For all
sizable software development projects, completing the model (as discussed in Chapter 9) is the first thing you
must do before you hack out a single method.

You will find that I spend an enormous amount of time in object−oriented aspects of Visual Basic .NET. I
believe to the credit of the book some chapters are more about OO software development than Visual Basic
.NET (hence the reason for the number of UML diagrams in the book). However, every general discussion
about OO software development is backed up by an example in Visual Basic .NET.

I cannot stress enough, especially to my learned comrades, how important it is to fully understand and use
Visual Basic .NET to write correct object−oriented software. If you are going to live in the OO house you
need know what's in the ceiling, what the walls are made of, and what's lurking in the basement. If you take it
all in and not just cook spaghetti on the stove, I promise you will be richly rewarded with an ability to write
software in any .NET language you want (J# included).

I am incredibly impressed by how Microsoft has gone to great lengths to reduce the complexity involved in
writing good software, while at the same time providing constructs that allow you to create the most
incredible facilities. While you get advanced constructs like a free−threading model, which can add to
complexity, they have taken away the need for you to manage every ounce of memory on a computer. I once
had the unfortunate job of creating a high−end mail server, which needed to manage numerous threads.
Having to manage memory on every thread at the same time made that task unforgettable.

This book in no way covers everything about Visual Basic .NET and the .NET Framework. Just because the
title says "Complete Reference" does not mean we need to cover every class and every method in .NET,
although many readers expect exactly that. I remember a reader chewing on me about not covering ISAPI in
my SQL Server 2000: The Complete Reference." You call this a complete reference?" he said. "Where's the
stuff on using ISAPI to connect SQL Server to the Web?" I wrote the guy back and said "Perhaps I'll add
some stuff about herbal remedies as well," only to be told he would hold me to that statement.

To cover everything you need several volumes. However, I am fortunate to have a publisher and a great
editorial team that has been willing to allow me to write more than one book. Otherwise, we would probably
have been looking at around 2000 pages.

This book is my second on Visual Basic .NET. The first book, Visual Basic .NET Developer's Headstart, is an
introduction to Visual Basic .NET. It's designed as a quick read to place you on familiar footing with Visual
Basic .NET. It's especially useful if you come from the world of Java and Delphi, and want to be sure Visual
Basic .NET is for you.

Foreword

5

The book you are holding is aimed at core material and fundamentals. The Introduction will fill you in with
that aspect of it.

I encourage you to send me your contributions, comments, and any suggestions on fixing or enhancing the
material presented in this book. You can write me at jshapiro@sdamag.com or visit www.sdamag.com. Any
contribution you wish to make will be considered and you'll be asked permission to include it in future
editions or in the solutions.

I sincerely hope you will enjoy reading this book and gain the enrichment that I have garnered from writing it.

Acknowledgments

Many people made this book possible. Besides editors and production people and writers, authors, testers,
and reviewers, a great many people who did not have a direct involvement in this book nevertheless provided
contributions which were indispensable. I would like to thank these dear friends first.

During the early stages of this book, I relied heavily on my coworker and assistant, Saby Blanco, who was
sadly taken from us without warning in late 2001. (I know God had a reason for recalling Saby in a heartbeat;
I just wish I knew what that reason was). I have dedicated this book to his memory and to thank him for his
friendship and help. He is sadly missed by many. He was a terrific person.

My wife and dear friend, Kim, has certainly had it rough in recent years, but without her unfaltering
commitment and support it would have been very difficult to reach this stage in the life of not only this book
but in my other books as well.

A special thank you to my sister, Lesley Kalish, for her assumption of many of my family responsibilities that
made it possible for me to dedicate the time I did to this project. I owe the same level of appreciation to my
uncle, Charlie Frank, for his support, love, and friendship.

I also owe more that a few words of thanks to my wife's family, the Zagnoevs, and in particular to my
father−in−law and mother−in−law, Barney and Entha Zagnoev, whose support in this "venture" and several
others in the not−too−distant past, has meant a great deal to me.

Many coworkers and collegues in the past years made it possible for me to put the words and code in these
pages between book covers. They include Steven Cohen at TempArt who always happens to call just when
you think it's time to give him a shout; Armando Blanco for his support in various technical fields over the
years and for his friendship; and Mike Costolo at C&L Insurance, Inc., who deserves a special thank you for
his support, especially during the weeks and months this book had me deep in living in an alternate reality.

Two people deserve special thanks for the effort and support they have given me over the past eight
yearsespecially with respect to my career. They are Stephen Kain, of the law firm Polatsek and Sclafani, and
my book agent, David Fugate, of Waterside Productions, Inc.

No author can boast that he or she did a book single−handedly. And no matter how much effort goes into the
creative side, without the help and dedication of editors and production people a good book can very quickly
go bad. On that note, I would first like to thank the Production Editor at Osborne, Elizabeth Seymour, for
going more than the extra mile for me. Besides the hard work and commitment to the publishing task, her
support, understanding, and tolerance (of me) are greatly appreciated.

I also would like to thank my publishers and the all the production and editorial staff that helped keep this

 Acknowledgments

6

book on track. In particular, I owe my publisher McGraw−Hill/Osborne for support and patience during the
long haul. Special thanks and appreciation are due to my editor, Ann Sellers, for her commitment and support,
during the approximately 18 months it took to publish this book, from conception to reality. I am especially
indebted to Ann for the opportunity she has given me in this venture.

My technical reviewers, Lou Boni and Amir Liberman, of Ziphex Consulting, Inc. (www.ziphex.com), and
Jared Kalish all deserve a special thank you for the extra effort each made to not only read my chapters but
also to test my code. I am especially indebted to my nephew, math whiz Jared Kalish, for his direct help in
reviewing many of the pages I thought I had lost my way with. His blunt "Am I supposed to understand what
this means?" style of editorial critique and review is directly responsible for a lot of polish.

I have received a lot of help from Microsoft over the past five or so years that I greatly appreciate. I especially
feel a debt of gratitude to Stacey Giard (.NET Developer Support Group PM) for her commitment, and to Eric
Foster at Waggener Edstrom (Wagged) for the help he has given me with all my books.

 Acknowledgments

7

Introduction
Before I introduce the chapters I want to tell you what this book is not. It is not a book that caters to
migrating from the earlier versions of VB to Visual Basic .NET.

There are several reasons for not talking about what was and what now is. In many cases, the effort to migrate
is not worth your time; you might as well start from scratch. Besides, you must learn the new language. Also,
anything written in classic VB is unlikely to carry over well from the design and architecture points of view
(especially the much earlier versions of VB). While I don't know VB prior to VB 5 and 6 very well, I know
enough about the latest versions to tell you that there is a huge difference between classic VB and Visual
Basic .NET. You will undergo a shift in psyche, from being a VB programmer to being a Visual Basic .NET
programmer. You have to change the way you thinkthinking in objectsnot only change the way you write
software. Now is a good time to rebuild your VB application from ground level and put it on a solid
object−oriented foundation.

While I have made a few notes in places about the differences, it is only to reflect on interesting points and
anomalies. I believe that if you are an expert in "classic" VB you will know exactly where to look to find the
differences; you'll adapt both personally and with the software with relative ease. I work with VB 6 every day.
I also work with VB programmers every day, some of them with one leg in VB 6 and the other in .NET. We
don't run to find a book that explains the differences between interfaces and arrays, for example. We get into it
and find out the differences at the moment we are most disposed to encounter them.

If, however, you need to understand how involved migration will be you can simply open your VB apps in
Visual Studio .NET and let the upgrade tool tell you what you are in for.

If you are not an expert in classic VB and come from Delphi or Java, any discussion about the differences is a
waste of time. And if you are new to programming I strongly urge you not to dilly−dally in classic VB
because that will cause frustration when you do change to Visual Basic .NET. Just come on in and get started .
. . the OO water is just fine.

The book you are holding aims to impart as much information as it can to allow you to become familiar with
key concepts as quickly as possible. I believe in the cliché that if you give a poor person ten bucks you feed
him or her for a day, but if you give the person a fishing rod then perhaps they will go off and start a fishing
factory that turns out the world's finest lox.

Once you understand the core constructs and fundamentals, like control−flow, iteration, operators, methods,
and properties, and then the advanced, yet still core, object−oriented concepts like inheritance and
polymorphism, you will be ready to take on anything in Visual Basic .NET.

The marvel of the .NET Framework is that once you have a grasp of these core concepts, using the classes and
the facilities in the base class libraries and the advanced libraries is relatively straightforward. I liken it to
learning how to drive a car. Once you know how to change gears, park, accelerate, and so forth, you have
what it takes to get into any car and drive away.

This became very clear to me during the writing of this book when I was assigned to create an ASP−based
application and decided to do it in ASP.NET instead. There was no mode change or gear shift for me at all.
Sure, the Web−related elements, which apply to all languages, are a different matter. This book would not be
doing justice to its cause or readership if it suddenly started going into XML basics or HTML layout. The
so−called code behind the Web−based application is the same code you write for standard Windows
applications and services. That's the marvel of .NET.

8

When it came to ASP.NET related code, like instantiating session objects, I found that everything I knew
about core Visual Basic applied to these ASP related constructs. It was as if they were simply objects you use
in standard Windows applications.

You will also not find much more than passing references about ADO.NET, GDI+, ASP.NET, and the
network libraries in this book. I took this course for a number of reasons. The first is that I don't consider the
discussion core reference material. Giving you a book of 50 chapters averaging 20 pages a chapter, just to say
ADO.NET does this and ASP.NET does that is not a book I consider any help toward achieving the
fundamental understanding of how .NET and Visual Basic .NET works. For this reason, many of the chapters
are long and complex. I have made every effort to cover the concepts as thoroughly as possible.

Another reason is that once you have mastered the fundamentals, and learned to think in object semantics and
the construct syntax, you will be able to incorporate these technologies with your eyes closed. This is why
some of these technologies only feature in places in the code examplesbecause they were needed in the code
examples. Once you know how to access an array and iterate through its elements, accessing a data set and
iterating through its elements is practically the same thing. The only difference is in one case you reference
classes at System.Array and in the latter case you reference classes at System.Data.

So sophisticated is Visual Basic .NET, the common language runtime, and the .NET Framework, that even
cryptic and hard to understand COM or ActiveX technology melts away when wrapped inside .NET. I have
imported dozens of COM objects, fearing pain worse that root canal, to find myself up and running with them
within minutes as if they were simply another bunch of .NET objects.

I also chewed long and hard on whether to get into reflection, garbage collection, attributes, and the like but
felt, based on my experience with Visual J++, that you'll hardly need to deal with these concepts for most of
your applications, especially in a book that boasts core coverage. You might, however, find yourself calling
on reflect methods, or trying to do something odd with the garbage collector, on very few occasions or when
you need to start working on sophisticated applications, such as those that need to invoke methods remotely

The same is true for threading, although I felt it important to discuss the basic concepts in a small part of the
book dealing with Windows Forms and user interfaces.

Now to what this book is about. It's certainly about the fundamentalsParts I and II deal with the core
constructs of the language, of Visual Basic .NET, and of using Visual Studio .NET. By the time you are well
into Chapter 7 you will be writing Visual Basic .NET code like a pro.

Part III chapters take you through higher−level concepts like inheritance, composition, encapsulation, and
interfaces. The chapters progress from providing a grounding in OO concepts in Chapters 8 through 11, to
advanced OO and code construction concepts covered in the remaining chapters.

I decided to exclude a glossary because there are many fine general programming books in the world that
supply that need. Apart from delegates, which have been given special coverage in this book, Visual Basic
.NET and the .NET Framework does not stray from the standard procedural and object−oriented programming
concepts and constructs in any way that would require a glossary of terms and concepts.

While I have designed the book to be tackled logically from the first chapter to the last, here is a brief
description of the chapters to help you pinpoint parts you may wish tackle first.

Introduction

9

Chapter 1

The first chapter is not so much about Visual Basic .NET as it is about programming in general and
programming in .NET in particular. Experienced programmers will likely skim over this chapter, but
newcomers would benefit from the background to programming in general, and from finding out what Visual
Basic .NET and the .NET Framework have to offer.

The chapter takes you through ages of procedural and structured programming, and into the object−oriented
paradigm. We will discuss modularity, class cohesion, and related topics.

The largest section in this chapter goes into what makes a pure object−oriented language. It discusses the
so−called "three corners of OO": inheritance, polymorphism, and encapsulation. It also points out how many
constructs, like encapsulation, are rooted in programming models, pre−OO. Most important is that you'll see
how Visual Basic now fits the bill as an extremely powerful and pure OO language.

The chapter covers the differences between object−oriented programming (OOP) and object−based
programming (OBD). There is also a discussion about frameworks.

The concept of patterns in software development is a very important subject. The subject of patterns is
introduced in this chapter. Several chapters go into key structural and behavioral patterns in detail; these
include Composite, State, Bridge, and Singleton. You will see how many patterns that have been used for
years in OO software development lay the foundations for many sophisticated technologies in .NET.
Delegates are a case in point.

Chapter 2

It is important to get up to speed with the .NET Framework and the common language runtime (CLR) as soon
as possible. While it is true you can install the CLR and forget it for many applications, there are a lot of
things you need to be aware of when it comes to how your code is executed. This chapter goes into Microsoft
intermediate language, how your application code gets packaged into assemblies, and how the runtime locates
and runs your code.

When I first started this book I thought it would not be necessary to go into the CLR in any detail; maybe give
the subject a few paragraphs. Then I tried to deploy an application for a client to the production servers, only
to discover the code was unable to run due to some obscure security condition. While this chapter presents the
basics of security (the runtime environment and the CLR), the information I gained from learning about the
CLR made all the difference. A few tweaks here and there, and the code was up and running.

You need to know about the assembly cache, side−by−side execution, the Common Language Specification,
and .NET security. While you do not need to become a guru on all the subject matter covered in Chapter 2,
you'll have the confidence to move your software off your development workstation and know what it needs
to run with in the world at large.

Chapter 3

This chapter aims at making you productive with Visual Studio .NET as quickly as possible. The chapter has
been designed to have you learning important points from the get−go, so that you'll be able to have code
compiled and running before you reach the end of the chapter.

 Chapter 1

10

You'll learn about the important features, windows, and tools in Visual Studio, and how to load the Visual
Studio solution and projects that partner this book. The chapter also includes a small applicationnot exactly a
killer version of "hello world"but enough to get your feet wet.

Chapter 4

There's a lot of ground to cover in this book and Chapter 4 gives you the lay of the land. The first part tells
you which chapters to turn to for coverage of certain constructs. It also provides information on .NET code
writing style, such as whether to use Hungarian notation (which is discouraged), what should be cased in
camel casing, and what should be cased in Pascal casing.

The chapter also goes into the various declaration spaces and contexts of a .NET program. For example, it
covers the compiler options (Option Explicit, Option Strict, and Option Compare), namespace declarations
and the concept of namespaces, class characteristics, and the class members. This chapter covers variables,
constants, important keywords, conversion, scope, and lifetimes.

Chapter 5

I got somewhat carried away with this chapter. It started as a big section in Chapter 4 and then grew to a point
where it deserved to be its own chapter. This chapter is unique for a number or reasonsnot only have I gone
over every operator bit for bit, but I have also covered some stuff that is not currently in Visual Basic .NET at
all: operator overloading.

There is a good reason for why I did this. Operator overloading is important for a lot of reasons and there has
been quite a debate over whether Visual Basic .NET, unlike C# but like Java, should have supported it. I
decided to get into the subject for the sake of providing Visual Basic programmers with an understanding of
what operator overloading is useful for and if it is necessary to have in Visual Basic .NET. Once you have
read this chapter you will be able to fathom if the subject is worth pursuing with Microsoft or whether you
would prefer they spent their time on more important issues.

I delved into the subject of shift operations and the shift operators in Visual Basic .NET. The problem you
have here is that there are no shift operators in Visual Basic. Only C# has them. I decided to show them
anywayonly I had to write the examples in C#. Surprised? You should be. The C# section is important for two
reasons. It shows you what you can do with shift operators (which may make you envious of C#
programmers), and at the same time it shows you how you can incorporate another .NET language into a VB
project with relative ease.

Do not be surprised to find a number of tables and lists in various places that include some C# items alongside
the Visual Basic ones. There are two reasons I did this. First, the framework classes are written in C# so it
helps when you encounter terms like sealed and static that you know what they mean to your Visual Basic
code. Second, switching out to C# to knock up something you need to incorporate in a Visual Basic
application is not to be discouraged.

The chapter also looks at short−circuiting in operators. It includes a section on numbering systems, which we
all need to be sharp about.

 Chapter 4

11

Chapter 6

This chapter deals exclusively with flow−control, iteration, and the conditional constructs. Without these
fundamental facilities we cannot program any logic into our software. We would not be able to provide choice
or make selection.

The chapter covers all constructs, and touches a little on the legacy ones that I have never been enamored with
as a VB 6 programmer. I found it very hard to cater to error handling with the On Error construct, and after
having coded with exception handlers for years, it was difficult getting used to the very un−object oriented
way VB error handling had to be dealt with.

I also got into so much trouble with Goto in my early programming days (with Dbase and the like) that I now
hate this facility with a passion. While I cover Goto in this chapter, I have made it clear that it is not needed in
.NET at all. Apart from the single example of Goto in this chapter, the construct is not covered anywhere else
in the book nor is it used in any of the software projects.

Chapter 7

Methods are what make your objects work. They come in two flavors: functions and sub−routines. The latter
is known as a Sub in Visual Basic. Functions return values while Subs do not. This chapter deals with
everything you need to know about methods. It deals with method characteristics, parameter lists, return
values, pass−by−value, and pass by reference.

This chapter also covers the polymorphic facilities of methods, such as overloading, overriding and
shadowing. It explains the difference between static or shared methods, and instance methods, and it explains
the purpose of abstract, virtual, and final methods.

I also decided to cover several general method topics in this chapter: Recursion, and method performance and
analysis. If you are up for some teeth−grinding, you can tackle some computer science in a section that
introduces O−notation and the running−time analysis of methods.

This chapter also introduces exception handling, a precursor to Chapter 11, which covers exception handling
exclusively and in much more depth.

Chapter 8

Visual Basic .NET and the .NET Framework provide outstanding support for value types, structures or structs,
and enumerated types (enumerations or enums). This chapter covers the object reference model, the difference
between the objects that live on the stack (a more efficient region of memory), and the objects that live in
heap memory.

The chapter explains the concept of boxing, how objects get moved between the stack and the heap.

Chapter 9

Understanding the basics of object−oriented software development is a prerequisite to comprehending the
more advanced chapters. This chapter covers all aspects of classes and objects, from class characteristics and
how classes are constructed and relate to each other, to how classes become objects.

 Chapter 6

12

I also cover modeling in depth in this chapter and provide a small introduction to UML. This section includes
a guide to the UML symbols used in a number of class diagrams throughout the book.

The chapter also covers inheritance in detail, and explains the differences between inheritance, aggregation,
and composition. We investigate how to construct base classes, abstract classes, and how to decide how
classes should relate to each other. The chapter also covers static classes and how to seal a class.

Chapter 10

Interfaces probably underpin the entire .NET Framework and I devote an entire chapter to the subject so that
you fully understand what interfaces are, how they are used, and why they are so important.

The chapter details how interfaces provide the polymorphism so important to object−oriented software. It not
only goes into interface factoring, how interfaces are constructed and so on, but it sets you up to understand
the more complex programming concepts, like method indirection, delegation and Delegates, wrapping, and
varying implementation.

The chapter covers everything you need to know about working with interfaces from declaration and
definition to implementation, instantiation, and bridging.

Chapter 11

I consider exception−handling so important that it deserves a chapter of its own as well. This chapter follows
up on the short introduction to exception handling introduced in Chapter 7. It not only covers the ins and out
of using exception handling in your code, guarding code in Try Catch Finally constructs, but also shows you
how to create custom exception handling objects.

Chapter 12

Data structures and collections are where you store the data you work with in your programs. They include
arrays, lists, stacks, and queues. This chapter is extensive and deals with the specifics of the most important
data structures. The first part of the chapter deals with declaring and using the likes of stack objects and
queues. It also introduces the key interfaces that are implemented in collection classes, which provide the
support for iteration and framework wide constructs.

The chapter then delves into arrays. It looks at how to fill arrays, access array elements, iterate over arrays,
and how to pass arrays to methods. Later in this chapter, we look at sorting and investigate how to write
sorting algorithms like quicksort, bubble sort, and so on. There are two motives behind the work with sorting
algorithms. First, they cover important method construction issues, like method decomposition and how to
divide units of work in your algorithms. Second, these sections bring us down from the lofty abstractions of
object and classes in the previous chapters. In short, the chapter lets us get down to some gritty code writing.

Chapter 13

Patterns are as critical to object oriented software as blueprints are to architects. This chapter investigates
several of the most important patterns in OO. These include the Singleton pattern, the Bridge and Strategy
patterns (which make extensive use of interfaces), and the State pattern.

 Chapter 10

13

The chapter specializes in the Composite pattern and looks at composition and aggregation in some detail. It
covers the creation, from design and specification, of a full−blown linked list class, that you can emulate and
incorporate in your code. To iterate the list I show you how to implement the collection interfaces, IList,
ICollection, and IEnumerable. You will also learn how to build a collection class and an iterator for
traversing it by implementing the IEnumerator interface.

Chapter 14

If you don't understand delegates, then this is the chapter to turn to. It tackles the subject of Delegate objects,
Adapters and delegation head−on. This subject has its roots in Visual J++ and is one that gives programmers
a lot of trouble. Few constructs create as much confusion and debate as the Delegate class and how to use it.

Chapter 14 is closely tied to Chapter 13, covering patterns, and Chapter 10, which covers interfaces. Apart
from implementation inheritance discussed in Chapter 9, I believe that unless you understand polymorphism
as well as you understand your mother tongue, you will struggle with everything from services to user
interfaces to multithreaded applications. I may have gone overboard on the polymorphism subject, but there is
a very good reason for it. If you don't understand or know how to use or program against interfaces and
delegates, then you can't move up to the more intense and more complex technologies you need to master.
And you can practically forget about getting into building controls and components, let alone how to build
sophisticated event−driven programming.

This chapter also looks at the debate between using interfaces and adapter class for event−driven software vs.
the Delegate. We examine how Delegates are used as object−oriented function pointers. While I touch on the
subject of callbacks and asynchronous programming, this chapter deals mainly with simple method pointing.
It takes recursion used with the sort methods in Chapter 13 and shows how to replace it with Delegates.

Chapter 15

Manipulating data and getting data into and out of your application are other core requirements for you to
master. Chapter 15 covers string handling and I/O, and several important namespaces and classes that cater to
I/O.

After discussing string manipulation and regular expressions, the chapter goes into an extensive investigation
of all the file, directory, and I/O classes. These include the various stream classes, and text readers and
writers.

The chapter wraps up with a discussion of using the XML reader and writer classes, and a discussion of object
serialization using XML. It will show you how to provide serialization supports for the linked list class built
in Chapter 13 so that you can persist the data in the lists nodes to disk.

Chapter 16

This book introduces user interface constructs and logic very late; you'll find out why in the introduction in
the chapter. The chapter presents an introduction to user interfaces, how to create a multiple document
interface (MDI) application, and more. It also presents some simple threading concepts.

 Chapter 14

14

Chapter 17

The last chapter deals with debugging and tracing. It can be argued that this chapter should have come much
sooner, but I believe that if you are just starting out programming, using the debugging tools and facilities is
not going to be easy. After all, using the Debug class, performance counters, trace listeners, the Trace class,
and numerous other complex classes in the System.Diagnostics namespace is not straightforward without a
basic understanding of the core language. Once you are up to speed with the concepts presented in the earlier
chapters you'll find Chapter 17 a cinch to read, and the debugging aids like breakpoints and code step−through
features and the classes, a matter of course.

Conventions

Many of the conventions used in this book are self−evident. However, I have added a number of symbols in
many tables that differentiate between properties, methods, fields, static methods, and instance methods.
These symbols are listed in the following table.

Symbol Explanation

(a) Denotes an abstract class or method

(d) Denotes a Delegate object

(fi) Denotes a field

(fl) Denotes final

(i) Denotes an instance method

(m) Denotes a method

(p) Denotes a property

(s) Denotes a static method
A number of tables provide lists of class members. These tables will give you an idea of what constructs are
available to the class and may or may not correspond to an element further explained in the text. However, in
most of the cases the tables are abridged. They especially do not list the members that are always inherited
from the root Object. Defer to the .NET SDK for the full picture.

 Chapter 17

15

Part I: Introduction to Visual Basic .NET

Chapter List

Chapter 1: Software Development and Visual Basic .NET
Chapter 2: Visual Basic .NET and the .NET Framework

16

Chapter 1: Software Development and Visual Basic
.NET

Overview

Visual Basic .NET is a radical departure from the previous versions of Visual Basic, the world's most popular
programming language. If you have had experience with Object−Oriented (OO) languages like Java or Delphi
you will probably take to Visual Basic .NET fairly quickly. After you have spent a few months using Visual
Basic .NET, you'll find it hard to return to an earlier version (unless you really must).

You have probably also read or heard that support for the common language runtime (CLR) and the .NET
Framework transforms Visual Basic .NET into a "pure" or "true" object−oriented language. To decide how
true this claim is, let's first understand what a "pure" and "true" OO language is.

If you are new to object−oriented software development, this chapter will introduce you to the OO concepts
that all Visual Basic programmers need to know. This chapter introduces these software developments and
OO concepts early on, to help you derive the most benefit from this book and from Visual Basic .NET.

We begin by reviewing the evolution of software development over the past few decades. Then we shall see
how Visual Basic .NEThereon referred to as Visual Basic has risen to meet the challenges of a demanding
industry, answering the world's thirst for software.

Visual Basic and the Difficulty of Developing Software

Whether silicone− or carbon−based, what makes computers tick is simply the groupings of the numbers 1 and
0, combined in sequences to form instructions. This is known as softwarehow it is created and used is what
drives technology.

The essence of software is the ability to marshal and control bits of data in order to communicate; to control
devices; to display, project, and render images; to model, design and manufacture widgets; to move objects; to
perform highly complex computations and calculations, and so on.

Software is an extremely complex science. At the same time it is an art formthe software developer must be
creative in designing and writing software that simulates and addresses real world scenarios. Developers are
required to do much more than just write code for complex mathematical algorithms or to simply transfer
information from point A to point B.

Software development is time−consuming: The combination of both time and complexity makes it a very
costly process. Unless a software engineer knows practically everything there is to know about the core
language syntax and grammar and has experience using it, a development process can rapidly expand beyond
the range of affordability. "Core language" doesn't mean peripheral or collateral technologies, or libraries like
the database libraries (ADO.NET) or the Internet communications libraries, or the Web development
technologies (ASP.NET), but the foundation used to create all these collateral technologies. This does not
mean that these collateral technologies are not importantthey are very importantit means that you cannot hope
to use or even create the collateral technologies or components unless you first understand the foundations,
processes, and facilities used to build them.

17

Reducing Complexity and Time−to−Market with Reuse

There have been many horror stories of how a miscalculated value caused a machine to explode, or how a
bank lost millions due to a single errant statement in an algorithm, or how a product had to be recalled
because of an incorrect quality control constant.

An experienced programmer knows to use well−written and proven software components to avoid having to
rewrite and retest the product. We in the software industry know that software is an iterative process. It is also
a refining process. Without the ability to reuse what has been refined or what currently works well for the task
at hand, we will not advance as quickly as we need to in the coming decades. If we had not been able to reuse
what so many have done before us we would not be where we are today.

Take C.A.R. Hoare's famous sorting algorithm, quicksort. He invented this sort in 1960; it is used today in
every modern language (we will cover this algorithm in Chapter 12, "Arrays and Other Data Structures,"
along with bubble sort, and in Chapter 14 in the discussion of delegates). Many software geniuses have
chosen to share their efforts. Bruce Schneier's blowfish encryption algorithm springs to mind, as does the
emergence of formally cataloged patterns for software design. (There are also a number of algorithms that are
patented and that we can't use. The sirens of the data compression wars are still ringing in many companies.)

Software development has certainly changed over the past few decades. The demand for reusable code, and
the ever−increasing demands on software writers to turn out better code, have resulted in improved software
design and implementation techniques that facilitate today's software−engineering principles and
requirements. Had not Visual Basic been adapted for the need, had it not risen to the challenge, it would have
been replaced by something else.

Software Development and Software Engineering

Software engineering is not easy to define; indeed, many argue that it is not a form of engineering at all and
that its designers are not really engineers. But software developers are engineers and include in their ranks
many professionals with formal training and experience. According to Webster's dictionary, "[software]
engineering is the application of mathematical and scientific principles to practical ends, as the design,
construction, and operation of efficient structures, equipment, and systems."

Declared an engineering discipline by NATO in 1968, software design also "provides the equipment, systems,
and tools to facilitate all forms of engineering practice" (this author's words). Modern software development
has also borrowed greatly from other related disciplines such as civil, electrical, mechanical, and structural
engineering especially in the fields of analysis, design, and construction. Even the concept of patterns,
discussed later in this chapter, is borrowed from civil engineering.

Note While many excellent software engineers are graduates of computer science schools, programmers with
an engineering background have the benefit of forward training in design and construction.

The software industry emerged in the mid−20th century with the advent of the modern computer and has
progressed through three distinct "ages" since then:

The Procedure−Oriented Age Procedure−oriented programming was largely concerned with
computational results rather than datathe focus being on procedures, or just code, as islands of
functionality. Software systems were not organized in any meaningful structure and were merely
collections of files containing huge functions and procedures that were processed as required for
discrete calculations. Data was external to the functiona black boxand easily accessible because it was

•

 Reducing Complexity and Time−to−Market with Reuse

18

global. Because the systems were fixated on a result, a value, they could be adequately managed by
the very dedicated individuals that wrote them. Examples of such languages include Assembly
Language, C, generic BASIC, generic Pascal, Ada, COBOL and so forth. Most languages today have
evolved to accommodate the modern programming practices, yet many programmers still work in a
flat, linear procedure−oriented style. Current Web development has not helped this situation, either.
The following example, while extreme, is simple BASIC in all its procedural glory. (Think of
thousands of lines focused on one result, computing the speed of a spacecraft relative to the forces
imposed on it in space.) This type of programming is now as foreign as English in a Dead Sea Scroll:

60 FOR TOPSP%=10 TO 100:
70 VOERC=TOPSP%/100
80 GOSUB 180:REM calculate top speed
90 THETA5$=STRS$(FIX((THETA5+.005)*100))

The Structure−Oriented Age As software systems grew, programmers needed to manage and
maintain them more efficiently. The structure−oriented age introduced a paradigm in which the
functions were organized in structures a module containing procedures and data. In other words, the
unit or level of abstraction became the module rather than the individual procedure. Structural
programming lends itself to encapsulation, data−centric programming, collections of like routines,
and object−like programming.

•

The Object−Oriented Age By the end of the 1960s it became apparent that the ever−growing
complexity of software systems would necessitate a new model, one that was more humanly
manageable and comprehensible. Now almost half a century after the first object−oriented software
language, Simula, was created, the OO age has finally taken hold in response to this complexity. OO
lets us model and design software systems around familiar concepts (objects) behind which
complexity is hidden through abstraction, much like the abstraction found in nature. The focus of
programming is mostly on attributes and data rather than computations or calculations. Encapsulation
and other features have been refined, and continue to be refined, to better serve the OO model.

Note Simula−1, the first OO language, arrived in 1966 and introduced the first attempt to focus on
behavior and data in objects rather than procedures. If you are new to OO I would jump to
Chapter 9, which kicks off discussing classes and Chapter 10 which delves into the subject of
abstraction and interfaces.

•

The remainder of this chapter will explore how and why object−oriented technology has gained critical
acceptance in the software−development community today and how this model of programming can now be
utilized by any modern software language.

The Classic Programming Models

Computer programming as we know it today began in the late 1950s and burgeoned in the 1960s. In those
days, writing code was not considered an engineering profession. Computers could do very little, and people
could usually calculate mathematical problems more quickly. There were many stories from that time
concerning public institutions that spent millions on computers, only to learn that their staff could outperform
the machines.

At first the effort involved in programming a computer was not worthwhile. The first useful programs were
nothing more than reams of sequential instructions. After processing the steps, the computation would be
complete and the computer would be ready to start again.

 The Classic Programming Models

19

This process worked for simple programs, but as computers became more powerful and sophisticated, the
complexity and effort required to program them became barriers to their usefulness. According to one industry
maxim, "Program complexity grows until it exceeds the capability of the programmer to maintain it." Then
chaos takes over.

Identifying structure in computer programs became a popular crusade for many scientists and teachers in the
early years of the profession. By the end of the 1960s, it culminated in a movement called structured
programming, a software engineering discipline that is still widely taught in first−year computer science and
software engineering courses. Many colleges require it as a prerequisite to learning object−oriented
programming (OOP). As you will see, Visual Basic .NET and the .NET Framework present a highly
structured programming framework.

Structured Programming

This is essentially the technique of organizing programs into a collection of small stand−alone modules. The
modules can be grouped into a hierarchy or a network, and each unit has a single entry and a single exit point.
Processing the lines of code in the module occurs from the top down, and the control structure usually forbids
unconditional branching.

Specific techniques let us divide algorithms into small functional units so that one or more programmers can
work on each unit, refine it, test it, debug it, and share it with the rest of the team. Fellow programmers then
debug and check each other's code. In a process similar to modern manufacturing, all the units are then
combined to produce the larger application or system. This is a highly efficient method that works both for
teams and individuals.

Modules are not special "objects" or language−specific containers, and as long as a language can compile and
link multiple source−code files it can be structured along modular lines. It is important to note an important
distinction here: Structured programming divides the engineering practice into two categoriesdesign and
construction (or implementation).

Note Software maintenance includes not only debugging and fixing faulty software, but also adding required
features, improving performance, and more.

On the one hand, software−design engineers use structural techniques to analyze the problems, determine a
solution path, and create a system to meet several objectives, which include satisfying the customer and
maintaining the software.

On the other hand, software−construction engineers use their code−writing skills to implement the code. They
provide the necessary implementation at the functional level of the module with regard to the specific methods
or algorithms. In many shops, assigning engineers to specific design and implementation roles can provide
huge dividends.

Many programmers hate modeling and design at the higher levels of abstraction and are more productive
devising code, in which the radius of focus is only a few millimeters. In fact, this is the age that coined the
slogan "code is king." To quote Paul C. Clements:

"While 'top−down programming' and 'structural programming' were all the rage in 1974, both
referred to practices in which getting to code was clearly the end game. (Contrast this to the
current object− or component−oriented world in which we concentrate on services provided,

 Structured Programming

20

not statement executed.)"

from Paul C. Clements' Introduction to David Parnas' famous paper
"On a 'Buzzword': Hierarchial Structure"

Gifted engineers are versatile enough to produce at both the macro− and microlevels. A number of important
benefits emerged from the structure−oriented programming paradigm, as the next few sections will illustrate.

Bug−Reduced Code

The boundaries of buggy code are within the confines of a module, which is usually the responsibility of one
programmer. It is much easier to detect a bug in a module through isolation than in a file containing a single
mega−procedure. Once the bugs are dispatched from the modules, the pest−free code can then be reused in
other parts of the application.

Note A number of studies suggest a small procedure, a method, is not necessarily more bug−free than a
gargantuan method of 500 lines.

Divide and Conquer

The strongest Roman emperors realized that the solution to conquering their enemies was to divide the armies
of resisters and then conquer the smaller units. Modern analytical problem− solving techniques teach the same
approach, as do many successful algorithm masters. The best way to solve a problem is to restate it in as many
ways as you possibly can; this helps identify the "real" problem, which you then break down into smaller
components. I teach this technique in designing algorithms and will discuss it in later chapters.

For now, let's imagine you are hired to build an accounting system that will debit an account in one process
and credit an account in another. Would it not be best to create discrete Debtor and Creditor modules with
clearly defined interfaces to accomplish these tasks? The Debtor module would first deduct an amount from
an account and then convey the number deducted to the Creditor module. These modules can be in the same
code file or in different files, as long as they remain separate entities. This ensures that if a bug arises in the
creditor part of the code, the debtor part will not collapse as well.

Reuse

Contrary to what many OO purists claim, reuse became the battle cry of software professionals long before
the rise of object−orientation. The idea even predates the industrial revolution, which heralded the effort to
make better products through faster and cheaper means.

Here's an excellent example of reuse. During World War II, the United States government ordered car
manufacturers to help build bombers such as the Avenger, a small aircraft that was capable of dropping a
torpedo, bomb, or mine on the enemy. The companies were ordered to build the components exactly
according to specifications so that parts made by one manufacturer could be used or replaced with the parts of
another. The result was that by the end of the war many Avengers were flying with transplanted components
made from several manufacturers.

Software reuse allows us to build better programs faster and with fewer programmers. Over the years, many
libraries have been built and sold to thousands of companies using identical code in many different products.
The code in these components has been tested countless times and reused in the many different circumstances.

 Bug−Reduced Code

21

Teaming

Structured programming allows us to build a software product in teams. As with the Avenger, various
programmers, grouped into designers and implementers, can work independently on different parts of a
product. Structured programming also lets us delegate according to skill sets, which include writing the stored
procedures; driving the code on the web site; sorting the data structures; and controlling specifications, class
diagrams, use cases, and documentation.

Structural Nada?

Despite the progress made since the advent of structure−oriented programming, many designers still do not
program in a "structured way." They program without regard for the interrelationships of modules,
organization for reuse, overall structure, or protection of data. Software project managers often talk in terms
of the "number of function points" in an application or system, so as to express the extent or size of the
project. But talking about so−called function points is meaningless if there is no way to express the
architecture of that system, its components, their interrelationships, and its various structures.

As I said earlier, many courses in OOP first teach structured programming, because a good OO program is
also a well−structured one. Many first−year programming courses that begin with C++ or Java require you to
learn structured programming in these languages before you learn to "objectify" your code.

Object−Based Programming

As structured programming methods became more refined, it became apparent to the engineers that modules
of code could be related to as objects. Many languages gradually become more object−based, especially as
compilers emerged that could enforce encapsulation and cater to the compiling, linking, and binding of
numerous modules into complete applications.

A good example of object−based programming plots the transformation of C into C++. Today C++ is what
you would call a hybrid language because it allows you to code standard C modules, to add objects and do
object−based programming, or to invoke the object−oriented features of the language such as inheritance and
polymorphism.

Visual Basic is an excellent example of the evolution of a language. It was born in May 1991, the child of a
shapeless language parent, BASIC. Then it grew into its structured programming and module−based
programming stages (all the way to VB 6). Now it has matured into a true object−oriented language, Visual
Basic .NET. Today the language has pure, compiler−enforced support for inheritance, polymorphism, and all
the great features that pure OO languages support.

Object−Oriented Software Development

Computer specifications are advancing at a record pace while prices for these systems are falling rapidly. As
computer hardware gets cheaper, software is getting more and more expensive. In order to create machines
that will address bigger and more complex problems, we need software that is more complex and thus more
expensive. There is also new hardware such as mobile devices, super fast processors, cheap memory, and tiny
hard disks that require sophisticated new software. The problem is further compounded by our desire for
ever−faster and more powerful computers.

 Teaming

22

In the early 1990s, servers cost far more than the software running them. Today, you can buy many powerful
servers for the same price as the operating system and application suite that will be used by a team of people.

While structured programming helps flatten the complexity curve of programming, it is still difficult to
manage large software development projects with structure−oriented practice alone.

Ten years ago, a text−based word processor consisted of fewer than 30,000 lines of code and probably
required fewer than five people to build and maintain it. It was easy to write the modules to its easily defined
structure. Fifteen years ago, word−processing software merely displayed characters, saved text files, and at
best provided spell checking.

Today, an average word processor comprises millions of lines of code, highly complex data structures, and
algorithmsnot to mention all the complexities of the underlying operating system. Today's system caters to
writing, linguistics, semantics, grammar, design, layout, typography, printing, production, imaging, word
recognition, and so much more.

As soon as a structured−programming project becomes large and complex, your ability to manage and
maintain the application begins to break down. Couple this with the demand for artificial intelligence, highly
advanced and complex algorithms, specialized graphics and effects, sophisticated business systems, and so on,
and you end up with software too complex to comprehend.

The main problem in building such software is that our human abilities to design, organize, manage, and
maintain it have not evolved much. In fact, we are less able to take control of our software today than we were
10 or 20 years ago. It would be safe to say that any sizable application is beyond the ability of any one person
to comprehend.

Thus, the founders of OOP realized that if software modules were managed according to the objects they
represented instead of the collective sums of their functions, however well organized, then the development
process would undergo a major paradigm shift.

While both structure−oriented and object−based programming focus on design practice, object−oriented
development pushes this process to the level of attributes, services, properties, and concepts. OO allows us to
design, understand, and maintain highly complex software by hiding the complexity of the code behind
familiar objects.

Large structured−programming projects are very difficult to manage. Even with a small team of designers, it
becomes very hard for each member to understand what the others have written and why. Furthermore, the
extreme amount of detail can easily obscure the larger picture.

Despite the fact that OOP is not a new idea (it was introduced at about the same time that structured
programming began to take hold), many experienced programmers still struggle with the concepts underlying
it, principally due to the fixation on code. To fully understand OO requires a mental shift away from code
construction/implementation, toward design/metaphorical thought. In many ways you have to lose some of the
mathematician/rocket−scientist mentality. To fully appreciate and understand OOP, you need to become an
artist, a choreographer, and a biologist.

Not long ago I had two "experienced engineers" write to me: one responding to a statement in my Java
newsletter and another trying to understand Visual Basic .NET. The former said, "OOP sounds revolutionary,
but really modularity has been part of a structured programming for decades." The latter said, "Well, if all that
Visual Basic .NET adds to VB is inheritance, then I have been programming in an OO language for years
already, so I don't see what the big ideal is."

 Teaming

23

In the next few sections we will talk about the concepts of OOP, but just enough for you to take the OO test
and judge Visual Basic. I believe you need an unshakable understanding of OOP to get the best out of .NET
development and Visual Basic programming. Thus, several chapters in the book are directly about OOP
concepts in Visual Basic and every chapter touches on OO concepts in one form or another.

Real−World Reflections

In recent years, object−oriented development has gained enormous popularity because it helps us decompose
extensive software systems from a high viewpoint. It takes abstraction to the highest levels above the code
because it allows the software designers to model and design their system as collections of objects that can be
associated with real−world situations or as objects in the real world.

Take a look at your hand. What do you see? Do you first see a hand or its anatomy? Even an orthopedic
surgeon, who is trained to see the anatomy, still does not focus on the molecules that make up the anatomical
parts of the hand. If we were unable to mentally encapsulate all anatomical or molecular ingredients at these
lower−levels, we would not last ten seconds in the world.

OO provides the same benefits. It lets us collect the anatomical and molecular low−level routines of our
software in objects that are then grouped together to make the system. Thus, we could say that an application
is a collection of 250 objects, or we could choke on the statement that "our system is 100,000 lines of code,
4,000 functions, 200 variables, and so forth."

How do the objects integrate and interoperate to form the application and perform its collective duties? In the
real world, objects in a biological system accomplish this through a complex network of messages. Sender
objects send messages to Receiver objects, which act on the requirements contained therein. If the receiver
does not process the input correctly, or the sender falters in its delivery, or the messaging system itself is
faulty, the entire "organism" might be affected. For example, when we get hungry and pick up a sandwich, our
mouth receives the message to open and to process the food. If the neurological pathways begin to break
down, as in the case of multiple sclerosis sufferers, the objects that make up the organism are unable to act
and the organism dies.

We use object−oriented design techniques and tools to help us develop object−oriented systems. The
engineering of OO software is similar to other engineering disciplines; an OO system is built in the same way
a structural engineer constructs a bridge or an architect designs a house.

An architect starts by sketching and then transfers the design to a computer so that it can be properly scaled
and organized into its respective system of objects (hence my attestation that software engineering facilitates
all forms of engineering). The house may be modeled so that it can be viewed in its physical form, albeit
much scaled down. When the house is ready to be built, the various objects of the house are constructed. We
software developers prefer to use the term implemented, but the idea is the same.

Our modeling and design tools have become very advanced in recent years. With Unified Modeling Language
(UML) as the principal [modeling] language, tools like Rational Rose and Visio 2002 (to mention two premier
products) enable us to design and model the most complex systems effortlessly. If our customers can imagine
it, we can build it; the only limitation is their budget.

Note The concept of pattern languages is beginning to take root and will be part of mainstream
software engineering, like UML, within a few years.

 Real−World Reflections

24

What Makes a Pure Object−Oriented Language

While OO allows us to apply abstract concepts to the design of our systems, the closer we get to the
implementation, or code, the less we begin to care about OO. In fact, once the source code is compiled, the
"OO−ness" is completely gone, because the processors do not care about objects and their attributes. They
care about what operations need to be performed, what instructions need to be processed, and how much
memory it takes to do the computations or process the data. At the methodor routinelevel, we are
programming the objects; the logic and practice at this level are the same for object−oriented languages as
they are for structured−oriented languages.

However, if OO were nothing more than a design technique, it would not be as useful as we would like. We
can design according to real−world problems, scenarios, and objects, and we can also implement the
functionality along real−world lines, as far as possible. So there are a number of additional traits or features of
OO languages that allow us to extend the object model to the lower levels, which allows the objects to
interoperate on the outside and the methods to interoperate on the inside.

A "pure" or "true" object−oriented language thus comprises the following traits:

Modularity is achieved in modules called classes, the unit of encapsulation.1.
Related classes are grouped in hierarchies. The classes are related by descentinheritance.2.
The classes can be instantiated at runtime as objects, and their functionality and data dynamically
accessed. (Class functionality can also be statically accessed without instantiation.)

3.

Objects access one another's data and implementation using messages passed between them.4.
Objects are able to dynamically respond in different ways and serve up variations in functionality in
response to the same messagepolymorphism. Through the employment of interfaces, polymorphism is
achieved because different implementations can exist behind the same interface used in more than one
place.

5.

If you expected to find encapsulation on the list, you might be surprised. Let's consider some of the points
made earlier. Encapsulation is often cited as one of the three most important tenets of an OO language
(inheritance and polymorphism are the other two). But while it is vital to OO, encapsulation is really a trait of
all modern programming methodology, adopted without question by OOP from both object−based
programming and structured programming practice. Encapsulation was certainly supported in the earlier
versions of Visual Basic. Therefore, inheritance and polymorphism are the two critical enabling features of all
true OO languages. Visual Basic now supports both.

Having said that, just because a language supports both inheritance and polymorphism does not mean that it is
100 percent object−oriented. Let's review the five essential traits and then investigate implementation
according to real−world analogies.

Just Classes

In an OO environment, all code is written in a class structure. The attributes of the structure, compiler
directives, class declaration, references and directives in the implementation code, direct compilation and the
transformation of the class into a member unit of an application, or as part of a dynamically linked library that
can be accessed by other applications.

The .NET Framework classes comprise the built−in types, base classes, objects, interfaces, attributes,
enumerators, events, and so forth, which cater to the fundamental object−oriented software principles of
modularity, abstraction, encapsulation, and classification.

 What Makes a Pure Object−Oriented Language

25

Classes for Modularity, Cohesion, and Coupling

The principle of modularity in software systems (which, as we discussed already, predates OOP) requires that
classes be organized into highly cohesive, but loosely coupled units. Figure 1−1 illustrates the concept. The
cohesion in the classes relates to the collection of methods and data that are organized to serve the common
purpose of the class.

Figure 1−1: Cohesive, loosely coupled units send messages to each other
In order to define common purpose, let's consider the cells in the human body. Different cells have specialized
jobs to do, and their contents are highly cohesive properties that serve a common purpose. Brain cells, for
example, do not have the same properties and methodsways of doing something for an organismthat blood
cells do. They're only composed of elements that enable brain functions, such as memory retention. Similarly,
our white blood cells contain only the highly cohesive assortment of components that fulfill their role of
protecting against bacterial infection. The properties of divergent types of cells may look the same, but they
do different things for varying reasons. Each cell's contents are isolated from other cellsnature does not store
the functions of brain cells in blood cells.

Likewise, you would not put the elements required for file operations in a class catering to encryption. When
you need to use methods for file operations, however, the File class should be accessible to all other classes.
This is where loose coupling comes into the picture.

The loose coupling of classes relates to their interdependency. In other words, classes can interact with each
otheran activity that is achieved through the messaging network (method calls) we discussed earlier.
(Incidentally, this loose coupling is also very similar to the interdependencies of living cells. Figure 1−2
shows how forms are used to present the user interface and how they need only provide implementation for
user input and information. Access to data and functionality is derived from a framework of classes and
objects in which the form is merely a central object for presentation and input (a very different focus from the
form−centric model in older versions of Visual Basic).

 Classes for Modularity, Cohesion, and Coupling

26

Figure 1−2: Applications are collections of loosely coupled classes
Conversely, classes can also be tightly coupled when they need to be. Inheritance, composition, aggregation,
interfaces, and other coupling techniques provide proven methods of interaction among classes that depend on
each other.

Classes for Abstraction

We encounter abstraction every day of our lives. Complex systems are presented to us with their intricacies
separated from the essential components required to understand them. Software engineers and information
technology experts work with this reality all the time. Whites Papers, for example, aim to present a technology
through abstraction and are nothing more than distillations of extremely complex subjects. Chapter 2, albeit
lengthy, is an abstract of the common language runtime. Its coverage of the subject should be sufficient for
programmers who don't have plans to build a new compiler or a new .NET language. (See Introduction about
White Papers.)

Abstraction in OOP is a central principle dictating that programmers do not need to grasp the complexities of
various implementations in order to use them. For example, there is little reason to know how a method
executes the heapsort algorithm if you only need to sort and not to implement a better heapsort.

Classes for Encapsulation

Encapsulation and abstraction go hand in hand. Classes abstract the complexities of their functionality but
make that capacity available through simple interfaces. This is the essence of encapsulation.

Interfaces are a central tenet in OOP and a very important feature of the .NET Framework. Interfaces and
implementation are separated from each other. The latter is provided as standard class members.

But the framework also allows you to provide abstract classes as the foundation for class hierarchies. These
base classes are able to provide abstract methods without implementation and allow you to inherit such
interfaces for implementation in descendant classes. The framework also supports formal interface classes.
Later we'll examine how they facilitate polymorphism. Interfaces are discussed at length in Chapter 10,
"Interfaces"

Classes for Hiding Information

Encapsulation hides information, implementation, and data from parties that don't need to access them. You
only need to know how to pass data to the class's sorting methods, what the impact of the sort may be on
system resources, and how the sorted data is returned to you. It's similar to taking your shirts to the cleaners. It
doesn't matter what machinery they use as long as the shirts are cleaned well.

 Classes for Abstraction

27

Why is it so important to hide certain data and procedures? (You'll see notes and references to hiding in many
places in this book.) In understanding the benefits and differences of loose coupling, tight coupling, and
cohesion in classes, you'll quickly comprehend why publicly accessible data detracts from these traits.

As soon as loosely coupled classes begin to access each other's data directly via publicly accessible fields they
begin to depend on each other. For example, if class B contains methods that depend on data residing in class
A, it would be better to merge the two classes, or have class B inherit from class A because you might not be
able to easily change the interface to the data without damaging the dependent class's interest. The classes
have thus become tightly coupled through bad design . . . and the coupling may be the opposite of what we
want to happen.

Shared information and data makes software maintenance much more costly and time−consuming, as
illustrated in Figure 1−3. Several classes that can directly access the public variable of a single class will do
so. And if they do, they will all have to be updated every time the shared data field is changed or the interface
to the class is altered or discontinued. You may only have one publicly exposed field, but if a thousand classes
depend on the field, changing it affects all one thousand classes.

Figure 1−3: Classes that depend on other classes for global data are harderto manage
In highly complex systems involving many programmers, it becomes difficult to chart which class is
dependent on the data in another class without formal coupling techniques such as inheritance and
aggregation. Sharing information per se is generally not wise, even if you have no formal specification or
requirement in place for accessing the public data.

It is also much easier to trace sources of bugs and defects when elements and methods are encapsulated
because you know that no other class, except a nested class, is dependent on them. So when changes are
made, they only affect that class's members, which also makes this group less prone to causing problems in
the application.

There are suitable techniques for sharing information when this is a requirement. In the chapters to come, we
will explore explicit design techniques and patterns that accomplish this. For the most part, access to data
occurs through strictly controlled interfaces and protocols. If you remember that the contents of your class are
secret and only available on a need−to−know basis, you'll have far fewer problems with your code down the
line.

Code that is open to public variables is also vulnerable to security breaches. When multiple threads access
public variables, the code becomes less reentrant and more apt to suffer corruption and data loss.

Classes for Classification

We know that if a module of structured code can be organized as objects, then those objects can be grouped
into classes that share functionality and mirror real−life scenarios. Further, these can be aggregated into
libraries, allowing classes that have similar traits to share and reuse data and implementation.

 Classes for Classification

28

The test for classification is a simple one. If a conglomerate of classes belongs to a hierarchy, or the
components are logically derived from each other, then they belong together. The same is true for animals: It's
easy to differentiate between canine and feline, for example. It's not difficult to determine if classes already
belong to a certain group. You simply ask "What is it?" The answer will take the form "it is an x" or "it is a
kind of" and you have the collection of classes to which it belongs. If you cannot identify what your class is
and the design calls for more classes of the same "thing" then you have the makings for a new class collection.

Sometimes its harder to determine what your class is a member of. For example, a cheetah has all the signs of
being a kind of cat, but it does not have retractable claws. So you would have to decide whether the cheetah
"is a kind of cat" or "is a kind of dog."

Class that Beget Classes: Inheritance

Now that you can aggregate your classes in hierarchies and collections, it becomes much easier to reuse the
classes or couple them in various ways. A feature of OOP is inheritancemodeled on nature, it lets classes share
common functionality and data in a formal framework. In nature, descendants receive many attributes from
their parents. We never derive 100 percent from them because then we would lose our uniqueness.

A file manipulation class at the base level, for example, requires the fundamental ability of providing the
essential file manipulation functionality: create, open, delete, move, and save files. It makes sense that once a
class with these basic functions is established, new classes performing some type of input/output (I/O) might
inherit this functionality.

This is what code reuse means: It involves using the exact same code provided in the base class everywhere
you need a basic−file I/O routine, not reusing legacy code written 40 years ago by cutting and pasting it into a
new class. In other words, even if a mega−application has 150 different classes that need access to file
manipulation routines, there is only one file−manipulating class that the entire application has access to.

In properly designed applications, reuse can achieve as much as a 70 percent reduction in the introduction of
new code.

Classes for Objects: Instantiation

Classes are represented at runtime by their objects. You can think of a class as the blueprint for the object. At
design time, the class is nothing more than a unit of implementation the equivalent of the module in structured
programming. At runtime, the classes become objects through a process called instantiation, instance creation,
or instance activation.

Once an object is created and represented in memory, it can enjoy relationships with other objects through the
messages distributed around the application. Objects occupy heap space or stack space, so they need to be
managed as part of the software/computer "eco−system." If they take up space and are no longer needed, then
they need to be disposed of so that other objects can be created and allowed to do their work.

Classes for Association, Aggregation, and Composition

Objects are related to each other and interact with each other in ways that make sense and mirror nature. For
starters, if objects become too big they can be broken down into smaller objects, which can then share
associative relationships. For example, with an Employee class that provides an authentication facility by
verifying presented credentials against a database, it may make sense to break it down into two classesone to
specialize in authentication and one to handle Employee data. This will yield a smaller Employee object that

 Class that Beget Classes: Inheritance

29

processes data and communicates with the user interface on one hand and the smaller Authenticate object on
the other. The two objects will be associated by the need for an employee to authenticate. The associative
relationship will be from Employee requesting authentication from Authenticate, which receives the data and
presents it for verification against a database, and not the other way around. The buzzword for this
relationship is "delegation."

When an object is required to take on more than one role, we say that the object has an association
relationship to another object. For example, Employee objects need to associate with Company objects for
various reasons, such as signing non−disclosure agreements. But it is also possible for the Employee to
interact with the Company object as a shareholder, director, or executive officer. Composition is similar to
aggregation, but it exists for the exclusive relationship that one object has with another. An example of
composition is a linked list which is constructed from two types of classes: a class that represents the list
object as a unit and a composite node class that is instantiated as nodes belonging only to the list object in
which it resides.

We will delve into various relationships further in Chapters 9 and 13.

Classes for Events

OOP is the key enabling technology for event−driven programming. If one object changes the state of its data
or a variable and another object needs to know about the event, a message can be passed that allows
independent objects to act on input from the first one. Thus, entities can make control−flow decisions or take
action according to changes in the system as a whole. The .NET Framework event−model is discussed mainly
in Chapter 14, but also in the chapters in part IV.

Classes for Message Passing

In pure object−oriented systems, objects interoperate by passing messages as described earlier. Objects issue
messages to invoke functionality, send or receive data, and so on. In the .NET languages, this is known as the
method call. In order to reference methods, properties, and other components of classes, the method calls need
to conform to a format. This format is known as the message signature.

How do you send a message to an object? First your code needs to reference the name of the object and its
method. Consider the following method:

MyPhone.Dial(PhoneNumber)

This is a message communicating to a phone object named MyPhone and telling it (the method call message)
to phone the number passed in the message to the parameter called PhoneNumber. "MyPhone" is the name
of the receiver and the object that sends the "dial" message is called the sender.

Classes for Polymorphism

Polymorphism means "many forms" in Greek. It is one of the foundational tenets of object−orientation and is
usually one of the hardest traits to grasp in OO development. It allows the implementation behind an interface
to change without affecting the client or the value of the service expected by the client. It is also the process
that allows entities to act in different ways depending on the message they receive.

If you are new to programming, polymorphism might be an easier concept to master than if you were trained
in classic Visual Basic and had never been exposed to the idea. Polymorphism is nonexistent in the

 Classes for Events

30

procedural−structural or object−based programming worlds where functions and procedures do not hide
inside objects that interact with their environment through a system of messages.

The public−switched telephone network (PSTN) is a good example of polymorphism at work. Ever since the
invention of the telephone, the user experience has hardly changed. Except for a few adjustments in the way
you request a telephone number, the process of dialing and speaking has remained unchanged for more than a
centuryyou pick up the phone, dial the number (dials are actually obsolete), and speak.

It all started with two tin cans and a piece of string (which was the model). But once electrical current was
introduced and voice was carried over the circuit, or the loop, our lives changed forever. Behind the interface,
however, there have been many updates to the processes involved in making the connections, converting the
signals, switching, and so on.

No matter what implementation technology is behind the interface, or telephone tone detection, voice
recognition, pulse detection, digital or analog transmission, wire or fiber optics, landlines, the Internetthe user
remains unaffected and obtains the service expected.

Classes for Interfaces

The .NET Framework provides for the incorporation and employment of interfaces, which are key to
integrating method polymorphism in an OO framework. The concept of pure interfaces that provide no
implementation may be difficult to comprehend. But if you understand the meaning of polymorphism, the
reason we have interface classes becomes clear.

Polymorphism implies that you can have many different implementations (code) of a method behind a single
interface. Methods are defined in interfaces by providing only the signature, which consists of the method's
identifier (its name) and formal parameter list. The interface and the definition become part of a contract
between the implementor and the interface provider for the purpose of enabling polymorphism at the method
level.

Thus, wherever the interface is implemented it provides the additional forms in which a method definition can
be implemented. In the end, you have a single interface and a method definition, but many forms of
implementation. Once the implementing classes are coupled with other components in the .NET Framework,
or with private or third party collections, the entire framework is extended and advanced.

Frameworks

Frameworks are collections of reusable classes that present software designs and code that can be recycled for
various application domains. A framework can be a small collection of classes or it can be a massive
collection of libraries and technologies composed of thousands of reusable classes, and millions of lines of
code, organized in namespaces and packaged in assemblies, as in the .NET Framework.

The .NET Framework caters to the complexity problem associated with extensive class libraries, components,
and various interoperable layers. In short, it is a massive and deep foundation on which to build software
economically. It would have been extremely difficult, time−consuming, and expensive for us to have to write
the code that exists in the framework, to deal with the various operating systems, the networks, the hardware,
and so on, in addition to writing the software our clients require.

Note You could argue that the .NET Framework tries to solve a problem that feeds on its solution. The bigger
and more complex the operating system and the bolder the application− and problem−domains, the more

 Classes for Interfaces

31

we depend on the framework.

.NET's object−oriented design facilitates the reuse and extends the code base through OO development
features, such as inheritance and polymorphism. Frameworks are discussed further in Chapter 2, which
introduces the common language runtime.

Patterns

Patterns drive frameworks and encourage not only code reuse but design reuse. Code reuse relates to the
sharing of classes and code. For example, a method, which may be inherited, can be deployed unchanged in
many different places. At a higher level, the .NET Framework becomes a natural facility for the incorporation
of patterns.

The use of patterns is a fascinating trend that has emerged from the many features of OO software creation.
Patterns prescribe, through design and architecture, how reusing various solutions and techniques can solve
any software problem. This represents a higher level of abstraction.

To understand design patterns in software development, you should understand the model behind the concept.
The idea of pattern use is not new. It is borrowed from the works of architectural genius Christopher
Alexander who described how for thousands of years people's design and construction techniques remained
unchanged. In three books and numerous papers on building patterns, Alexander illuminated timeless building
practices that can be distilled into 253 patterns.

Note See The Timeless Way of Building by Christopher Alexander (1979), A Pattern Language Towns,
Buildings, Construction by Christopher Alexander et al., (1977), and The Oregon Experiment by
Christopher Alexander et al. (1975).

According to Alexander, "Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice."

Over the years OO developers have found parallel concepts for software−design patterns. In 1995, Erich
Gamma and three of his colleagues published one of the first software−pattern catalogs called "Design
Patterns", which was based on the findings of Alexander. See Design Patterns: Elements of Reusable
Object−Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison−Wesley, 1995).

Gamma's work contained a collection of 23 of the most commonly used general− purpose software−design
patterns that are application− and problem−domain independent. The book classifies the patterns as follows:

Creational Patterns Deal with the creation of objects•
Structural Patterns Deal with the static composition and structure of classes and objects•
Behavioral Patterns Deal with the dynamic interaction among classes and objects•

Pattern use has been widely adopted by large developer communities. It is as much a part of the Java
developer's arsenal as are code−reuse concepts like inheritance and composition. Developers of .NET find
themselves poised to exploit not only a framework but also a vast collection of proven patterns from which to
begin software construction.

You will find pattern references being repeated many times in this book: These include ones for static classes,

 Patterns

32

object creation, inheritance, aggregation, association, delegation, and more. The text will encourage you to
develop and refine your own patterns and contribute them to the efforts of the developer community.

Note There is now alternative thought that patterns are outmoded in the new world of Web services, XML,
and the Simple Object Access Protocol (SOAP). But just because client and server processes can be split
over wide areas and across disparate platforms and networks does not make the implementation on each
side any less object−oriented. On the contrary, I believe formal pattern use among .NET developers is
set to explode. See Chapters 4 and 9.

Observations

Albert Einstein was quoted as saying: "Everything should be made as simple as possible, but no simpler." In
many respects, Visual Basic .NET and the .NET Framework should be viewed in the essence of that remark. It
is going to take a lot of effort to fully understand all the features and implications of using the new "version,"
but in the end, software engineering will become much easier.

It should be very easy for you now to understand what Visual Basic .NET is and that it supports all the tenets
and principles of a pure OO software−development language, such as inheritance and polymorphism.

However, Visual Basic also supports many other desirable features of a pure OO language, and these include
structured−exception handling (the application of objects to trap and handle errors), free threading for
concurrency, and so on. The extensive framework does not only support Visual Basic like all .NET languages,
but a common− language managed−code runtime environment that takes care of the economics and
housekeeping.

Hopefully it is now clear that this book is a reference manual for both the construction and implementation
abilities of Visual Basic as well as its design, structuring, modeling, and maintenance abilities. Many chapters
are devoted to using the OO features and the design−level aspects of software engineering; others focus lower
down in the class "ranks" of the framework where we deal with services, functionality, and code.

It should also be clear to you as an experienced Visual Basic programmer that Visual Basic .NET introduces a
significant paradigm shift in the development of applications. It replaces the concept of developing with
forms, which is an outdated model that harks back to an over−hyped era of "visual" programming. As
discussed earlier in this chapter, our focus is on classes, objects, and new concepts, not on how to "drop"
controls on forms. This is the reason that the main discussion on Windows forms and user interfaces is
reserved for the latter part of the book.

However, before we can tackle either the design or the construction subjects, we first have to get familiar with
the framework and the runtime that support the language. This and more are the subjects of Chapter 2.

 Observations

33

Chapter 2: Visual Basic .NET and the .NET
Framework

Overview

Chapter 1 introduced you to the .NET Framework and hinted at what's possible in the .NET runtime
environment.

This chapter focuses on the common language runtime, the CLR. In tackling this subject we will be able to
design and code applications with the runtime in mind; in particular, the issue of memory management
represents the biggest change in the way we write applications. Knowing about the runtime is crucial for
programming with the correct security model, implementing exception handling, referencing the correct
assemblies to target namespaces, debugging assemblies, and otherwise managing assemblies (deployment and
maintenance).

Acquiring background on how the runtime operates and executes your code will allow you to become fully
proficient in .NET programming. It's admirable being an expert in software design and constructionand this
book is mainly about thatbut the best−written applications are useless if they get "trampled" in the runtime
environment.

However, we don't need to cover everything about the CLR. We will focus primarily on the concerns of
Visual Basic developersdeploying assemblies, programming for security, and performanceand less on the
needs of framework developerswriting their own .NET runtimes, compilers, and languages. You'll want to
closely examine the discussion on assemblies and intermediate−language (IL) code, because in later chapters
we will evaluate the IL with respect to performance and debugging issues.

This chapter deals with theory. Here we examine the following key components of the .NET Framework:

The common type system (CTS) This system provides the type architecture of the framework and
guarantees type safety.

•

The Common Language Specification (CLS) The specification that all .NET language adopters and
compiler−makers employ so that their languages integrate seamlessly into the .NET Framework.

•

The common language runtime (CLR) The runtime and managed−execution environment in which
all .NET applications are allowed to process.

•

We will then break down the common language runtime into several components to be discussed as follows:

Managed execution We define it and discuss how it differs from other execution environments, such
as VBRUN, Smalltalk's runtime, and the Java Virtual Machine. We also introduce the garbage
collector.

•

Runtime environment We discuss how the CLR uses metadata and Microsoft intermediate language
(MSIL) to execute code. We also investigate the just−in−time compilation architecture and look
briefly at the relevance of application domains vis−à−vis your deployment requirements.

•

Understanding Assemblies We delve deeply into assemblies, examining how .NET applications,
class libraries, and components are packaged. We also touch on the subject of attributesa facility for
increasing the programmer's control over the execution and management of code in the runtime
environment.

•

The .NET Security Model We introduce the security architecture of the CLR and how it affects your
code and your ability to deploy.

•

34

Getting to Know the Framework's Runtime

A common language runtime, managed execution, and automatic memory management will now be the
dominant features for most Windows applications. Programming to the CLR represents a major paradigm
shift for Visual Basic designersespecially the notion of a garbage collector doing the memory housekeeping
for objects on the heap. Yet, the classic VB runtime provided a similar degree of automation, so the paradigm
shift is not as radical as it appears to be.

Many classic VB applications do not require the same level of memory management as those of C++ or
Delphi. For the most part, you don't need to free an object explicitly, because the old VB runtime supposedly
handles this. The .NET Framework accomplishes a lot for you. The architecture providing the foundation for
managed execution is known as the common type system (CTS). For information on where objects live in
memory, see Chapter 8.

The Common Type System

The common type system is the formal definition of how all types in the .NET Framework are constructed,
declared, used, and managed. The CTS ground rules protect the integrity of executing code. Generally, we
refer to object models in object−oriented programming, but the common type system is more than an object
model.

The CTS specifies how typesclassesare referenced, and how applications and class libraries are packaged for
execution on the CLR. This entire book is, in fact, about the common type system. It defines class declaration,
inheritance, referencing, and type management as .NET Framework idioms, not as Visual Basic idioms. In
other words, all .NET development environments must coincide, if they hope to be tightly integrated with the
platform.

Each language's architects have the freedom to interpret the CTS requirements and be flexible in their usage.
Small differences between C# and Visual Basic evidence this; we anticipate that over time C# and Visual
Basic will focus more on the needs of their respective developer communities (or followers), thus increasing
their differences.

In particular, the common type system provides the following foundations for the .NET Framework:

CTS provides a first−class, pure object−oriented model supported by all programming languages that
have adopted the .NET Framework. In this regard it is responsible for the common language
specification and its implementation by .NET adherents.

•

CTS establishes the foundations and reference framework for cross−language integration,
interoperation, type safety, security, and high−performance code execution.

•

CTS defines rules that languages must follow, which helps ensure that objects written in different
languages can interact with each other.

•

You could consider that the CTS also encompasses the subjects of assemblies and namespaces, discussed later
in this chapter and in Chapter 4, respectively. Let's look at the CTS object model to gain perspective.

Throughout this book, you will encounter references to the root of the object model, Object, and how it
functions as the so−called ultimate object of the framework.

All the classes shown in Figure 2−1 are discussed in this book: Value types are introduced in Chapter 4, in the
discussion of fundamental types, and discussed in depth in Chapter 8; reference types are discussed in

 Getting to Know the Framework's Runtime

35

Chapters 9 and 10.

Figure 2−1: The CTS type model, which is the basis for object model and hierarchy

The Common Language Specification

Language interoperability, or interop, is considered to be one of the Holy Grails of software developmentand
the .NET Framework has risen to the challenge admirably. Opinions about the Common Language
Specification (CLS) vary. One that is accurate, but not intended to be complimentary, calls .NET "many
languages for one platform" (while Java is "one language for many platforms"). For now it may be true that
Windows is the only operating system, but for the programmers of the many languages that support .NET, the
CLS is a major breakthrough.

By writing "CLS−compliant code," you construct classes and components that can be used by any language
and its respective IDEs and development tools, without the need for complex COM and ActiveX interfaces
and registration details. To achieve the magic, the CLS requires that class and component providers expose to
consumers only the features that are common to all the .NET languages.

The CLS is really a subset of the common type system, as mentioned earlier. All the rules specified by the
common type system in the runtime environment, such as type safety, determine how the CLS governs
compliance at the code−construction and compilation levels. The CTS protects the integrity of code by
ensuring type safety; code constructs that risk type safety are excluded from the CLS. As long as you produce
CLS−compliant code, it will be verified by the CTS.

The cliché that says rules are made to be broken is likely to be echoed in various far−flung shops. When you
program against the specs in the CLS, you ensure language interoperability for your intended audience and for
others. CLS compliance warrants that third parties can rely on your code and that the facilities you want
exposed are available to the entire spectrum of developers.

Table 2−1 provides an abridged list of software−development features that must meet CLS compliance rules
and indicates whether the feature applies to both developers and compilers (All) or only to compilers.

Table 2−1: Abridged Version of the CLS

Feature Applies to What Must Be CLS Compliant

 The Common Language Specification

36

General All Visibility and exposure; types that are exposed need to be
compliant, but global static fields and methods do not.

Naming All Characters and casing (see Chapter 4). Keywords (compilers must
prevent clashing; see Chapter 4 for use of escape characters);
names must be unique, and signatures must ensure that return and
parameter types are compliant.

Types All Fundamental types such as Integer, Boolean, Double, and so on.
(Primitive types, like Java's primitives, are not compliant.
Visibility, interface methods, closure, and constructor invocation
must be compliant.)

Type members All Overloading, uniqueness, and conversion operations.

Methods All Accessibility and calling conventions and parameter lists.

Properties All Accessor metadata, accessibility, modification, aming, and
parameters (see Properties in Chapters 4, 7, 8, 9, and 10).

Events All Event methods and metadata, accessibility, modification, naming,
and parameters.

Pointers All Pointers are not compliant.

Interfaces All Signatures and modification.

Reference types
(objects)

All Construction and invocation.

Class types All Inheritance (all classes must inherit) from at least ne compliant
class.

Arrays All Elements, dimensions, and bounds.

Enumerations All Underlying types, the FlagsAttribute, and field members.

Exceptions All Must derive from the base System.Exception class.

Custom attributesAll Value encoding.

Metadata Compilers Compliance marking.
The CLS includes the language constructs that are needed by developers of all .NET languages. That may
seem impossible, but the specification is not too big or complex for a .NET language to support. After all,
many of the languages at the source−code level are as different from each other as fish are from birds. For
instance, compare Smalltalk to Pascal, or C#, or the managed extensions of C++ to Visual Basic.

Visual Basic does things in its own peculiar way. So writing Visual Basic .NET code to achieve a particular
end may produce strange nuances when packaged and accessed in C#. A good exampleVisual Basic and C#
implement properties in very different ways.

The advent of the CLS also brings an end to the C++ days of writing components for Visual Basic (and other
languages). For many VB programmers, .NET reverses this role: you can now create components and class
libraries that can be targeted to other CLS−compliant platforms, such as Visual C++ .NET and Visual C#. I
predict that most .NET components will now be written in Visual Basic rather than C++ (for managed
components). You may still have to test and document your classes and components in the target
environments, however, because a particular bit of code might mean one thing to you and something else to
the C# consumer. Yet, many immediate benefits are apparent:

Classes produced in one language can be inherited by ones used in other languages.•
Objects instantiated from the classes of a sender written in one language can be passed to the methods
of receiver objects whose classes were created in other languages. The receiving objects accept your

•

 The Common Language Specification

37

arguments and process them as if they were written in the same language as the receiver.
Exception handling, tracing, and profiling are language agnostic; you can debug across languages and
even across processes. Exceptions can be raised in an object from one language and understood by an
object created in another language.

•

Language interop helps maximize code reuse, which is one of the founding principles of all object−oriented
languages, as we'll see in Chapters 9 and 10. Interoperability is achieved through metadatain executables and
class assembliesthat describes the makeup of assemblies and the intermediate−stage code that is understood
across the entire framework.

Note Components that adhere to the CLS rules and use only the features included in the CLS may be labeled
as CLS−compliant components.

While the members of most types defined in the .NET Framework class library are CLS−compliant, some
may have one or more members that are not; nonetheless, they're included to enable support for non−CLS
compliant features, such as function pointers (a subject we touch upon in Chapter 7 and Chapter 14).

C#, for example, can be used to access these so−called unsafe features, but the architects of Visual Basic have
decided to avoid unsafe code. The non−compliant types and members are identified and discussed in the .NET
Framework Reference. In all cases, a CLS−compliant alternative is available.

Note If you want your classes and components to be totally language agnostic, they need to conform
to the CLS and be free of elements not supported by all CLS languages.

The Common Language Runtime

Your Visual Basic .NET applications, class libraries, and components live in two realities. The design−time
reality is where you write source code, create classes and objects, design applications, debug, and compile
your code. The runtime reality is an external environment and for .NET managed−code applications, this
environment is the common language runtime, better known as the CLR (not commonly referred to as just the
runtime environment by the .NET architects).

Code that targets the CLR is called managed code, indicating that its execution in the runtime environment is
managed by the CLR. We will soon discuss what exactly the CLR manages.

The CLR is a hosted−execution environmentbefore it can be bootstrapped on a target platform, the CLR's host
must be supported on that platform. Microsoft has already released several hosts, including Windows 2000,
Windows XP, .NET Server (I consider the operating system to be the host on .NET Server), Internet
Information Services (IIS), and SQL Server 2000. A number of small device hosts are also due, and the
industry expects a non−Windows host that could be installed on operating systems like Linux. A subset of the
CLR, called the Common Language Infrastructure (CLI), has already entered the international standardization
process (see Figure 2−2.)

 The Common Language Runtime

38

Figure 2−2: The CLR and its relationship to other runtime environments
Note For more comprehensive details, see the specification for the Common Language

Infrastructure in the .NET Framework SDK.
The CLR is like a proxy service that sits between your application and the operating system. The illustration
shows the CLR sitting atop its host, a thin veneer of binary support, and interacting with the operating system
via the host.

In order to understand the common language runtime, consider it an enhanced version of the classic Visual
Basic runtime (VBRUN) that has evolved over timelots of time. You may feel perplexed by the need to pay so
much attention to the runtime environment. Executing the simplest application involves gathering all the
runtime elements and making sure they are properly installed first. A Delphi programmer, by contrast, doesn't
need to ensure that a runtime layer on the target operating system supports their application, because Delphi
compiles to native code like C++. However, the big Delphi applications produce large executables and DLL
files tend to be either very large or very numerous.

Historically, VB and Java required many megabytes of supporting libraries just to run a tiny executable of no
more than, say, 100K. Ensuring the support of the correct VM in Java was a painful chore. (In writing
Windows applications, I learned to program against the Java components of Internet Explorer, to be sure that
my Visual J++ apps would work. And of course this had a lot to do with the first user interface libraries for
Javawhich were miserable.) Testing for IE's JVM was actually the easiest way to deploy VJ++ apps back in
1997 or 1998. And this is still true if you are only providing applications to the legacy Windows operating
systems.

After a few years, however, it became clear that the target operating systems many clients were using already
had the supporting runtime environment. This was more the case with the JVM than VBRUN, because
virtually everyone had the latest versions of Internet Explorer. In the new Millennium, as long as your
operating systems are well patched and service−pack supported by your IT staff, you will no longer need to

 The Common Language Runtime

39

concern yourself with the runtime for both classic VB apps and Java apps.

This is not yet true for .NET applications; but, with time, it will be. For a number of years, most of the
machines in use will likely have the CLR and the .NET Framework installed on them, and for each first−time
installation you are going to need to install this support for your .NET apps. Over time, you will take it for
granted that the CLR is installed on your clients' machines, just as you now know that most of them
accommodate the VBRUN libraries or the JVM. Most Windows 2000, Windows XP, and .NET Server
products will be .NET ready. Also, .NET Server ships with the CLR built−in.

Microsoft Intermediate Language

When you compile your Visual Basic .NET source code, it is changed to an intermediate language (IL) that
the CLR and all other .NET development environments understand. All .NET languages compile code to this
IL, which is known as Microsoft Intermediate Language, MSIL, or IL. We use all of these terms in this book.
At the IL level, all .NET code is the sameregardless of whether it came from C++, Oberon, or Visual Basic.
The idea of compiling to an IL is not new. As you know, two popular languages compile to an intermediate
language (or level) that runs on a so−called virtual machine: Java and Smalltalk.

Java compilers produce bytecode, which can be executed on the JVM or after further just−in−time (JIT)
compilation to machine code. Smalltalk's IL code is similar in concept to the Java and Smalltalk bytecode.
Smalltalk's IL is so versatile that some versions have been ported to various Java virtual machines. Thus,
Smalltalk support for .NET was a given. Surprisingly, core Java can also be easily ported to the CLRif you rid
it of its C/C++ leftovershence the advent of J#.

There are many advantages to IL (and several disadvantages we will discuss shortly). For starters, compilation
is much quicker because you don't have to compile to machine code just to run debug builds. Furthermore, the
development environments of the other .NET languages can consume components and class libraries from the
other languages because at the IL level all .NET code is the same.

Note MSIL represents a major paradigm shift in the compilation of code for the Windows platform.
Vendors no longer need to tout compiler speeds or robustness of linkers. Today, thanks to
languages like Java, Smalltalk, and .NET most of the code we write is first compiled to IL,
and effortlessly converted to the machine−code when needed.

Cross−language debugging and profiling is also possible as long as the CLR is the code management
authority end−to−end. Exceptions caused by code that was originally written in Visual Basic can be handled
by a C# application, and vice versa. Specifically, IL ensures the following benefits:

It offers cross−language integration, including cross−language inheritance, which allows you to create
a new class by deriving it from a base class written in another language.

•

It facilitates automatic memory management, fondly known as garbage collection. Garbage collection
manages object lifetimes, rendering reference−counting obsolete and delivering you from the task of
explicitly freeing memory.

•

It incorporates self−describing objectscomplex APIs, like those requiring Interface Definition
Language (IDL) for COM components, are now unnecessary.

•

It allows you to compile code once and then run it on any CPU and operating system that supports the
runtime.

•

On the other hand, IL also has some disadvantages:

 Microsoft Intermediate Language

40

IL is not compiled to machine code like native code produced by Delphi or Visual C++ compilers, so
it can more easily be reverse engineered. Defense mechanisms for handling this are likely to follow
shortly after the .NET Framework is officially released.

•

While IL is further compiled to machine code, a tiny percentage of algorithms will require a direct
unwrapped access to system resources and hardware. Java and other runtime or abstract
machine−dependent environments are in the same league. C, C++ and the like will probably dominate
this extremely small market (one to three percent of applications) forever.

Note The Java community has learned through its bytecode that decompiling intermediate code is not
worth the effort. Obfuscating technology that will make IL code harder to decompile is
available. So if you plan to email your class libraries or to allow them to be downloaded by your
customers, they must be signed and then encrypted for travel. The security layers piled onto
.NET code also ensure files that have been tampered with will not be used.

•

Figure 2−3 (on the next page) shows what happens to your code from its inception in Visual Studio to
execution.

Figure 2−3: Following the IL

Metadata

Once you have built and compiled an application, a class library, or a component, the IL code produced is
packaged with its metadata in an assembly. These assemblies will have either .exe or .DLL as an extension,
depending on whether they are executables or class libraries.

The code cannot be executed yet. Before the CLR can compile it to machine code, it needs to decide how to
work with the assembly. The metadata in the IL directs how all the objects in your code are laid out and
determines what gets loaded, how it is stored, which methods get called, control−flow, and exception
handling.

The metadata also describes the classes used, signatures of methods, and the referencing required at runtime
(which is what gives you such powerful features as reflection). Free threading is another feature afforded to
Visual Basic programmers by the CLR.

The metadata also describes the assembly by exposing these aspects of its IL code:

The identity of the assembly (name, version, public key, culture context)•
Dependencies, or other assemblies this one depends on•
Security permissions, which are set by an administrator•
Visibility of the type•

 Metadata

41

The parent of the type, or what it inherits from•
Type membership (methods, fields, properties, events)•
Attributes, which are additional elements used on types and their members at runtime•

All this data is embedded in the metadata, which allows the assembly contents to be self−describing to the
CLR: This eliminates the hassles of application registration, type library registration, and the Interface
Definition Language (IDL) required for ActiveX components.

In addition, self−describing containers of code do not need to be identified or registered with the operating
system. By packaging metadata within the executable file itself, the assembly is able to describe itself to the
CLR as soon as you try to execute it. (The idea is similar to that of carrying a magnetic card with all your
personal information, instead of having to access it from an unwieldy database.) This is known as
just−in−time execution. You click or launch the application and it immediately tells the CLR, "Here I am, this
is what I need, I have permission to look in this directory, I want to call a certain method, I need this much
RAM . . .". This may sound like a slow and cumbersome process, but as you will later see, it's not.

Assemblies and their metadata are better for security. You can trust self−describing components more
implicitly than you can a file that publicizes itself in the registry these entries date rapidly and their integrity
can be easily compromised; they and their implementation counterparts (the DLLs and executables installed
on the system) can also become easily separated.

Executable Code

Assemblies do not have carte blanche within the CLR. Code is not always passed directly to the JIT compiler.
First, the IL code may undergo a thorough inspection if deemed necessary by the platform administrator. The
code is given a verification test that is carried out according to the wishes of the network administrator, who
might have specified that all .NET code on the machine must be executed according to a certain security
policy. The IL code is also checked to make sure nothing malicious has been included. See the section "The
.NET Security Model" later in this chapter for details how these checks are carried out. As always, it is crucial
to be aware of all this when you get deployment.

Note MSIL is first converted to CPU−specific code by a just−in−time (JIT) compiler specific to a
flavor of the Windows operating system. The same set of MSIL, however, can be
JIT−compiled and executed on any supported architecture.

The code is also checked to determine that it is type safe, that it doesn't try to access restricted memory
locations, and that it references correctly. Objects have to meet stringent safety checks to ensure that they are
properly isolated from one another and do not access each other's data. In short, if the verification process
discovers that the IL code is not what it claims to be, it is terminated and security exceptions are thrown.

Managed Execution

The .NET just−in−time compiler has been engineered to conserve both memory and resources while giving
maximum throughput. Via the code inspection process and self−learning, it can determine what code needs to
be compiled immediately and when the rest will be needed. This function is known as JIT compilationthe
code is compiled as soon as we need it. When we need machine code "yesterday," we can force compile it and
have it ready for action.

Furthermore, the JIT compiler and the CLR manage resources and process "bandwidth" such that tests show
CLR code has the potential of running even faster on the managed heap than it does on the unmanaged heap.

 Executable Code

42

At this writing, the next version of the CLR is already being upgraded in shop.

How does such a runtime do its job? The CLR is able to manage access to CPU− stack registers of the
fundamental−type and the reference−type heaps in such a way that objects are accessed and processed
quickly. Exception objects are also disposed of more rapidly under the CLR than on the unmanaged heap.
And value types, which live on the stack, are eliminated as soon as they are no longer needed. Value types are
not garbage−collected, as you will see in Chapter 8.

Applications and services may appear to be slow on first start−up, but subsequent execution obviates the need
to send the code through the "JIT'er" again. For the most part, or at least until you have a substantial .NET
project underway, you will not need to concern yourself with the JIT compiler.

Managed execution is also not a single process but a stack of many operations. The following list is an
abridged stack that represents the birth−to−death course of a .NET application:

Code is generated by the developer.1.
Code is "compiled" to Microsoft Intermediate Language.2.
Code is described with metadata and gathered into an assembly.3.
Code is checked prior to execution and marked as "kosher" (or not).4.
Code is just−in−time (JIT) compiled if it is kosher.5.
Code is executed.6.
Code execution is managed.7.
Code is terminated and resources are freed.8.

Visual Basic .NET programmers focus on the top of the execution stack. As the illustration suggests, they are
less concerned about what happens to their code further down the stack. Smart programmers, the architects,
will do well to master the lower rungs, as this chapter suggests.

Managed execution also entails a lot more than reading IL, verification, and JIT compilation. It also describes
what the CLR does once it has loaded and executed an application. Three sophisticated operations of the CLR
that will influence your application design and construction are side−by−side execution, garbage collection,
and isolation of applications and services into application domains.

 Executable Code

43

Side−by−Side Execution

The CLR is able to manage multiple versions of the same assembly simultaneously because the nature and
makeup (metadata) of the assembly isolate it from the processing space of all other assemblies, even mutually
dependent ones. This is a phenomenon known as side−by−side execution. This is not a new concept, but it has
never been done as successfully as it is on the CLR.

Side−by−side execution has delivered us from complications associated with "DLL hell", because you no
longer have to maintain backward compatibility of libraries and components when new applications and
assemblies are installed on a machine.

In the past, applications that depended on a particular version of a component would break because a new
application overwrote their component. But with .NET, as long as you keep the old component around, the
application can still reference it. Newer versions of the component can be installed to the machine as needed
by the newer applications. This is possible because, as mentioned earlier, you don't need to register the DLLs
and components. When you are ready to eliminate the older ones, you can delete them.

Side−by−side execution is possible because an executable assembly expresses a dependence on a particular
support assembly, which is versioned by the metadata. The executable will always use the correct code, by
design. Versioning on .NET is more intelligent than simpler models based on version numbers and files that
can be easily erased. Version policy can specifically force an application to upgrade to the new version of any
dependent assemblies.

Despite the relief from DLL registration problems conflicts can still arise. You need good application design
and proven patterns of software development to ensure that applications are safe and reentrant. Application
domains, discussed next, make that possible.

Application Domains

Well−written applications with properly encapsulated data usually provide a certain level of isolation from
others in legacy−processing environments. In some cases, two applications or algorithms that are closely
related risk accessing the same resources and data, or spawning threads that can collide. Code processed from
Web sites is particularly susceptible to such disasters.

For instance, two or more high−end mail servers working on the same machine need to be properly isolated
from each otherthough this can severely hamper scalability. In the past, we had to engineer such applications
to run in separate, isolated processes, often requiring layers of proxy code to manage cross−application data
exchange and task synchronizationa resource−intensive and risky proposition that could result in clashing and
corruption. The CLR provides a higher degree of application isolation through the code verification process
and type checking. The CLR can further protect the violation of processing space through creating and
deploying applications in their own domains.

The runtime host creates these domains, which set up a safe execution environment around a CLR; a target
application will run within this. Think of this architecture as a form of partitioning on a common operating
system. A domain is created before the CLR is bootstrapped to accommodate application execution. Multiple
domains can be spawned in the same process, which dramatically increases processing bandwidth and thus
scalability. The SQL Server runtime CLR host would be a suitable target to run server−side functionality in
application domains.

Application domains are extremely lightweight, so you could engineer a service that spawns a multiplicity of

 Side−by−Side Execution

44

them in a single browser process; further, you could design it so that you prevent controls operating in the
browser from trespassing into each other's backyards.

By using these domains, you protect your group of applications from the shortcomings of any individual one.
It is feasible to keep an application running in one domain and maintain a standby application in an isolated
"instance," where it would be ready to take over processinglike a form of software fault−tolerance. You
cannot execute applications in the domains until the assemblies have been loaded there.

Automatic Memory Management

Automatic memory management is a boon for developers coding to .NET. A sophisticated
memory−management algorithm called a garbage collector (GC) has enabled this. Many garbage collection
algorithms have been tested and proven before the .NET version. CLR architects have been fortunate to
implement one with much hindsight.

If you have programmed for Java, you are already familiar with garbage collection, because Java also
manages memory for you. The GC, and how it is controlled, is investigated in Chapter 17.

In VB 6.0 and earlier versions of VB, objects that go out of scope, get lost, or become unnecessary had to be
explicitly removed (remember Terminate events [VB], Destroy Free [Delphi], and DeleteRef [C++]). In
manual memory management, problems arise because you have many objectsyou might lose track of them or
forget to discard them, allowing for a slow "memory leak." The .NET GC does not let this happen, because it
removes these "lost" objects and automatically frees the memory they occupied. The specifics of memory
allocation and how the GC works with it are discussed in Chapter 17.

Does automatic memory management imply that you can write code without worrying about freeing objects?
The answer is a cautious "yes"for most of your applications. But if you think you will never have to concern
yourself with memory managementthink again. It's untrue for the .NET languages, untrue for Java, and for all
other automatic memory−management development projects.

First, so much legacy code exists that it will be five to ten years before most of our code will be using
managed−execution runtimes with automatic memory management. If you build applications for the CLR that
need to interoperate with legacy code (such as COM and COM+), you will need to free memory
manuallyimplement Dispose methods in your .NET code to free resources running in the unmanaged space.

Second, it's not difficult to implement poorly designed software that uses a heap (no pun intended) more
memory than it should. Automatic memory management only frees resources held by obsolete objects; it
doesn't concern itself with object economics.

Here's an example: You create an application under the management of the CLR that has to open up sockets
out to the Internet. It requires 10 threads, each running in its own little "slice" on the system. Such an
application, like a mail server, would be rapidly activating objects.

The threads spawned in the application create objects, work with them, and then dump them. For the
example's sake, let's say that the thread cannot reuse the objects. In this case, you will probably run out of
memory despite having a garbage collector, because the GC can not clean up your wasteful threads quickly
enough. Instead, you might have to rethink your design if you have critical applications that need to activate
many objects and dispose of them quickly.

You cannot call Finalize or Dispose each time an object needs discarding. GC algorithms do not work that
way. The finalization of objects in the GC world of automatic memory management is non−deterministicyou

 Automatic Memory Management

45

cannot predict exactly when an object will be removed from memory. Objects aren't removed chronologically;
thus, the order in which they became obsolete is irrelevant.

Also, garbage collection can be a bottleneck. The boon of not having to set objects free has this trade−off: the
CLR controls the GC, and when the collector stops to take out the garbage, your threads have to mark time.
"Time leaks" may have replaced "memory leaks." But all is not lost. (See Chapter 17.)

The CLR allows you some management over the GC. A collection of GC classes and methods are at your
bidding, though you still cannot force collection or make the cleanup deterministic. Rather, you can design
your applications and algorithms such that you have some control over resource cleanup.

Having the benefit of garbage collection does not mean you can ignore application design and common sense.
If you are coding applications that lose or nix objects indiscriminately, the GC is not going to work for you.
Your design should be using the main objects you create until the application or service shuts down. The
objects that have to be removed and restarted often should be lightweight structures (as discussed in Chapter
8).

Despite these caveats, the GC is very fast. For most applications you'll see no difference between how quickly
the CLR disposes of an object and frees its resources, and the memory reclamation of your unmanaged apps.
The time you might lose to collection is measured in microseconds in the life of the average application on a
fast machine. In addition, the GC can be deployed on multiprocessor machines, allowing its threads to be
allocated to one processor while yours run on the other. How the GC accomplishes this is beyond the scope of
this book.

Just−in−Time Deployment

Application or service deployment no longer requires intricate installation procedures that infest the registry
with keys and values like a swarm of bees invading an empty hive (perhaps that's why we refer to the
partitions of the registry as the hives). You can now distribute applications to target runtimes in several ways.
You can simply place your compiled assemblies (.DLL and .EXE files and any multi−file assembly members)
into a private folder that you set up for your installation. Your user can then simply double−click the target's
icon and it loads whatever it needs to run.

It used to be this way when all we had to worry about was a directory and a .INI file. What happened in
betweenalong came Windows 95, the registry, and ActiveX; for the past seven years, installation and
deployment have been getting increasingly tougher.

The following list shows the available deployment scenarios:

Explicitly install into the global assembly.•
XCOPY your filesor just drag and drop theminto a folder or the GAC.•
Use the Windows Installer (version 2.0).•
Download (into the ASP.NET runtime).•
Use just−in−time (also known as on−the−fly) deployment.•

From the start, you can keep things simple by creating a script that just drops your .NET apps onto the target
machine and installs the icons.

Even uninstall nightmares are now a thing of the past. Simply copy the new versions to the target computer,
delete the old one, or move them into a "legacy folder" in case the end user decides to roll back or something
goes awry with the new version.

 Just−in−Time Deployment

46

For global access to your files, you only need to drop them into the Global Assembly Cache (see the next
section). Each computer that carries the CLR is endowed with a GAC (pronounced like whack). This
"repository" for assemblies is a machine−wide code cache that stores assemblies that have been designated for
sharing by more than one application on the machine.

Note The GAC is usually created in the root of your operating system folders. For example, on
Windows .NET Server this might be C:\Winnt\assembly.

The purpose of the GAC is to expose the assemblies placed in itto applications and services that depend on
them. When the CLR needs the assembly required by the application, it will go to the GAC.

Note COM interop code does not have to be installed in the GAC.

If assemblies do not need to be shared among applications, you should store them with their "friends" in
private locations. Administrators can then protect the folders if need be, and some of them can be placed
entirely off limits to anything but the assemblies that depend on them.

You can use the Windows Installer, or any other .NET−compliant commercial installer, to deploy into the
GAC or private folders. The .NET SDK also provides a utility called the Global Assembly Cache tool
(GACUTIL.EXE), which you can use for inserting into the cache.

Note Assemblies placed in the GAC must have strong names. See the section on security later in this
chapter.

When you are ready to deploy assemblies for ASP.NET applications simply XCOPY or FTP them to the
server. When you allow Windows forms or Web service assemblies to be downloaded, they can be packed as
either DLL files or compressed .CAB files. You can simply hook up the source via FTP or HTTP and allow
the client to download the file through the link.

The benefit of using the Windows Installer, which generates .MSI packages, is you can integrate .NET
installation with the Add/Remove Programs option in the Control Panel. You can accomplish installation,
removal, and repair in this way.

Understanding Assemblies

The assembly is a "physical" container for at least one built (compiled) executable or class file, module,
component, or icon. If the assembly is a library, then the class or classes it harbors are referenced by the fully
qualified namespace described in Chapter 4. You still need to reference the assembly in the IDE to gain access
to the namespace, so the two are connected at the hip.

If the assembly is an executable file, an application, you reference it by the name of the physical file, which
needs an entry point to allow the operating system to initiate its execution. In the next chapter we will create a
small application called "Welcome" to demonstrate this. The welcome.exe file we produce in that demo is the
assembly.

Note Assembly names and namespace names should not be confused. The two are often similar and
sometimes identical, but have very little to do with each other, aside from their shared need to "register"
an assembly so that Visual Studio can find its way to the namespace.

At the physical level, an assembly is many things, and the organization of its contentsMicrosoft Intermediate

 Understanding Assemblies

47

Language code and metadatais quite complex. While you don't need to know the ins and outs of the contents
of the assembly, you need to fully understand what it is, how to build it, name it, distribute it, and manage it in
order to be effective in your development efforts. This section will help you achieve an understanding so that
you can navigate your software development results and this book more easily.

You will understand assemblies better if we separate them into the four types that the Visual Basic compiler
can produce:

Console Executable This assembly is a standard, GUIless, console Window which we have been
referencing so far in this chapter. Console assemblies have the .exe extension. OS entry into the
executable is through Main.

•

Windows Executable This is the standard .NET Windows executable file. The assemblies are also
given the .exe extension. OS entry is through WinMain.

•

Class Library This is your standard .NET class library, which can be dynamically linked. These
assemblies are given the .DLL extension. They can contain one class or many. OS entry into the
library is via DLLMain (which is not a construct you need to concern yourself with).

•

Class Module This is your standard class module, which is used as a container for compiled classes
that still need to be linked into a project or as part of a formal class library before it can be used.
These assemblies are given the .netmodule extension. No entry into this file is required because entry
is via the DLLMain of the assembly it is linked to.

•

It is wise in .NET programming to name an assembly according to its purpose and the purposes of the classes
inside it. Be sure to give your assembly a name that does not "clash" with the root namespace name. The
System.DLL file that ships with the framework is a good example. Naming the assembly "System" tends to
blur the distinction between the assembly name and the namespace name (such as System.Data, which refers
to both the namespace and the assembly name).

Before we further discuss the four types of output files and how they are produced, let's take a closer look at
how assemblies are located by the runtime, their actual make−up, and the roles they play in your software
development.

Locating Assemblies, Anytime

Usually the assemblies you createexecutable applications, functionality, or resources reside in a folder you
establish via an installation routine or utility. The default location when you are building assemblies is the
project folders for Visual Studio .NET.

The assemblies can be stored in the root folder of your application or in sub−folders. You have a lot of
flexibility in choosing a location and routing them to their folders. The other location for your assemblies is
the Global Assembly Cache, or GAC. Libraries placed in the GAC must be shared and given strong names
(described later in this section) these assemblies would typically be used by more than one application or user,
even concurrently. The concept of "registering" with the GAC mirrors that of the registry, but is less fragile a
process and is easier to maintain. There are ways of overriding the default methods for locating assemblies.
Likewise, you can redirect the path to it. Assemblies can also interoperate with the COM and COM+ world
and are accessible from unmanaged clients.

Microsoft suggests keeping assemblies private, thus out of the GAC, if they do not need to be shared. When
you build the assemblies with the code provided in this book, you can leave them in their respective project
folders.

 Locating Assemblies, Anytime

48

What's in an Assembly

In the early days of developing for the Microsoft operating systems (usually one of the early shades of
Windows), compilers produced a file that was compliant with two standards, the Microsoft Portable
Executable (PE) Format and the Microsoft Common Object File Format (COFF). The two standards were
created to enable the operating system to load and execute your applications, or link in the dynamic libraries.

The formats specified how the compiled files were laid out, permitting the OS to load files and execute
accurately. The .NET assemblies have adopted the PE/COFF combination, enabling the runtime to process
your files as it does your standard executables.

Note You can ignore this section if are exclusively writing Visual Basic .NET code. However, knowing how
assemblies are composed and processed is essential if you are in charge of quality control, debugging,
performance issues, deployment, packaging, and security.

The IL code in the PE/COFF file is not executable machine code, and it will not be able to process the
application you develop in Visual Studio. Consider this Star Trek analogy: IL code is like the product of the
universal translator that allows Klingons, Ferengi, Cardasians, Vulcans, and Humans to communicate. The
CLR, wherever it may be, knows what to do with this new quasi−compiled, intermediate language.

The CLR scans the .NET PE file for metadata so it can interpret the IL code in the PE/COFF file. Microsoft
has newly added this metadata section to the standard PE/ COFF combinationit not only helps the CLR
interpret what to do with the file, but the file itself publishes metadata to describe itself to the rest of the .NET
"dominion." The .NET adaptation of the PE/COFF file also contains a native image section, as it did in the old
era (see the illustration).

Finally, Microsoft chose the name assembly for its new conglomerate of data in the PE/COFF file. It might
have considered the word package, but that was already taken by Borland, Sun (for use by Delphi and Java
respectively), and several other competitors.

Although we often think of assemblies as executables, they are not executable outside the CLR. Whether you
have built a collection of classes compiled as a DLL or an application with a .exe extension, in the CLR the
assembly still has to be compiled.

Before we go further into developing with Visual Basic .NET, think about the following with respect to
assemblies:

Learn what goes into the assemblyalthough you don't need to know how to read or generate the
assembly itself, unless you are keen to develop a compiler for .NET. Our quest begins with the sample

•

 What's in an Assembly

49

code and figures in the section "The Nature of the Assembly." In later chapters, we'll interpret
sequential IL code in the assembly. This knowledge is crucial for properly configuring compiler
options or understanding why an application is moving slowly.
More important, understand how assemblies are used, distributed, and deployed as your application or
class library.

•

Metadata

The metadata that assemblies carry in order to describe themselves to the runtime environment (the CLR)
communicates code and class data, text, images, resources (such as icons), and other information. Unlike their
counterparts, .NET assemblies are compiled to MSIL, not to machine code, when they leave the IDE.

Metadata provides a streamlined programming model. We no longer need to work with complex and finicky
Interface Definition Files (IDL), dozens of cryptic header files that are so tedious and time−consuming to
prepare, and external dependencies for code and components alike.

When a .NET (PE) file is executed or loaded, the CLR scans the assembly for the metadata manifest that will
allow it to interpret, process, just−in−time (JIT) compile (down to machine code), and then run the file. The
metadata is not only for the benefit of the CLR; it also identifies the assemblyallowing it to describe itselfto
the entire .NET environment or framework on a machine, and even across process boundaries.

The illustration demonstrates how the contents of the PE/COFF file are assembled.

More about Metadata

When you execute an application and a class is referenced, the CLR loads the metadata of the respective
assembly and studies this payload to successfully accommodate the assembly, its resources, and the requests
of the contents.The metadata describes the following:

Description of the Assembly Its identity, including name, version, culture, and public key. It also
holds references to types that are exported, the assembly's dependencies, and security permissions.

•

Description of the Assembly's Types Includes the name, visibility of the class, the base class, and
any interfaces implemented. It also describes class members, such as methods, data fields, properties,
events, and type composition or nesting.

•

Description of Attributes Relates the additional descriptive modifiers for types and their members.•

The metadata is a sophisticated mechanism that conveys everything the CLR needs to know about a module,
its execution, and its interaction with other modules in the CLR. Since the assemblies do not require explicit
registration to the operating system, application reliability is increased exponentially.

What's in an Assembly

50

The metadata also facilitates language interoperability and allows component code to be accessed equally by
any CLS−compliant language. You can inherit from classes written in other languages (demonstrated in
several places in this book, and by virtue of the BCL (the base class library), which is mostly written in C#).

The PE file is divided into two sections, one for metadata and one for the MSIL code. The metadata portion
references the MSIL via a collection of tables and heap structures that point to tokens embedded in the MSIL
code.

As a result, you cannot change the contents of the assemblies or "fix" the MSIL code without the assembly
metadata knowing about it. This helps ensure that the integrity of the assembly contents has not been
compromised.

The metadata token is a four−byte number that identifies what the token references in the MSILa method, a
field, or other constructs.

The Nature of the Assembly

In addition to the logical types described earlier, assemblies can be either static or dynamic, private or shared:

Static Assembly This is the .NET PE file you create whenever you compile and build a class library
or some type of application. The namespaces we discussed earlier are typically partitioned across
themeither in one assembly or across many.

•

Dynamic Assembly This is a memory resident module that gets loaded at runtime to provide specific
servicesfor instance, the Reflection class collection, which allows you to reference and access
runtime type information (see Chapter 13).

•

Private Assembly This is a static version that can only be accessed by a specific application. It is
visible only to the application or other assemblies in its private folder or sub−folder.

•

Shared Assembly This assembly is given a strong name and public key data so that it can be
uniquely identified by the CLR. Any application can use it. A dynamic assembly can also be a shared
one.

•

Let's now take a closer look at the contents of an assemblyand among other things its IL code. The quickest
way to do that (besides reading this book) is to run the IL disassembler application that ships with the .NET
Framework Software Development Kit (SDK). The file is called ILDASM.EXE and you'll usually find it in
the \\..\Microsoft.NET\ FrameworkSDK\Bin folder. Double click the application and the illustration provided
in Figure 2−4 will load.

Figure 2−4: The IL Disassembler Application
Go to File, Open and aim the application at any assembly you might have already created. The one we build in
the next chapter is an excellent choice for your study, because it is a bare−bones console executable.

What's in an Assembly

51

The Assembly Manifest

The manifest is the critical requirement of the assembly because it contains the assembly metadata. However,
you can compile an assembly to MSIL without a manifest, to produce a netmodule. Assembly manifests can
be stored in single−file or multi−file assemblies, or in stand−alone files. Figure 2−5 illustrates the collection
of files that can make up an assembly "unit."

Figure 2−5: n assembly can comprise several files
The assembly manifest's metadata satisfies the CLR's version requirements and security identity requirements,
the scope of the assembly, and resolution of resources and types.

The assembly manifest provides metadata that does the following:

Identifies the assembly, which includes the name, version number, culture (language and culture),
public key, and digital signature.

•

Delineates all the files that comprise the assembly, as a single file or as many that form a logical unit.•
Resolves the assembly's types, their declarations, and implementations.•
Resolves dependencies (other assemblies on which this one depends).•
Allows the assembly to describe itself to the runtime environment.•

The manifest code in the assembly is exposed as follows:

.module Vb7cr.dll
// MVID: {8A49956F−353C−4C11−9F7E−6C46EF6AF2FD}
.imagebase 0x11000000
.subsystem 0x00000002
.file alignment 512
.corflags 0x00000001
// Image base: 0x03680000
.namespace Vb7cr
{
 .class /*02000002*/ private auto ansi sealed Welcome
 extends [mscorlib/* 23000001 */]System.Object/* 01000001 */
{
 .custom /*0C000001:0A000003*/ instance void
[Microsoft.VisualBasic/* 23000002
/]Microsoft.VisualBasic.Globals/ 01000003
//StandardModuleAttribute/ 01000004 */::.ctor() /*
0A000003 */ = (01 00 00 00)

.method /*06000001*/ public static void Main() cil managed
// SIG: 00 00 01
{
// Method begins at RVA 0x2050
// Code size 20 (0x14)

What's in an Assembly

52

.maxstack 8
 .language '{3A12D0B8−C26C−11D0−B442−00A0244A1DD2}',
 '{994B45C4−E6E9−11D2−903F−00C04FA302A1}',
 '{00000000−0000−0000−0000−
 00000000000}'

In the above IL sample, we have highlighted the assembly name Vb7cr.dllwhich you can download from the
Web−based sources listed in the Introduction to this book the root namespace Vb7cr and the entry point of
the class.

The Roles of the Assembly

Let's now investigate the essential roles of an assembly, which can provide:

A type boundary•
A reference−scope boundary•
A unit of deployment•
A unit of execution•
A version boundary•
A security boundary•

Assemblies as Type Boundaries

On the file system, the assembly looks like any other dynamic link library. It usually carries the DLL
extension, although it can also be a cabinet file (with the .CAB extension). You can build a class and make its
source code available to any application. But you would mostly do that for your own use, and maybe for your
development−team members. However, we suggest you don't provide "raw" classes to your team members,
because with access to the actual Visual Basic source code, multiple problems can be introduced. You would
only supply the raw source files if your user specifically requested or needed themsuch as readers of this
book, or your customers who have opted to buy the source code of your components (usually as a safeguard
against your going out of business).

The best examples of assemblies are the ones that contain the base−class libraries encompassing the .NET
Framework. To compile a class to IL and package it into an assembly is very straightforward. You simply
build the class and specify the assembly and its namespace for the compiler.

Classes (known as types once they have been reduced to IL) are separated by the assembly in which they
residehence the term type boundary. In other words, two types can be placed onto the same namespace but
they can exist in individual assemblies. The problem arises when you try to reference the type in the IDE
because you can only Import to one fully qualified namespace. The IDE will not let you reference the second
class twice and will notify you of your previous reference.

Assemblies as Reference−Scope Boundaries

The manifest metadata specifies the level of exposure a type and its resources have outside the assembly, the
dependencies, or other assemblies on which it relies, and how types are resolved and resource requests
satisfied.

If there are statically linked dependencies, the manifest includes metadata detailing information such as name
and version.

 The Roles of the Assembly

53

The manifest also lists reference scopes of the types. The types can be accessed outside the assembly; this
process lets you reference them by their FQNS or gives them friend access, implying that are hidden from the
outside worldonly accessible to those within the same assembly in which the friend resides.

Assemblies as Units of Deployment

When you execute an application, the application assembly calls into its dependencies, which are either
visible to the exe file in the same folder or in sub−folders, or they are visible in the runtime environment
because they have been installed in the GAC.

Assemblies installed in the GAC are shared, which exposes them to others that may need access to their
internals. You might also have utility classes, culture and localization classes, or components, and these can
be loaded into the installation folder or the GAC. These assemblies let you build very thin application
assemblies and keep successive deployments smallwhere you just need to change the outdated assembly.

Versioning in .NET lets you or your users set up new variations on your assemblies without breaking those
installed previously.

Assemblies as Units of Execution

The CLR lets all shared assemblies execute or be accessed side−by−side. Thus, as long as you create a shared
assembly with a strong identity and a unique version number, and you register it into the GAC, the CLR will
be able to execute it alongside another assembly. The DLL conflicts of the past are abolished under the CLR,
because only the version number and unique public key data allow the CLR to distinguish between the
assemblies.

As a Version Boundary

The assembly is the smallest versionable unit in the CLR; the types and other resources it encapsulates are
versioned with the assembly as a unit. A class cannot stand alone and be accessed outside of the assembly
architecture because there is no way to reference it. The class or type can either be part of the application
assembly or stand alone in its own assembly, which provides the version data for it.

The version number is encapsulated in the assembly manifest, as shown earlier. The CLR uses the version
number and the assembly's public key data to find the exact assembly it needs to execute, and any assemblies
that may be dependent on the specific version.

In addition, the CLR provides the infrastructure to allow you to enforce specific version rules.

As a Security Boundary

The assembly is a security unit that facilitates access control to the data, type functionality, and resources it
encapsulates. As a class provider, the CLR allows you to control access to your assembly's objects by
allowing you to specify a collection of permissions on an assembly. The client processrich clients,
thin−clients, Web forms, or otherwisemust have the permission you specify in order to access the object in the
assembly.

This level of security is known as code access security. When an assembly is called up, the CLR quickly
determines the level of code access allowed on the assembly. You only get code if you have authorization.
The idea of controlling code access is fairly new and in line with the model of distributed functionality that is
becoming so widespread. Code access security also employs a role−based security model, which specifies to

The Roles of the Assembly

54

the CLR what a client is allowed to do with the code it can access.

The security identifier of an assembly is its strong name, which is discussed in the next section.

System resources also require protection from assemblies. The ASP.NET Web Application Security protects
access to system resources by comparing credentials and proxies of credentials to Windows NT file system's
security architecture.

Chapter 11 discusses techniques for handling exceptions and error conditions that may arise as a result of
security−access violations.

Attributes, Reflection, and Assemblies

A critical facility of assemblies is the provision of runtime type information (RTTI) through a process known
as reflection. As with most OO languages, basic RTTI is built into all classes with the GetType method and
the Is operator (see Chapter 4 and Chapter 9); yet, reflection in the .NET Framework is especially
sophisticated thanks to the assembly, its metadata, and the provision of attributes.

An attribute is an object containing information and runtime instructions defined in an attribute class and then
compiled with the class it has been appended to. Attributes can be applied globally, at both the class and
class−member levels.

The .NET Framework's reflection architecture lets you access the targeted attributes at runtime, through
standard class instantiation. However, the runtime knows about the beneficiary of the attributes, because they
are embedded in the assemblies of the beneficiaries. When you affix attributes to target classes or their
members, the attribute class gets compiled along with the beneficiary. Then the metadataof both attribute and
beneficiaryends up in the same assembly.

With some imagination, you can see that at one end of the sophistication scale attributes let the runtime have
important information about an object it has instantiated. For example, the runtime learns from attributes
whether or not it can honor a request to serialize an object to disk or to an XML stream, and it discovers what
fields in the target objects are allowed to be persisted. You can even look up object authorship, version, and
security information at runtime.

At the other end of the sophistication scale, entering the realm that was once thought to be science fiction,
attributes can be used to reflect on, and reference, objects that are running in the processing space of another
computer somewhere else on the Internet. With reflection we can reference the objects and determine their
methods, accessible fields, constructors, and other elements in these other processes. Reflection is not an easy
subject to grasp. It is also a subject at the center of much debate, particularly about its impact on performance.
Chapter 4 introduces some attribute fundamentals but the subject is best left to an advanced treatise.

Strong Names

Assemblies can be given strong names, which will guarantee their uniqueness and provide security attributes.
The strong name is made up of the assembly's standard name (such as Vb7cr), its version number, culture,
public key data, and a digital signature. The strong name is generated from all this data, which is stored in the
assembly manifest. If the CLR encountered two assemblies with the same strong name, it would know that the
two files were identical. Strong names are issued by Visual Studio .NET and by development tools that ship
with the .NET SDK. The idea behind strong names is to primarily protect the version lineage of an assembly,
because the guaranteed uniqueness ensures that no one else can substitute their assembly for yours.

 Attributes, Reflection, and Assemblies

55

The strong name also protects your consumers and allows them to use the types and resources of your
assemblies with the knowledge that the integrity of their system is intact. Combined with supporting
certificates, you have the ultimate security system for the protection of enterprise and distributed code.

The .NET Security Model

Ever since the advent of the LAN, application security extended to the access rights and trust provided to a
user by his or her administrator. Even applications that do not directly interface with humans have operated
under the auspices of and in the context of user accounts. Most server side applications work this way,
operating under the authority of the Administrator account. This model of security is known as the user
authentication model.

In the mid 1990s, the sandbox security model became popularat about the same time we discovered Java
applets could be made to do all sorts of nasty things behind your Web browser. The idea behind the sandbox
is to isolate applications in safe environments where they cannot go rouge and start looking for credit card
numbers, passwords, and the like whenever you log onto a Web site.

.NET security combines both of these: the user authority model and the sandbox model. However, the
security levels and rules are enforced by the CLR. Through a process known as code verification, the
managed code is verified to ensure type safety. For example, if a method declares a parameter that takes a
4−byte argument, you won't get into the method with an 8−byte argument.

Execution flow−control is also "watched." Your code will be able to access only the locations allowed by the
administrator. This is an important consideration when you are writing your code. While you might not have a
malicious design in your application, if your code is infiltrated, the administrator will need to block access to
the off−limit areas of your code. In the event of mistakes, lockdowns, and unintentional lockouts, you need to
write code that can gracefully accept that the world is not its oyster.

The verification process also catches damaging errors that may not have originated due to hostile intention.
The old sticklers like buffer overruns, overwriting memory locations, and arbitrary transfer−of−control are
about as outdated as horn−rimmed spectacles.

Verification is performed by the CLR's verification algorithm when you attempt to run your applications or
your application needs to access types. It is part of the JIT compilation process. At that point the MSIL code is
classified as follows:

Invalid The verification algorithm has determined that the MSIL code cannot be JIT compiled by the
CLR, which essentially means that something in the code prevented the MSIL from being converted
into machine or native code. The code is promptly repudiated.

•

Valid The MSIL code was found to be acceptable to the CLR and could thus be compiled into native
code. The CLR accepts MSIL as being valid even if it might not be type−safe, a determination it still
has to make.

•

Type−safe The next stage of the verification process after code is declared valid is the type−safety
check. Here the algorithm tests to see if types are "legally" accessed through the proper interfaces.
Code that tries to circumvent the interfaces and tries to access the private members of a type, which is
considered illegal, is considered not type−safe.

•

Verifiable Once code passes the type−safety check the CLR accepts that code is both valid and
type−safe and allows it to be executed or referenced. When code is classifed as verifiable by the
algorithm it means that it is both valid and type−safe.

•

 The .NET Security Model

56

The CLR does not need to verify code every time it is executed or referenced by an application. It is smart
enough to know to skip the process when code that has been previously verified is loaded. The CLR may also
make this determination to skip the verification process if it trusts the code sufficiently. Code loaded from the
Internet or a remote computer, for example, is not implicitly trusted and must be verified.

When is an assembly secure enough to earn the trust of the CLR? A number of mechanisms are in place to
secure resources and assemblies from unauthorized users, hostile code, and viruses. Here are the basic security
levels and models of .NET Security:

ASP.NET Web Application Security This mechanism provides the means for controlling access to
a Web or Internet site through authentication. Credentials are compared against the NT file system or
against an XML file that contains lists of authorized users, authorized roles, and HTTP verbs.

•

Code Access Security, Authentication, and Authorization This mechanism uses permissions to
control assembly access to resources and operations. By setting permissions, you can protect the
system from malicious code and simultaneously allow bona fide code to run safely. This form of
evidence based security is managed by administrators.

•

Role−Based Security This mechanism provides access to assemblies based on what it, as the
impersonator of the user, is allowed to do. This is determined by user identity, role membership (like
those you have in SQL Server 2000), or both. Business rules play a large part in the formulation of
role−based security.

•

Evidence−Based Security This refers to input to the security policy that describes the code. The
input provides information about the site an assembly came from, the URL it slid in on, what
particular zone it may have come from, and information gleaned from the assembly's strong name.

•

Isolated Storage Isolated storage is a special place set aside for data access when a .NET process
precludes file or database access. This concept extends the sandbox model admirably by allocating a
protected portion of hard−disk space to a specific assembly. Isolated storage is program drivendriven
from your code.

•

Cryptography A variety of interfaces support the implementation of cryptographic services in the
.NET Framework.

•

As a .NET developer, you need to consider security on a number of levels determine how your code will run
in the target environment, how it will resist attack, and how you can handle security exceptions that are raised
when your code is blocked. You can do this in one of two ways: through declarative or imperative
specifications.

Declarative specifications enable you to directly enumerate security requirements for an assembly in its
metadata via attributes. You can then cater to the declarations in your code, which you accomplish through the
attribute architecture we discussed earlier.

Imperative security is the practice of writing security support directly in your code. When a method calls a file
object, you can set conditional steps to determine if the CLR will permit the call.

Unfortunately, developers with malicious intent may be reviewing the .NET security model to determine how
to get their assemblies onto the .NET runtime. You can protect your assemblies from invasion through the
techniques of strong naming or digital signing; I recommend you employ both if your assemblies will be in
the public domain. A strong name is a unique name that is generated from the contents of an assembly, such
as version numbers, simple names, digital signatures, or culture information. You should fully investigate
both strong−naming techniques and digital signing of the assemblywhich is achieved through public key
encryption technology (PKI).

 The .NET Security Model

57

But even if you don't do anything special to your code after you have completed a project and released a
version to the user, or deployed it to a Web site, the CLR remains the final authority. This means that there is
a possibility that the CLR will reject your application's attempt to run because it has insufficient evidence that
your code can be trusted.

During the development of the .NET Framework, code developed and deployed with the beta versions of
Visual Studio and the framework was given a certain amount of leeway. ASP.NET and Web applications were
fully trusted, specifically because the framework was not in its final version. However, just before final
release Microsoft significantly tightened security and any code you deploy now must have sufficient security
credentials before the CLR will allow it to run.

In the final release of the framework many classes in the various namespaces were decorated with stringent
security attributes that might shut you out. The lock down was done to specifically protect customers moving
their applications and services into productionto prevent attack from both private intranets and the Internet.

The new security attributes center around the code access security paradigm. In particular the CLR needs to
know where the code comes from and various other factors before it allows it to run and possibly access
system services like the registry, directories, and the file system. In fact ASP.NET and Web forms code is
delegated to a controlled execution environment (a sandbox surrounded by barbed wire, minefields, and a
crocodile infested moat) no matter where it comes from. Your apps, if allowed to run, are also delegated
isolated storage units for their persistent storage needs.

This is a policy that is very different from the security policy that was in effect under the beta programs where
Web apps had much more liberal access (policies demanded by Microsoft's customers). So don't be surprised
when you discover that the neat stuff you were doing back at the lab gets blocked on your customer's Web
site.

You can proceed to develop and test your applications, especially the code in this book, without concern for
the code access security conditions. The chapters that follow focus on the core language, and further
discussion of the security requirements for deployment of release builds, or what imperative constructs you
need to introduce, is beyond the scope of this book. There is, however, a substantial amount of related
material in the SDK and in the released version of Visual Studio that will point you, or your deployment team,
in the right direction. A thorough understanding of why code needs to be properly trusted and verified is
imperative for your good and that of your customers.

Observations

Why is such coverage of the .NET Framework's runtime environment so important in this book? Many
programmers ask, "Why do I need to know about the CLR, assemblies, and metadata if I only want to write
software? It seems like a waste of time."

In addition to questions such as these, I noticed in many news groups since June 2000 that very few questions
were aimed at the CLR or runtime. When this book was first conceived I did not plan to cover the runtime
environment.

Yet, over time it seemed that many programmers were wrestling with issues thought to be related to or caused
by code, when, in fact, they were runtime related or solved through enlistment of runtime services and
facilities. Many questions and problems thought to be related to code construction could have easily been
solved with a basic understanding of what goes on in the runtime. Furthermore, subjects like debugging,
deployment, security (so critical), and reflection all require you to have at least a basic understanding of how

 Observations

58

the CLR works.

While you certainly can write software without knowing any of the details mentioned in this chapterand you
may even be an excellent programmeryou will not necessarily be a highly productive .NET programmer.
After all, you still have to get your classes and methods into your user's hands; for this you need to know how
your software is going to be delivered and executed.

Therefore, it was decided to be highly worthwhile to cover the CLR and how it works. I hope this chapter
provides you with the minimum foundation needed to be successful as a .NET Framework programmer. If you
want to go further, you can access the many books that specialize in the subject, or get onto the beta program
for the next version of the CLR. It will pay generous dividends.

 Observations

59

Part II: Visual Basic .NET Fundamentals

Chapter List

Chapter 3: The Visual Basic .NET Development Environment
Chapter 4: The Elements of Visual Basic .NET
Chapter 5: Visual Basic .NET Operators
Chapter 6: Software Design, Conditional Structures, and Control Flow
Chapter 7: Methods

60

Chapter 3: The Visual Basic .NET Development
Environment

Overview

You have three choices for quickly becoming au fait with the Integrated Development Environment (IDE)
and the compiler. First option: You could go through all the dialog boxes to try to figure out what each option
or setting does. (Some computer books might do that for you, but not this one. My focus is on showing you
the code.) Second option: Get a book dedicated to the subject of Visual Studio .NETand delay writing code
until you know the IDE inside out. By the time you are done, you'll be ready to go into shrimp farming. Third
option: start writing code.

The best option is the last one. You won't be an expert with Visual Studio (VS), even after some weeks, but
you'll be productive from the get−go. I started working with Visual Studio after PDC 2000, when the release
was so buggy it crashed the moment it opened. There was no documentation to help learn about its many
aspects; but thankfully I had experience with Visual J++, the predecessor of this marvelous tool. Let's begin
by helping you start a project or load up the example solutions that were developed for this book.

If you have not installed Visual Studio yet, do so now. It is straightforward and if you plan to set up in a team
environment or on an application server you are accessing via terminal services, consult the Visual Studio
installation instructions that shipped with the retail product packaging.

Once you've completed this, you'll notice that it has created program icons only for the MSDN Library of
Visual Studio .NET and for Visual Studio .NET itself. What happened to all the options for Visual Basic, C#,
or C++ that you chose during installation? All the languages are bundled into the same IDE. You will see how
you can choose the language you need once you start up the IDE.

The primary objective in this chapter is to get you up and running with the demo solution as quickly as
possible. To this end, we'll take a short tour of the IDE and Visual Studio .NET; then we'll examine the dialog
boxes and options you'll need to know about. If you have not had any experience designing a Visual Basic
.NET application, you will gain the necessary information to begin writing, compiling, and executing one by
the end of this chapter.

Working with the Visual Studio IDE

Let's now start up the IDE and take that Visual Studio .NET tour. This will get you set up with projects you
can apply to the sample code and with techniques for developing software and solving complex problems. To
begin, start Visual Studio .NET. You will see the default layout of the IDE, which is illustrated in Figure 3−1
and represents the default settings. As usual, you can move and dock windows as you like.

61

Figure 3−1: An empty Visual Studio .NET IDE when started up
Look first at the extensive environmental settingsergonomic and workflow featuresyou can control from
Visual Studio. To access these settings, go to Tools, Options and select the Environment folder. You can
change the window layout from the default Tabbed Documents to MDI. This setting can be accessed from the
General Section of the Environment folder.

I suggest you only make the change to MDI if you are coming from an IDE that is MDI layout and the tabbed
documents are making life hard for you. In general, the tabbed documents present a much more productive
layout for this version of Visual Studio.

We'll return to the folder options in various chapters in this book. In the meantime, let's look at a minimal
collection of elements provided by the IDE that you will be dealing with from the first line of code.

Navigating the IDE

Set a screen resolution of about 1024x768 to get as much IDE real estate as you can without reducing the
icons and other elements beyond recognition. The following list provides the key IDE resources you should
first learn about to help you develop in a manner and style that is comfortable for you.

Auto Hide•
Dockable Windows•
Explorer Menu Bar•
Server Explorer•
Resource View•
Toolbox•
Macro Explorer•
Object Browser•
Task List•
Command Window•
Output Window•
Find Results•
Dynamic Help•

Knowing about these IDE resources will also let you tackle the examples in this chapter before moving on to
the more complex issues that follow.

 Navigating the IDE

62

Auto Hide

This is a new feature in Visual Studio that instructs the IDE to "hide away" the windows you are not currently
using. The reference to "not currently using" suggests that the windows or panels are not in focus; however,
they are not closed down. Thus, as you change windowslike going from Solution Explorer to Helpthe one you
are leaving slides closed.

This feature provides a lot more elbowroom for code construction and other tasks like debugging. When you
need them, they're back in a jiffy. In my opinion, Auto Hide is one of the most sophisticated features you
could want in an IDE, especially one that is the Swiss Army knife of development environments.

Auto Hide is not a permanent feature and if you want to keep a window exposed, simply toggle the feature
off. To toggle Auto Hide on or off, simply click the pushpin (drawing pin) button next to the close button (x)
of each window. As soon as the window hides away, its tab peeks out from the edge of the screen by about 20
pixels. Getting the window back requires only sliding your mouse pointer over the tab or right−clicking in the
white space under the tabs and selecting the correct tab from the pop−up menu. Figure 3−2 shows the entire
IDE with all non−essential windows hiding.

Figure 3−2: The IDE with all windows "hiding"
The standard toolbar also contains a collection of buttons that can "kiss" the hidden windows. If you can't find
the correct tab hanging down in the viewable area, click the corresponding button on the toolbar to bring back
the window. These buttons are stowed on the far right of the toolbar.

Dockable or Floating Windows

You can dock all windows in Visual Studio to any edge of the main IDE window. The Auto Hide toggle also
serves to lock the window in place so you must first un−Auto Hide before you can move the window.
Undocking a window is as simple as yanking the window off the side of the IDE. You can also double−click
the title bar to dock or undock a window once Auto Hide is off.

Internet Explorer Menu Bar

As you've probably noticed, the IDE provides a full−featured version of Internet Explorer (modestly named
"Web Browser"). This browser is fully integrated with the main Internet facilities, so any folders created or
favorites added will show up in the main Explorer browser.

Adding favorite URLs to the IDE, as you do with your main Internet Explorer (or whatever Web browser you
prefer to use), is a prime feature. You will likely use this option a lot to store any help document, resource, or

Navigating the IDE

63

source file you need to access regularly. The help system for .NET is so vast that it's very easy to lose track of
a page's location. We discuss the browser in detail in the "Start Page" section in this chapter.

Server Explorer

The Server Explorer window lets you access server−side resources, such as databases, email servers, event
logs, and message queues. As you know, the entire .NET Framework extends to the so−called .NET Servers
so all related resources used in the development process are accessible from within the IDE. The Server
Explorer window is illustrated un−docked from the IDE.

The following list identifies and explains the top−level nodes in the Server Explorer. This window is also
accessible from the View menu and the standard toolbar buttons.

Crystal Services Installed Crystal Report options.•
Event Logs Your standard Application, Security, and System Event Logs for the attached server.
You will still need the necessary permissions, however, to access the logs.

•

Loaded Modules Lists the processes and loaded DLL's on the target server. Note that we can expose
the properties of the processes running on the server by referencing the System.Diagnostics.Process
namespace. See Chapter 17.

•

Management Data Enumerates the interfaces available through Windows Management
Instrumentation (WMI) and gives you direct access to server management choices. For example, if
you have the authorization, you can drill into Win32_Server, Logical Disk Manager, on down to your
target server, where you make management selections.

•

Message Queues Provides the available message queues and their corresponding messages on the
target server. Obviously you first need to install Message Queue. You get the same view of the
message queues afforded by the Computer Management snap in.

•

Performance Counters Lists the Performance Counters for the target server. You will notice the
massive amount of available performance counters hundreds of new ones for .NET Server alone. The
options to manage the built−in CLR on .NET Server are particularly useful.

•

Processes Lets you check the running processes on the target server.•
Services Lets you check the running services on the target server.•
SQL Server Databases Shows databases on the target SQL Server. This option is similar to the Data
View window on the classic Visual Studio versions; it reminds me of Enterprise Manager. You don't
need to have Enterprise Manager opened or installed in order to work with the databases. You can do
everything directly from the IDEsuch as add, edit, and delete tables, views, stored procedures,
database diagrams, and functions.

•

Web Services Lists the Web Services according to the Project and File they were published with on•

Navigating the IDE

64

the selected server.
Data Connections Lets you add connections to any database or server− provider that has an installed
OLE DB provider. From here you can connect to servers such as Oracle, DB2, Exchange, and Active
Directory.

•

Resource View

This window will be empty for a good reason. You can't open resources in the Resource View window for
Visual Basic, C#, or any other managed development. To open resources in Visual Studio go to Solution
Explorer and double−click the resource which appears in the drop−down list.

Toolbox

The Toolbox contains the components and controls that can be added to Windows Forms applications and
Web Forms applications. The components of the Toolbox become available to you only when you have forms
open, as illustrated. Chapter 16 covers the Toolbox, the standard controls available to you, and Windows
Forms more extensively.

The Toolbox is divided into several sections as a tabbed layout that lets you navigate quickly and intelligently
among the different types of objects or controls you may wish to add to your forms and classes.

The default Toolbox divisions are as follows:

Data Contains data controls such as DataSet and DataView.•
Components Offers specialized components you can place on forms, such as timers, message
queues, and processes.

•

Windows Forms Composed of visual (and some non−visual) controls used with Windows Forms,
especially for building user interfaces.

•

Clipboard Ring Provides a scratch pad for copying frequently needed code snippets.•

Navigating the IDE

65

General To show all Toolbox tabs, right−click on General and select the Show All Tabs option. This
will display non−default tabs. You will find many tabs, ranging from HTML options to Web controls.
The full complement of tabs shows until you toggle the Show All Tabs options to its unchecked state.

•

To place a Toolbox item onto a form, simply drag the selected component to the location of the form where
you want the control to reside. You can also double−click on a control to place it in or at the last focus
position on the form. Once the control is on the form, use the mouse to drag/move it.

The Clipboard Ring is one of the most useful features of Visual Studio .NET. If you have code snippets that
you use across many projectseven something as simple as a Sub method's base definition, which in its base
form is five wordsthen the Clipboard Ring is the place to keep it. To add your code snippets to the Toolbox,
perform the following two easy steps:

Select the code you wish to add to the ring, right−click on the selected region and click copy.1.
Right−click on the code snippet and select Rename to give the newly added code a meaningful name.2.

The Toolbox is also very customizable. Right−click on a tab and choose an option available to you.
"Clipboard Ring" doesn't tell me much about the purpose of the tab so I renamed it "Scratch Pad."

Macro Explorer

Macros let you customize the IDE in ways that cater to your programming habits, style, and comfort. Macros
and the Macro Editor are new to Visual Studio and give you more control over the IDE than the
Tools/Options facility. The entire IDE is customizable through macros.

Macro Explorer, illustrated here, provides a few macros you can edit or use as a base. Unfortunately, an
in−depth discussion of macros and the Microsoft Visual Studio Macros editing utility is beyond the scope of
this book.

Object Browser

The Object Browser is one of the most important windows you will access during the lifetime of a
development project. It lets you look at all the classes provided by the .NET Framework as well as any custom
classes and types you are working on. It identifies the various namespaces and the assemblies within which
they are packaged. Further, it reveals the classes and all their respective members, such as methods,
properties, and fields.

The Object Browser is divided into three window panes: The left is called the Objects Pane and displays the
hierarchical list of all objects available to your solution, including all custom classes, interfaces, structures,

Navigating the IDE

66

fundamental types, and namespaces. The right is called the Members Pane and shows you the class members,
as well as enumerated items, variables, and constants. Both panes are illustrated in Figure 3−3.

Figure 3−3: The Object Browser
The Description Pane, a third anchor pane in the Object Browser, provides details and further information
about the selected class or members. It describes the various components and even displays the method
signatures for you. Depending on the class, it may offer examples of the syntax you will use for certain
members, including any dependencies, variables, and additional help description that may have been compiled
with the object.

Note Object Browser opens as a default tab; however, I recommend you convert it into a dockable
window and activate Auto Hide, since you will rely on it constantly.

A drop−down combo−box (Browse) at the top of the Object Browser lets you filter the classes and members
pertaining to the objects in your project. You can also customize the browser with buttons that allow you to
add additional components to the Object Browser's toolbar. We will return to this in more detail in Chapter 8
and in a number of other chapters.

Task List

Once you become productive, the Task List will be another indispensable tool. This utility helps you manage
tasks within the solution; but most importantly, it displays the compile−time errors and their causes. (See the
illustration.)

The class units can contain several predefined tokens, which you can link to from the Task List. These include
TODO, UPGRADE_TODO, and UPGRADE_WARNING. As you can see, these tokens have a lot to do
with trying to migrate classic Visual Basic code.

Navigating the IDE

67

You can access them by entering the name of your chosen token after the comment symbol (the single quote).
The task is automatically added to the Task List. When you need to access the task again, just double−click
the item and the appropriate section of code is brought up in the target unit, which moves to the front of all the
tabbed documents. Connecting to the errors in your code works the same way. Simply double−click the Task
List item and the IDE brings the error to the foreground.

To add your own tokens, a truly terrific feature, go to the Tool menu and select Options. You can then choose
the Task List option from the Environment folder.

The default only shows build errors, but if you right−click on the Task List you will receive a Show Tasks
option that can present the following views: All, Comment, Build Errors, User, Shortcut, Modeling, Policy,
Current File, Checked, and Unchecked.

You might be tempted to choose "All," but if there are a lot of comments and errors in the code, the list tends
to explode.

Note The Options dialog box can be accessed from the Tools, Options menu. It's worthwhile investigating the
Options dialog box because we'll be returning to it in a number of future chapters.

Command Window

The Command Window is another imperative feature of the new Visual Studio .NET IDE. The Command
Window has two views, Command and Immediate.

Command Mode Lets you execute Visual Studio Commands without using the IDE menu system.
(The illustration shows execution of the File.AddNewProject command, which is the command
behind the File menu item New, Project.)

•

Navigating the IDE

68

Immediate Mode Used for debugging, expression evaluation, and variable modification. If you are
familiar with Visual Studio 6, then you'll recognize that this window includes the same functionality
as the VS 6 Immediate debugger window.

•

Both views in the Command Window support Intellisense and Autocomplete. Chapter 17 addresses the use of
Immediate Mode for debugging.

Output Window

The Output Window displays build/compiler or diagnostic information depending on the mode it is in. During
a build of a project or solution, the window is used to communicate build and compile information. In Debug
mode, during processing, the Output Window displays libraries loaded, return codes, and various details being
emitted from running code. For example, a special diagnostics Debug classdiscussed later in this chapter and
in depth in Chapter 17lets you write debug information to the Output Window, shown here.

A third mode this window can switch to, Visio UML, kicks in as soon as you reverse− engineer classes to the
UML for loading into Visio (Visio for Enterprise Architects). Selecting Visio UML, Reverse Engineer from
the Project menu will achieve this.

Find Results

The Find Results windows (primary and secondary ones) display the results for "search and rescue"
operations launched from the sophisticated Find and Replace dialog box. Find and Replace is accessed from
the Edit, Find and Replace menu option. From here you can search for tokens, symbols, character strings with
standard pattern−matching, regular expressions, and wildcards.

The results of your searches are displayed in the two Find Results dialog boxes and you can search in various
places for your targetopen documents, projects, and folders.

Dynamic Help and Search

Dynamic Help is one of the most useful features of this IDE (see Figure 3−1). Simply place your cursor on an
element of your code (such as a class name or a method) and Dynamic Help finds and displays a link to the
resource in the Visual Studio help system.

Another important feature is the help system's Search facility, which comes equipped with a Help Filter. It
will save both time and resources, filtering your help material to just Visual Basic and related information.

Starting from the Start Page

When you first start Visual Studio .NET, the IDE loads up the Start Page, which is the built−in browser's
"home page." This HTML page sports a menu of links on the left that provides several options you can choose
to "surf to," such as updates and news from Microsoft. Figure 3−1 shows the IDE at its starting position,
without any solutions to load. This is how the Start Page should look after a fresh installation.

Navigating the IDE

69

Tip You can toggle to the Start Page's beginning position from the icon to the right in the top
right−hand corner of the IDE. The icon to the left tells the Web browser to load Web links, either
within or outside of the browser.

It does not take long to lose the Web browser so remember that selecting Web Browser, Home from the View
menu brings it back. The Help menu also returns you to the Start Page. The Web Browser option displays the
Web Browser window in the main workspace. The default page that is displayed as your home page is the
Start Page, the same one that appears when we fire up Visual Studio .NET.

The Start Page provides the following links, and you'll find it worthwhile to discover where they take you.

Get Started•
What's New•
Online Community•
Headlines•
Search Online•
Downloads•
XML Web Services•
Web Hosting•
My Profile•

Get Started

Any projects and solutions you have ready to roll will be listed in the center of the page, to the right of
itemized links, under Get Started. Each solution contains the projects that comprise your applications, but we
will see the solutions appearing later when we create these applications. If for some reason your most current
application is not on the list, click on the Open Project or New Project links to go to the respective dialog
boxes. We will see these boxes later when we access them in the traditional way, from the menu items.

What's New

What's New takes you to a list of links that connect to news and updates for the Microsoft .NET tools and
technologies. Clicking a link in the center of the browser may connect to the MSDN files for this information,
or to the internet for Web surfing if you are online. The other side of the What's New tab is illustrated in
Figure 3−4.

Figure 3−4: Where do you want to go . . . before you program

Starting from the Start Page

70

The MSDN files are stored on your hard disks. You may alternatively have opted to access them from the
CDs. The latter approach works better if you are diligent about replacing the CDs with every update of the
MSDN disks and if you have a decent carousel to make it easy to change the CDs (or you can put in a single
DVD version of the MSDN). What's New also looks for service packs and other late−breaking goodies from
Microsoft.

Tip To reduce clutter, make your Start Page dockable, set Auto Hide on, and toss it out of the way. It will rush
out when you need it.

Online Community

The link for the Online Community connects your IDE to the largest development community in the world.
You can access the MSDN Web site, the sites for Microsoft's technology partners, and all the Microsoft
newsgroups, .NET and classic.

Headlines

The Headlines tab connects you to the MSDN pages for Features, New, Technical Articles, and the MSDN
knowledge base.

Search Online

This page takes you to the MSDN search page, often the source of information updates since the disks were
released to manufacturing. By integrating the MSDN home page directly into the IDE, you have all of the
latest technical articles, news, and training information.

Downloads

This page connects to the MSDN options for code that you can download, sample applications, demos, and
"how to" information.

XML Web Services

The XML Web Services page takes you to Microsoft's Universal Description Discovery and Integration
(UDDI) facility for Web services. From this page you can learn about Web services, locate them, and register
them with your applications.

Web Hosting

The Web Hosting page connects you to a number of commercial sites for standard and ASP.NET hosting
facilities and for Web service hosting facilities.

My Profile

This tab provides for customizing the IDE in the way that best suits you, the individual programmer. The
configuration options are Profile, which lets you choose the environment you write code in, such as Visual
Basic or C#; Legacy Keyboard Schemes, relating to Version 6 of all the previous languages and compilers;
the Window Layout; and the Help Filters. If you are a Visual Basic 6 developer, you may want to choose the
Visual Basic Developer profile. And if you herald from Visual J++, the Visual Studio profile will be familiar.
The following are the settings I have chosen for this book.

Starting from the Start Page

71

Profile: (Custom)•
Keyboard Scheme: Visual Basic 6•
Window Layout: Visual Studio Default•
Help Filter: Visual Basic Documentation•
Show Help: Internal•
At Startup Show: Start Page•

When you make changes, the settings are stored in the (custom) profile. You may find yourself wishing the
tab could store more than one custom profile.

As you work with various documents, units, help files, and Web pages, you will begin to accumulate a
collection of tabs in the main "viewing" area. You can right−click each tab to manage the underlying
document or unit. You can also access the tabs from the View menu and the Window menu. Close them when
finished, because too many open tabs clutter the IDE.

Now that our tour is over, we are ready to load some code.

Creating a Visual Basic .NET Solution

I have learned through experience that it is best to place a blank solution folder into a hierarchy of
development folders on the local workstation or server. Using the "My Documents" folder setup is highly
inconvenient when you need to search folders with the various .NET tools and the command−line compiler,
which we will be working with in Chapter 17. Creating solutions and projects all over the place is chaotic and
presents problems when you check your code into version control.

Creating a new solution is straightforward. Go to the File menu and select New, Blank Solution from the
menus. The dialog box illustrated in Figure 3−5 pops up and allows you to create a blank solution.

Figure 3−5: The dialog box for creating a blank solution
If you have just started Visual Studio for the first time, you've noticed the empty Solution Explorer on the
right−hand side of the IDE. You manage your so−called development solution here. A solution is a container,
a logical means of organizing your project's classes and resources; it is not part of any application nor is it
understood by the compiler. You can add any projects or miscellaneous files you wish to collect within a
solution space.

Another approach is to open an already existing solution; this is described in the next section.

 Creating a Visual Basic .NET Solution

72

Loading the Vb7cr Solution

To work with the examples in this book, load the demo solution called Vb7cr from www.osborne.com or from
www.sdamag.com. You can follow along with this and try out the code examples in the later chapters. By the
time you complete these chapters, you'll have seen a lot of code compiled and will gradually incorporate some
of the more advanced features of the IDE, while learning "on−the−job."

As explained in the introduction, we opted not to publish a CD because there are so many paths to
downloading the demo projects included with this book. Also, the file is rather small without the assemblies;
you will produce them when you build the solution for the first time. You don't need to create a folder for the
demo code. Simply unzip it into the root folder or drive of your choice. You can then open the solution into
Visual Studio from the File, Open, Project menu items. Browse for the file where you unzipped everything
(the root of Vb7cr) and click Open.

Once the solution is loaded, the Solution Explorer comes to life and you can access and open existing projects
or create new ones. You can also review its configuration by right−clicking on the solution name and
selecting Properties. (See Figure 3−6.)

Figure 3−6: The Solutions Properties dialog box

Creating a New Project

When you are ready to add a project to the demo solution, right−click on it in the Solution Explorer and select
Add, New Project. (You can perform the same step from the menu option that hangs off the File menu, but
this is less expedient.) The dialog box in Figure 3−7 pops up and lets you name your project and specify its
location.

 Loading the Vb7cr Solution

73

Figure 3−7: Creating a new project container in an existing Solution Container
The dialog is divided into two parts, "Project Types" and "Templates." The Project Types side lets you choose
the language or technology you need to work with. If you installed C# with Visual Basic, then the option of
creating a C# application will be available to you as well. Since this is a book about Visual Basic, we suggest
you develop a Visual Basic project.

Tip You can create a new project in another solution if you access the Add New Project dialog box from
the File menu.

The Visual Basic projects you can create are as follows:

Windows Application Windows standard thick client applications based on forms (EXE)•
Class Library For individual classes or collections of classes (DLL)•
Windows Control Library Controls and components for Windows Forms (classic)•
ASP.NET Web Application ASP.NET−based application composed of static or dynamic HTML
pages

•

ASP.NET Web Service For Web services to be used by clients communicating over the HTTP
protocol

•

Web Control Library Web−based controls for ASP.NET applications•
Console Application Your standard Console application•
Windows Service Create Windows services•
Empty Project Empty Windows application project•
Empty Web Project Empty Web server−based application•

Choose the option to create a console application; name and locate the project in the Vb7cr solution folder.
Install the project folder under the solution's root directory. In other words, the folder's namespace will be
something like e:\Devshares\Vb7cr\ Welcome, and the name of the application should also be Welcome.

As soon as you have created the project, you can configure it via the Properties dialog box (don't confuse this
dialog box with the Properties Editor discussed earlier). This box lets you specify the configuration for the
project as a whole, which includes its strong name, namespace name, assembly name, build options, and
options settings. The Configuration section in this dialog box includes the pages that let you specify debug
and build options, optimization settings and deployment, and the class it represents at startup.

The Solution Explorer usually sits above the Properties Editor/Explorer. The Properties Editor is a vital
section of the IDE: it manages the properties for everything that has to do with your solutions or project's
resources. If your kitchen sink's software has a part in your project, then you'll be able to navigate its
properties in this window. You can move the window wherever you want. Experience and testing have shown
that it should live under the Solution Explorer, which is its default home and the standard Visual Studio .NET
layout.

 Loading the Vb7cr Solution

74

The Properties Editor confirms the location of your project files under our configured solution as shown on
the next page.

As I recommended in the introduction, stay clear of GUI elements and forms−based projects until you have
completed up to Chapter 16 of this book. User−interface applications will only clutter the learning process.
We'll look at forms briefly in Chapter 9, when we study inheritance, but everything else about forms is
discussed in Chapter 16.

Until very recently classic VB revolved around the form, thanks to the less−than−pure OO technology it
employed. I am not disparaging user interface programmers; some Visual Basic 6 UI designers and developers
are among the best engineers in the industry. Yet for many VBers, it's time to shake the "form−painting"
mentality and get down to programming classes, because most importantly, Visual Basic is a first−class OO
language.

You can learn everything there is to know about .NET programming from a simple class. It is imperative to
think in terms of objects and classes, not just forms. The J# and C# programmers are going to laugh at you
every time you load a button and a form just to "see" what a few lines of code are going to do. By all means,
when you are ready to build a user interface, reach for the forms and Chapter 16 and have a field day.

By the time you get to Chapter 17, you will have learned to observe what goes on under the hood with watch
windows, the output window, breakpoints, and the disassembler utility. Each new chapter we tackle in this
book will introduce you to more elements as it gets you progressively involved with the IDE tools and
features.

 Loading the Vb7cr Solution

75

Solution Directory Structure

Wherever you choose to place your projects, the solution creates a special collection of folders for the various
files that make up the application. Table 3−1 lists the most important files and folders and describes their
functions.

Table 3−1: The Solution Folder Hierarchy for Each Project the Solution Contains

File/Directory Description

Vb7cr.sln Your solution file, which contains details about the individual projects and
their locations in the solution. The file is text and can be manually edited so
you can point to new project file paths.

Vb7cr.vbproj Visual Basic project file. Contains information about all of the files connected
with a specific project within a solution. Not recommended to open manually
with Notepad.

Vb7cr.suo The solution user−options file, which stores all your custom settings. It is
hidden in the root folder of your solution. Make sure you back it up because
the solution reads from this file whenever you open it. VS writes to the file as
you make changes.

*.vb This is the extension of source−code units. The files hold source code for
classes, forms, and components. The data in a file is in plain text and can be
edited with any text editor.

*.resx Your assembly resource files (see Chapter 17) used for the definition of
application resources.

Bin directory The folder that builds are loaded from. During debug, builds VS will load files
from this folder and pull files over from the Obj folder as well. Written to
during builds.

Obj directory Used for the output of specific configurations and builds. Written to during
builds which store information is a special Program Debug Database (*.PDB).

File Extensions

You should be aware of various file extensions for Visual Basic .NET applications. For starters, there are no
more form (FRM) files that represented VB 6 forms. Now that forms in .NET are class files, the unit
containing your form source is given the .vb extension. Also, most files prefixed or suffixed with an "x"
harbor XML−compliant code. Table 3−2 describes each file extension.

Table 3−2: Common File Extensions Used with the Visual Basic Projects

File Extension Description

XML An XML Document

XSD An XML Schema File without generated classes

TDL Your Template Description Language File

VB Standard source files for Windows forms, controls, classes, and miscellaneous
code

RPT Your Crystal Reports Designer files

 Solution Directory Structure

76

HTML Your HTML Source Files

XSLT The XML files containing transformation instructions for XML and XSD
documents

CSS The Cascading Style Sheets used for HTML pages to apply styles

VBS VB Script source files

WSF Windows Scripting source file

JS JScript .NET source file

ASPX Web Application form

ASP Active Server Page source file

ASMX Web Service source file

DISCO The Dynamic Discovery document source file that enumerates Web services and
schema in a Web services project

WEB The ASP.NET Configuration file

ASAX ASP.NET Configuration File that handles Session_OnStart, Session_OnEnd,
Application_OnStart, and Application_OnEnd script. This file is similar to
Global.ASA files used for the legacy ASP applications that we loaded into
Visual Interdev 6.0.

Working with the Base−Class Library

The .NET Framework provides a huge number of reference types, static or shared classes, interfaces, and
value typesbuilt−in fundamental data types, such as ordinal, point, and character typesthat allow you to build
functionality and develop solid applications and services. The framework comprises so many elements that
complete coverage of all its classes, members, and sample code would require many volumes.

The section will thus be devoted to a brief description of how to access the class libraries and assemblies they
are packaged in, how to target individual classes in each respective namespace, and how to target methods and
other elements in the structures. Not knowing how to find namespaces and objects in Visual Studio .NET
affects many newcomers. To facilitate interoperability, the .NET classes and types are 99.9 percent CLS
compliant. As mentioned in Chapter 2, some classes support non−CLS compliant features for very special
purposes, and some of your objectives might only be achieved using another language, such as C#. Thus, we
will occasionally employ C# code as a language secondary to Visual Basic .NET.

The .NET Framework classes provide an extensive array of functionality related to I/O, threading,
networking, security, data access, forms, Web services, and much more. You can use the classes and data
types to build sophisticated applications, services, components, or controls that can simply be plugged into
any .NET−compliant environment. Later chapters delve into advanced usage of the class libraries for
components and other elements.

You can either derive from the .NET classes and extend functionality where permitted, or you can implement
an interface defined in the base class library directly in your class. The .NET Framework types are named
using dot notation that defines an interface you can send messages to. The interface comprises the identifier of
the static class or object and a method or property identifierboth are discerned in the interface with dot
notation. This is illustrated with the following code, in which a message is sent to the Debug class.

Public Sub WriteSomething()
 Debug.WriteLine("something")

End Sub

 Working with the Base−Class Library

77

Note The Debug class is used extensively as a debugging tool, which is why I have introduced it so
early. Also, the class and method emphasized in bold are shown encapsulated in a method. All
calls or messages and other method operations must be declared within the context of a method,
not outside the method declaration. Chapter 17 covers the Debug class in some depth.

Referencing the object by its identifier is simple, but locating the class in question is another matter. As you
learned, all the .NET types are referenced via the namespaces to which they belong. The Debug class belongs
to the collection of diagnostic classes buried somewhere with the thousands of classes in the library. If Visual
Studio complains that it cannot find the Debug class, as shown in the illustration, then you are either not
referencing the correct namespace or not referencing the namespace correctly.

Let's first assume you are not referencing the namespace at all. You read about the Debug class but do not
know where it is. How do you find it? Answer: Bring on the OB, the Object Browser.

Use the Find facility to look for the object in the OB. Click the Find Symbol icon (the binoculars button) on
the OB toolbar, as demonstrated earlier in this chapter, and search for the symbol. The Find Symbol Results
dialog box lists the hits, as demonstrated in this illustration.

Double−click on the line that represents the found symbol and the OB will pop up with the class you
requested. Crawl up the namespace in the OB until you expose its entire range. Try referencing the object by
declaring the entire namespace as follows:

Public Sub WriteSomething()
 System.Debug.WriteLine("something")

End Sub

You might still be told that Debug is not a member of System. The reason is simple: Visual Studio cannot
find the assembly that packages the system namespace. Could it be that you are not referencing the assembly,
the assembly is missing or not installed on the system, or there is something else wrong with it? Most likely,
Systemthe assemblyis not referenced in your project.

As the message in the preceding illustration indicates, the Debug object "is not declared," and the object is
located in the System.Diagnostics.Debug namespace. This also tells you that the namespace is packaged in
the System assembly. If you are unsure of the assembly name, you can follow the namespace in the OB all the
way up the hierarchy until you locate it. In this case, the assembly is called Systemdon't confuse it with the
System namespace.

Expand the References folder in your project to check if System is in there; if not, you need to add it (even
though you may see it in the OB). To add an assembly reference, right−click on the project name or
References folder in Solution Explorer and select the Add Reference optionits dialog box will now load. (See
Figure 3−8.)

 Working with the Base−Class Library

78

Figure 3−8: The Add Reference dialog box
The first tab lists all the assemblies provided in the Global Assembly Cache, including all of those within the
framework libraries. Search for System.DLL in the list and double−click this file, which will be placed in the
Selected Components. If it appears in this list, click OK. The System.DLL assembly will now be present in
the References section of your project in Solution Explorer, and the error message in your code will vanish.

The good news is this: whenever you create a new project, Visual Studio automatically adds the System,
System.Data, and System.XML assemblies to the References section because they contain the base classes
you'll need for a minimal application. (These are not bolded here because they are assemblies [DLL files], not
classes or namespaces.)

This is important to note since it's not always the case. All custom assemblies and many others that ship with
the .NET Framework must first be accessed in this way before you can reference the namespaces and types in
your code. Only after your project sees the DLL file containing the namespaces will you be able to reference
the namespaces and the object you seek. Don't confuse the process of referencing the assembly with that of
denoting the namespace, as show in the next section.

Looking at your code, you are probably wondering how Visual Studio knows where and what namespaces to
select since it's the assemblies that are referenced. It's easy to find out. Right−click on your project and select
the Properties options. The Properties dialog box loads. Drill into the Common Properties, Imports folder as
illustrated.

You can also select Properties from the Project menu. Go to the Imports sections and add your references
there. Word of warningthis box does not check the correctness of your reference so make sure to type the

 Working with the Base−Class Library

79

correct class identifiers names and the correct notation.

Note You also did not need to reference the MSCORLIB assembly, which hosts the console classes, because
the compiler always does this for you.

A Minimal Visual Basic .NET Application

The actual namespace−naming notation is not unlike the notation used by Java, by the Internet Domain Name
System, or by the Active Directory namespace. For example, the System.Data.ADO namespace refers to the
hierarchy of classes that represent the functionality of the ActiveX Data Object technology. You would need
to reference System.Data.ADO in order to directly access the ADO class, which is the last name in the
namespace "chain" of classes. If you were to cite only System.Data, you would reference not only ADO but
all other classes on the System.Data namespace as well. If you do not need any other data class in your
application, you would be wasting a lot of resources.

Note The dot notation syntax has no effect on the visibility and access characteristics of classes and
their members. It also has no influence on inheritance or binding or the interfaces available. In
fact, the namespaces can also be partitioned across assemblies and a single assembly may
contain multiple class namespaces as demonstrated throughout this book and the .NET
Framework.

If you have already been playing around with Visual Studio .NET, then save your experiments, close down
the IDE, and open Notepad. Using the IDE would be a little cumbersome here as we create the following
seven−line application:

In Notepad, type the following code:

Module Welcome
 Sub Main()
 Console.WriteLine("Welcome")
 Console.ReadLine()
 End Sub
End Module

1.

Save the file in the project folderin the C:\Vb7cr\Welcome folder or anywhere on your computer. You
can save the file as welcome.txt or as welcome.vb. (The .vb extension is recognized by the IDE as the
official Visual Basic .NET extension for class files, so it's better to use this extension.)

2.

Now find the Visual Basic .NET command−line compiler. If you installed the SDK and the Visual
Basic .NET support in Visual Studio, then the compiler will be on your computer. It goes by the name
of VBC.EXE and resides in your C:\Windows\Microsoft.NET\Framework\v1.0.3512 folder or in a
similar one.

Note A list of compiler directives is provided in Chapter 17.

3.

Compile the file from the command line as follows, substituting C for your drive letter and ensuring
that VBC is on your execution path:

VBC C:\Vb7cr\Welcome\welcome.vb

4.

The executable is compiled and the compiler puts the little application into the folder you used to
execute VBC. You can now run it by double−clicking the file from Windows Explorer or running it
from the command line. The console window illustrated here loads. It displays the message
"Welcome" and then waits for some user input. Hit return to close the console application.

5.

 A Minimal Visual Basic .NET Application

80

That's all there is to writing and creating a Visual Basic .NET executable (it takes all of five minutes). So
what's so incredibly special about this code? Let's look at it again notice the comments this time:

'This little app demonstrates
'referencing the System namespace
Module Welcome
 Sub Main()

System.Console.WriteLine("Welcome")
System.Console.ReadLine()

 End Sub
End Module

Note The use of a single quote mark denotes a comment in a Visual Basic .NET class file. The
compiler ignores the entire line after the quote. While the comments here may not seem worth
the screen space, it is good programming practice to comment on every application like this.
See Chapter 4, Elements of Visual Basic .NET.

The above code is identical to the earlier code, as well as the Debug example. We have bolded only the two
lines of code that tell the runtime in which namespace (System) and which class (Console) to find the
functionality that will let you create the console window, display a line of text, and wait for user input. This
brings us to one of the most important concepts in the .NET Framework: class functionality is accessed by
referencing the fully qualified class name on a partitioned dot notation (name.partition−n). In the above code,
the WriteLine and ReadLine methods for the Console class are resolved on the System.Console namespace.
You can think of this namespace as an address where you send messages to objects and access functionality.

QualifiedIdentifier ::=
Identifier |
QualifiedIdentifier . IdentifierOrKeyword

Referencing the classes and namespaces in this way is very tedious for anything bigger than a seven−line
application. So the alternative syntax you will use lets you specify the namespace at the top of every class file.
This reference then exposes the namespace and the classes to the entire class; it is made possible with the
Imports keyword. Here is an example:

'This little app demonstrates using
'the Imports keyword

Imports System
Module Welcome
 Sub Main()

Console.WriteLine("Welcome")
Console.ReadLine()

 End Sub
End Module

Note that you no longer need the namespace's root name to be tagged onto the Console class. For all intents
and purposes, all .NET applications start out like this. In the above case, we have written a little code to access

 A Minimal Visual Basic .NET Application

81

the "canned" functionality in a class belonging to the base−class library (BCL).

Note The fully qualified namespace is also an address for an object, as discussed in Chapters 8 and 9. If you
are new to Visual Basic and unfamiliar with the peculiarities of the language, do not worry. We will not
be covering any complex code in this chapterbut the code will be back in full force in Chapter 4.

Observations

You now see that it's not difficult to start developing applications with Visual Basic .NET, although there is a
myriad of options and elements to consider, even from the outset. Visual Studio is an extremely flexible
environment, however, so do not hesitate to experiment and make changes. You can always restore things to
their default settings or reinstall the demo code, especially if you back up your .suo file. This chapter also
highlighted the importance of understanding how to correctly reference assemblies and namespaces. Visual
Studio offers you a full−blown Integrated Development Environment, as well as the ability to compile code
from the command line.

By now you should have sufficient grounding for the task aheaddesigning and creating Visual Basic .NET
applications. Our next objective is to learn the elements of our chosen .NET development language as quickly
as possible. This task begins in Chapter 4.

 Observations

82

Chapter 4: The Elements of Visual Basic .NET

Overview

This chapter introduces you to the lexical elements, grammar, building blocks, concepts, and foundation code
that will start you on the road to writing software with Visual Basic .NET. If you are new to Visual Basic, set
aside some time to fully review the elements.

Visual Basic syntax is rich, extensive, and very different from most other languages (with the exception of
classic Visual Basic and the original BASIC language itselfthe latter now a very distant ancestor). Visual
Basic .NET is a radical departure from its predecessors, so even if you are a VB guru, you need to review the
information in this chapter to be up to speed with Visual Basic .NET. You will get a view of the language, its
idioms, its syntactical and lexical layout, its integration with the .NET Framework, and more. You will delve
into the philosophy, metaphors, and concepts in Visual Basic programming. The concepts introduced in this
chapter are fully treated in later chapters.

You will use Visual Studio .NET in this chapter, too. By now, you should have installed the IDE and the
.NET Framework SDK on your development computer. If not, please do so as soon as possible. (At least
install the SDK.) In following chapters, we are going to move rapidly from introductory material to
"aggressive" codeapplication−ready examples for which you will need the CLR, the compiler, and the IDE.

Visual Basic .NET: The Foundation

This section is an abridged reference to the lexical and idiomatic elements of Visual Basic .NET. The
foundation elements are discussed, along with related concepts. Some elements are discussed in depth in later
sections in this chapter; others are discussed in the chapters that specialize in the concepts and how the
idiomatic elements cater to them.

Lexical Elements

The lexical elementsthe so−called "grammar" of the languagerefer to the structure that makes up the layout of
the source code within a Visual Basic unit. The layout is aided by the representation of characters, lines, line
terminators, white space, comments, operators, and so on. Table 4−1 lists these elements and refers to where
in the book they are principally discussed.

Table 4−1: Lexical Elements and Grammar

Lexical Elements Principally Discussed in:

Characters and lines Chapter 4

Line terminators Chapter 4

Line continuation Chapter 4

White space Chapter 4

Comments Chapter 4

Type characters Chapter 4

Literal Chapter 4

Nothing Chapter 4

83

Separators Chapter 4

Operator symbol Chapter 5

Identifiers Chapters 4, 8−10

Keywords All chapters
The lexical makeup of a language is represented by the many keywords it has. These include keywords like
Dim, ReDim, As, GetType, Nothing, and others. Some of the first keywords you will use are introduced in
this chapter. Some of the more advanced keywords, such as AddressOf, will be covered in the chapters that
deal with elements that use them the most, such as Chapter 14, which deals with Delegates, and Chapter 16,
which introduces threading.

Preprocessing Directives

The preprocessing directives are the commands and keywords you use to specify how the compiler should
compile your code. These directives are placed in the code and instruct the compiler to compile different
regions or versions of the code depending on conditions you specify. Table 4−2 lists the preprocessing
directives and the principal locations where they are discussed.

Table 4−2: Preprocessing Directives

Preprocessing Directives Principally Discussed in:

Conditional compilation directives Chapter 17

Conditional constants Chapter 17

Conditional compilation statements Chapter 17

External source directives Chapter 17

Region directives Chapter 17

General Concepts

The general concepts, which deal with accessibility and visibility, referencing (name spaces and type names),
and so on, are covered in several chapters. Table 4−3 lists the principal locations where general concepts are
introduced or covered in detail.

Table 4−3: General Concepts

General Concepts Principally Discussed in:

Accessibility (access modifiers) Chapters 4, 7−10

Namespace and type names Chapters 4, 8−10

Attribute constructs All chapters
Namespaces and type names are generally covered in all chapters.

Option, Imports, and Namespaces Directives

The Option directives (Option Compare, Option Strict, and Option Explicit) govern the semantic and
type−safety strictness applied during code construction. The Imports directives reference the source
namespaces for referencing external classes used in code construction. Both are introduced in this chapter and
then referenced throughout the book.

 Preprocessing Directives

84

Table 4−4: Option, Imports, and Namespace Directives

Option, Imports, and Namespace Directives Principally Discussed in:

Option Compare, Option Strict, and Option Explicit Chapter 4

Imports, import aliases, regular imports Chapter 4

Namespace declaration, namespace members Chapters 4, 9
The namespace declaration space in the Visual Basic unit is used to scope the current class or classes, in the
.vb unit, to a namespace.

Types

This section discusses the types that make up all .NET applications. The fundamental (or so−called primitive)
types are principally introduced in this chapter (see Table 4−5) and are used and further discussed in all
chapters in this book.

Table 4−5: Types of .NET Applications

Types Principally Discussed in:

Built−in Value types Chapters 4, 8

Arrays and Collections Chapter 12

Standard classes and modifiers Chapter 9

Standard modules and modifiers Chapter 9

Interfaces Chapter 10

Enumerations and their members Chapter 8

Custom Structures (value types) Chapter 8

Delegates Chapter 14
The declaration syntax for any type not discussed in this chapter is presented in the chapter in which the type
is principally discussed.

Type Members

The type members represent the "action" or functionality in a Visual Basic class file. Chapter 7, for example,
is devoted to the subject of methods, which comprise constructors, accessor methods, modification or regular
methods, and properties. The present chapter covers variable and constant declaration, scope, lifetime, and so
on. Table 4−6 tells you where to look for discussion of type members.

Table 4−6: Type Members

Type Members Principally Discussed in:

Constants Chapter 4

Variables Chapter 4

Methods Chapter 7

External methods Chapter 7

Constructors Chapters 7, 8, 9

 Types

85

Properties Chapters 7, 9

Interface method implementation Chapter 10

Events and event handling Chapter 14

Inner or composite types Chapters 9, 13, 14

Statements and Statement Blocks

The Visual Basic .NET language contains a number of statement constructs used in the construction of code,
many of which have been inherited from the earlier versions of VB, such as With statement blocks.

The statement block is a statement that encapsulates code within the class itself, to a local scope, such as
IfThenElse constructs and so on. Table 4−7 leads you to various discussions of statement and statement
blocks.

Table 4−7: Statements and Statement Blocks

Statements and Statement Blocks Principally Discussed in:

Standard block Chapter 4

Local declaration statements Chapter 4

With statement blocks Chapter 4

SyncLock statement blocks Chapter 7, 16

Event statements and event handler statements Chapter 14

RaiseEvent statements Chapter 14

Interface method implementation Chaptesr 10, 12, 13, 14

Assignment statements Chapter 4

Compound assignment Chapters 4, 5

Invocation statements Chapter 7

Conditional statement blocks Chapter 6

Loop and iteration statement blocks Chapter 6

Control−flow statements Chapter 6

Structured exception handling (SEH) statement blocks Chapter 11

Unstructured exception handling statement blocks Chapter 11

Array handling statements Chapter 12

Expressions

Expressions are sequences of operators and operands that specify a computation and return a value. Table 4−8
directs you toward information on expressions.

Table 4−8: Expressions

Expressions Principally Discussed in:

Constant expressions Chapter 4

Variable expressions Chapter 4

Simple expressions Chapter 4 and throughout

 Statements and Statement Blocks

86

Literal expressions Chapter 4

Parenthesized expressions Chapter 4

New expressions Chapters 4, 9

Cast and convert expressions Chapter 4

Me expressions Chapter 4

GetType expressions Chapter 9

Is expressions Chapters 4, 9

Invocation expressions Chapter 7

Argument and parameter expressions Chapter 7

Delegate expressions Chapter 14

Event expressions Chapter 14

Dictionary expressions Chapters 12

Index expressions Chapters 12
Typically, an expression always evaluates to a value at run time, but the compiler may warn you that an
expression you are trying to write does not constitute a legitimate expression. For example, the following code
does produce a valuable expression:

Dim iAm As Boolean = True
Dim jDoo As Integer
Public Shadows Sub ShadowMethod(ByVal argS As String)
 Convert.ToInt32(iAm) = jDoo 'no good, cannot assign right to left
 jDoo = Convert.ToInt32(iAm) 'better
End Sub

Operators

Operators are covered everywhere (see Table 4−9), even in this chapter, but each operator is fully defined, and
presented with examples of recommended usage and application, in Chapter 5.

Table 4−9: Operators

Operators Principally Discussed in:

Unary operators Chapter 5

Logical operators Chapter 5

Arithmetic operators Chapter 5

Mod operator Chapter 5

Exponentiation operators Chapter 5

Relational operators Chapter 5

Logical operators Chapter 5

Is operator Chapters 8, 9

Like operator Chapters 7, 8, 9

TypeOf, TypeOf . . . Is operators Chapters 7, 8, 9

 Operators

87

Visual Basic .NET Mini Style Guide

Visual Basic .NET is a modern, pure object−oriented programming language. How you use it is up to you.
You also have discretion in how you design, document, write pseudocode, collate specifications, and construct
code. This book doesn't cover what constitute good programming practices in any depth, because this topic
applies to all programming languages. Many good books have been written on the practice of software design
and construction, and I will recommend several of the best ones as we progress through this book.

However, the .NET Framework architects have suggested some guidelines with respect to style and usage.
Some are discussed here, while many others are discussed in the chapters in which the guidelines address the
principal subject matter. You don't have to follow these guidelines, but they are intended to make your code
easier to read and to promote consistency within the entire .NET programming community.

Naming and Notation

Maintain a consistent naming pattern across all of your classes. If you are managing a team, make sure the
entire team adheres to a consistent naming pattern. The guidelines for naming are also provided to assist with
language interoperability. It's especially important for you to maintain uniformity, especially if you plan to
contribute classes or components and controls to the .NET community, whether for profit or to stroke your
ego.

Capitalization

The .NET languages have adopted a particular capitalization style that sets them apart from, for example,
Smalltalk or C++. The two main styles are PascalCase and camelCase. The Pascal casing convention
capitalizes the first character of each word, even if the two words are conjoined. The following is an example
of Pascal casing usage:

Public Class PascalClass

The camel casing convention capitalizes each new word, except for the first word of the identifier. Camel case
usage is as follows:

Dim camelCase As New String

However, if an identifier is no more than two characters, such as an abbreviation, then use uppercase for both
characters. Here are some examples:

Public Class UI
Namespace Vb7cr.CD
Imports System.IO

Table 4−10 lists the capitalization rules for the different identifiers.

Table 4−10: Capitalization Rules

Identifier Capitalization Rules Example

Classes PascalCase Class MyClass

Enumerator values PascalCase BackColors

 Visual Basic .NET Mini Style Guide

88

Enumerator types PascalCase ColBlack

Exception classes PascalCase and should end with
"Exception"

MyKindOfException

Final and read−only static fields PascalCase MyValue

Interfaces PascalCase (prefix with I) ITreeIterator

Methods PascalCase GetSound

Namespaces PascalCase Vb7cr.ArrayUtils

Properties PascalCase Color.Black

Public instance fields PascalCase BaseAmount

Protected instance fields camelCase WarpSpeed

Parameters camelCase WarpValue

Hungarian Notation

The .NET gurus at Microsoft would prefer that you not use Hungarian notation. This advice has some merit,
considering that .NET comprises more than 20 languagesand the list is growing.

In order for Hungarian notation to succeed in the .NET Framework, it would need to be consistently used
across the entire spectrum of CLS−compliant languages. That's unlikely to be the case; many of the languages
that have adopted .NET specifically steer away from Hungarian notation (especially the Java−like languages,
such as JScript, C#, and J#). The notation is widely used with C++ programmers, however, especially
Windows programmers.

If you are not familiar with the notation, it comprises three parts: type name, prefixes, and qualifiers. The
prefix, for example, denotes the type of variable. An array is prefixed with a; thus, wherever a variable
prefixed with an a is used, it is implied that the variable refers to an array. The following are examples:

Dim aAlarms(5) As Integer
'...
aAlarms(5) = 0

or

Dim a_alarms(5) As Integer
'...
a_alarms(5) = 0

The suffix e is used for element, h for handle, i for index, and so on. But why not just use the following
equivalent; after all, the subscript notation (5) makes it clear enough that you are looking at a variable:

Dim alarms(5) As Integer
'...
alarms(5) = 0

The other problem with Hungarian notation is that it encourages uninformative variable identifiers (among
lazy programmers) and thus makes code hard to read and work with. Here is an example:

Dim myhwnd As New hwnd

So what does this refer to: a window handle, a hot window, a wand, heavy wind? Who knows? Better to use
the following notation:

 Hungarian Notation

89

Dim hWindow As New Window
Dim myWandHandle As New WandHandle

If you decide to use Hungarian notation, stick to consistent prefixes and qualifiers if your team possesses
sufficient discipline to enforce consistent and uniform adoption. However, remember that names should
describe the semantics, not the type.

Word Choice

There are no restrictions on word choice, but you cannot use words that are reserved as keywords in the
languages. There is no need to present a table of all the keywords, because you will very quickly learn which
ones they are, and the compiler will politely tell you to shove off when you choose a word it is already using,
such as Byte, Integer, or Event.

If you must use a keyword, enclose it in the escape charactersthe square bracketsto avoid a compiler error.
Here's an example:

Dim [False] As Boolean = False

However, this practice is definitely not recommended because it makes code hard to read. More on this
subject appears later in the chapter.

Spell out all words used in a field name and don't be too shy to use long names. Use abbreviations only if
developers generally understand them, like "url," or "dir." You can make a field name all lowercase (as
opposed to camelCase), especially if the names are short. My rule is lowercase for the entire word if it is five
characters or less. I cap the letters in long names first at the syllabic breaks and second at the logical breaks
(camelCase or PascalCase). The following is an example of correctly named fields:

Class SampleClass
 Private url As String
 Private destinationUrl As String
End Class

Getting Started

When the compiler parses the code you have written, it first translates the raw stream of Unicode characters
into a series of logical lines. The compiler recognizes the logical line according to an ordered set of lexical
tokens. The logical line in a class unit spans from either the start of the stream or a line terminator through to
the next line terminator that is not preceded by a line continuation or through to the end of the stream. This
syntax demonstrates what the compiler "considers" a logical line:

Start ::= [LogicalLine+]

LogicalLine ::= [LogicalLineElement+] [Comment] LineTerminator

LogicalLineElement ::= WhiteSpace | Token

Token ::= Identifier | Keyword | Literal | Separator | Operator

In other words, Visual Basic considers the following code to be a logical line, even though it is literally two
lines in a unit:

 Word Choice

90

Private Function GetPrice(ByVal price As Integer, ByVal discount As Double) _
 As Double

The preceding method represents a logical line, albeit broken into two actual lines with the line−continuation
character. But the compiler will choke on the following representation of the same method if you write it as
follows:

Private Function GetPrice(
 ByVal price As Integer,
 ByVal discount As Double) As Double

This representation causes a syntax error. To fix the error, use the line−continuation character (discussed
shortly).

Character and Lines

The characters in your lines of code are drawn from the Unicode character set, which is the character set that
all Visual Basic .NET programs are written in. A character is thus any Unicode character except the characters
that represent line terminators.

Line Terminators

Unicode line−break characters are used to separate out the lines in your unit. Visual Basic .NET is not a
free−format language, so line terminators are an essential part of the syntactic grammar. The following syntax
represents the Unicode characters for line termination:

LineTerminator ::=
< Unicode carriage return character (0x000D) > |
< Unicode line feed character (0x000A) > |
< Unicode carriage return character > < Unicode line feed character > |
< Unicode line separator character (0x2028) > |
< Unicode paragraph separator character (0x2029) >

Line Continuation

The line−continuation character is represented by a single underscore or underline character, as shown earlier,
which must appear as the last character of the actual line (other than white space). It must be preceded by at
least one white−space character, as shown in the following example:

Private Function GetPrice(_ 'wrong no white space between characters
 ByVal price As Integer, _ 'correct
 ByVal discount As Double) As Double

Line continuations are treated as white space and do not mark the end of logical lines, as demonstrated with
this syntax:

LineContinuation ::= WhiteSpace _ [WhiteSpace+] LineTerminator

 Character and Lines

91

White Space

White space separates tokens and serves no other function. Logical lines containing only white space are
ignored. White space separators are defined in the following syntax:

WhiteSpace ::= < Unicode blank characters (class Zs) > | LineContinuation

Comments

A single−quote character (') represents Visual Basic comments, or you can use the keyword REM.
Comments can begin anywhere on a source line, and the end of the physical line ends the comment. I, like
many others, had hoped for block comment ability in version 1 of Visual Basic .NETsomething similar to the
following:

/*
everything here is comments.
*/

Hopefully, it will arrive by the first service pack, because the lack of documentation− friendly features in
Visual Basic .NET is one of the sore points (and there are several). Here is the current limited comment
syntax:

Comment ::= CommentMarker [Character+]

CommentMarker ::= ' | REM

The compiler completely ignores the characters between the beginning of the comment and the comment
line's terminator. The following code shows several comments:

'Hello program.
'This program writes "hello " to the console.

Module Hello

'Use hello when you mean goodbye
 Sub Main() 'This method must be named "Main".
 Console.WriteLine("hello ")
 End Sub
End Module 'goodbye

Identifiers

An identifier is the name you give an element so that the code providers (we, the developers), the code
consumers (also we, the developers), and the compiler can identify it throughout the application. Visual Basic
identifiers conform to Unicode 3.0 standard, Report 15, Annex 7. However, your identifiers may begin with
an underscore (connector) character, although this is not recommended, as mentioned earlier in the "Naming
and Notation" section. If you decide to write code like a C++ programmer and begin your identifiers with an
underscore, be careful not to leave a white space between the underscore and at least one valid identifier
character or the compiler will think you are signifying line continuation.

As mentioned earlier, you can escape the language's keywords with square brackets if you absolutely have to
use one of the language's many keywords for an identifier. Escaped identifiers follow the same rules as
regular identifiers except that they may match keywords and may not have type characters. The maximum

Character and Lines

92

identifier length an identifier can be is 16,383 characters. That's more than you need, because research has
shown that identifiers and method names should not exceed 20 characters to preserve readability.

Here is some example code using the escaped keywords:

Class [class]
 Shared Sub [shared](ByVal [boolean] As Boolean)
 If [boolean] Then
 Console.WriteLine("true")
 Else
 Console.WriteLine("false")
 End If
 End Sub
End Class

Module Module1
 Sub Main()
 [class].[shared](True)
 End Sub
End Module

I think you'll agree the above example, while extreme, is very hard to follow. Identifiers are case insensitive,
meaning case is ignored. So, if two identifiers differ only in case, they are considered to be the same
identifier. (See also the discussion of Option Compare later in this chapter.) The following syntax applies to
indentifiers.

Identifier ::=
NonEscapedIdentifier [TypeCharacter] |
EscapedIdentifier

NonEscapedIdentifier ::= < IdentifierName but not Keyword >

EscapedIdentifier ::= [IdentifierName]

IdentifierName ::= IdentifierStart [IdentifierCharacter+]

IdentifierStart ::=
AlphaCharacter |
UnderscoreCharacter IdentifierCharacter
IdentifierCharacter ::=
UnderscoreCharacter |
AlphaCharacter |
NumericCharacter |
CombiningCharacter |
FormattingCharacter

AlphaCharacter ::= < Unicode alphabetic character (classes Lu, Ll, Lt, Lm, Lo, Nl) >

NumericCharacter ::= < Unicode decimal digit character (class Nd) >

CombiningCharacter ::= < Unicode combining character (classes Mn, Mc) >

FormattingCharacter ::= < Unicode formatting character (class Cf) >

Character and Lines

93

UnderscoreCharacter ::= < Unicode connection character (class Pc) >

IdentifierOrKeyword ::= Identifier | Keyword

Note When comparing identifiers, the Unicode standard one−to−one case mappings are used, and
any locale−specific case mappings are ignored.

Separators

The following ASCII characters are available as separators:

Separator ::= (|) | ! | # | , | . | :

Type Specifying Characters

A type character following a non−escaped identifier (with no white space between them) denotes the type of
the identifier. You can use it in place of the "As Type" portion of declaration. For example, the following
declaration:

Dim dubble#

is the same thing as

Dim dubble As Double

Type characters also detract from readability. If you use them be sure that if the declaration includes a type
character, the character agrees with the type specified in the declaration itself; otherwise, a compile−time error
occurs. If your declaration omits the type, the compiler will insert the type character implicitly substituted as
the type of the declaration.

The following syntax lists the type characters available in Visual Basic .NET (there are no type characters for
Byte or Short).

TypeCharacter ::=
IntegerTypeCharacter |
LongTypeCharacter |
DecimalTypeCharacter |
SingleTypeCharacter |
DoubleTypeCharacter |
StringTypeCharacter

IntegerTypeCharacter ::= %

LongTypeCharacter ::= &

DecimalTypeCharacter ::= @

SingleTypeCharacter ::= !

DoubleTypeCharacter ::= #

StringTypeCharacter ::= $

Character and Lines

94

The compiler does not consider the type character to be part of the identifier. Also, white space between an
identifier and its type character will choke the compiler. Here are some examples using type characters (as
you can see, the code is prone to bugs):

Trying to append a type character to an identifier that does not have a type will generate errors.

For example, this declaration will not fly because a standard module cannot be typed:

Module Module1# 'try declare a module of type Double
End Module

The following code generates type compatibility problems because you cannot assign a value of type String
to a value of type Single:

Public Sub TestTypeCharacter()
 Dim mySingle!
 Dim myString$
 mySingle = myString
 Debug.WriteLine(mySingle)
End Sub

However, the following fix makes it better:

Public Sub TestTypeCharacter()
 Dim mySingle!
 Dim myString$
 mySingle = Convert.ToInt16(myString)
 Debug.WriteLine(mySingle)
End Sub

because the Convert function converts the String value to a Single value.

Statements and Blocks

Statements are organized segments of code, which can be organized into blocks. Blocks are made up of
labeled lines, and each labeled line begins with an optional label declaration, followed by zero or more
statements, and then delimited by colons. For example:

Sub−Total:

Labels have their own declaration space and do not interfere with other identifiers. In the following example,
the type characters for bar are used both as the parameter name and as a label name:

Function Foo(ByVal bar As Integer) As Integer
 If bar >= 0 Then
 GoTo bar
 End If
 bar = −bar
bar: Return bar
End Function

Note The treatment of labeled blocks is not covered in any meaningful way in this book as is the use
of GoTo and On Error control−flow constructs. Such code is both controversial and outdated.
See Chapter 6 for more information.

 Statements and Blocks

95

The following syntax illustrates the use of labels and statements:

Block ::= [LabeledLine+]

LabeledLine ::= [LabelName :] [Statements] LineTerminator

LabelName ::= Identifier | IntLiteral

Statements ::=
[Statement] |
Statements [Statement]

Other types of blocks include conditional blocks such as IfThenElse, With statements, the SyncLock
statement, and so on. These constructs are covered in later chapters. Here is some example syntax:

WithStatement ::=
With Expression StatementTerminator
[Block]
End With StatementTerminator

SyncLockStatement ::=
SyncLock Expression StatementTerminator
[Block]
End SyncLock StatementTerminator

Nothing for Nothing or Something for Nothing

Nothing is a special literal that, as an operand assignee, represents the default value of the data type operand.
Nothing is also not considered to have a type and, as such, is convertible to all types in the type system. When
converted to a particular type, its value defaults to the default value of that type. If the type assigned to
Nothing contains variable members, they are all set to their default values. Have a look at the following
example:

Public Structure MyStruct
 Dim name As String
 Dim ort As Short
End Structure

Public Sub NothingForNothing()
 Dim Truct As MyStruct, intI As Integer, oolB As Boolean
 Truct = Nothing 'this line dereferences Truct
 intI = Nothing 'this line sets intI to 0.
 oolB = Nothing 'this line sets oolB to False.
End Sub

You will see in Chapters 8 and 9 that you can assign the reference variable of a reference type, an object, to
Nothing. Doing this disassociates the variable from any object and makes the object a candidate for collection
as garbage. For example:

Dim myObject As Object
myObject = Nothing 'No object is currently referred to.

 Nothing for Nothing or Something for Nothing

96

However, setting a reference variable to Nothing does not itself bring about the termination of the instance.
Only after the garbage collector has determined that no active references to the instance are remaining will it
terminate the object and then release the memory and system resources associated with it. When you assign to
Nothing, the reference variable no longer refers to any object instance, so it can be reassigned. The syntax is
as follows:

Nothing ::= Nothing

See also the section "Null" later in this chapter.

Classes, Types, and Objects: What's the Difference?

The terms type, class, and object are often used interchangeably and by many (me included) without respect
for what they truly refer to. In the loosest sense, however, classes are design−time constructs, like knitting
patterns, architectural plans, of software. But classes are also groupings or collections of static runtime
methods, and in this sense they are often referred to as operations classes. The members of so−called static
classes can also be accessed at run time without the need for instantiation, just like ordinary dynamic link
library (DLL) files.

Objects live in the run−time environment; they can only be accessed at run time and need to be instantiated
before their members can be accessed. The term types, or data types, is more of a collective term, coined long
before objects became the rage, and refers to both classes and objects, and what the common language
runtime and type system relates to. In the world of object−oriented programming (OOP), the term type is often
used to refer to the fundamental data types (or primitives), such as Integer or Byte (but you'll see in this
chapter these types are also objects and are founded as classes; they are anything but primitive types).

There are six "species" of classes that derive from Object in the .NET Framework that you will use to build
.NET applications. Let's examine them briefly:

Class modules These are also known as standard modules in Visual Basic (modules are relevant only
to Visual Basic). Modules are final and cannot be instantiated as objects (so they cannot refer to
instances of themselves with the Me keyword). Their members are shared and they become
self−contained applications. (Modules are discussed further in Chapter 9.) I don't understand why
modules are even included in the language, because you can set any class to behave exactly as the
module does with little effort (see Chapter 13 about the Singleton pattern). Modules do come with a
number of limitations, however, and I suspect they were included in Visual Basic .NET partly to help
with the migration from earlier versions.

•

Standard classes The standard classes are used for all classes that form the building blocks of all
.NET types and libraries. Standard classes are the basis of all reference types and are discussed in
depth in Chapters 8 and 9, in which you will find out that you can only inherit implementation from
one base class in the .NET Framework.

•

Interfaces Interfaces are absolute abstract classes that are de−coupled from implementation. They
must be implemented in classes that support or adapt the interface. Supporting an interface means
providing its implementation (when implemented in standard classes). Adapting an interface means
changing the interface so that other classes can reference the implementation that supports it. You are
not allowed to include any implementation in an interface; their members (signatures) can only be
definedeven if they are just simple events or the specifications for data fields. Interfaces are powerful
application building blocks and are covered in detail in Chapters 10, 12, 13, and 14.

•

Enumerations Enumerations, or "enums," are lightweight types that encapsulate constants of an
ordinal value, such as Integers, Shorts, Longs and Bytes. Enum values are used in place of "magic"

•

 Classes, Types, and Objects: What's the Difference?

97

numbers that can make code hard to read. You can think of the enumeration class as a "container"
type that provides a formal interface to a collection of enum values. Specific instructions on declaring
and implementing enums are provided in Chapter 11.
Structures Structures are value types and are also known as lightweight classes (because they are
processed on the stack and not the heap like standard classes and objects). .NET's fundamental data
types are value types, yet they still all derive from Object and are thus also objects. These classes or
types are very lightweight and fast, and constitute a very powerful facility of the .NET Framework.
You can build robust mission−critical applications using structures, enabling you to extend the
language in a way never before imagined.

•

Delegates The .NET Framework provides a construct for passing singleton method signatures as
bound references to a consumer construct that has an interest in the execution of the method. The
Delegate is a lot like a C++ function pointer, but it is type safe, secure, and object−oriented.
Delegates are discussed in Chapter 14 in considerable detail, because they represent a major pillar of
the .NET Framework, and a significant concept separating the .NET Framework from Java.

•

Classes: The View from Above

Classes come in two categories: [end] user classes (or custom classes), and Framework or API classes (also
known as the base classes and the built−in types). The user classes are the ones you will build from scratch.
As you will discover, you can derive your classes either implicitlythrough automatic inheritancefrom the root
Object, or explicitly from one of the inheritable base classes or other custom classes.

User classes need to conform to the common language specification (CLS) or they will (at best) introduce
bugs or (at worst) not compile (see Chapter 2). The Framework classes are the ones that ship with the .NET
SDK. They also conform to the CLS (which ultimately supports the common language runtimethe
CLRdiscussed in the first two chapters).

All classesas well as modules, enums, interfaces, structures, and delegatesare composed of a number of
specific "spaces." A class typically is composed of a directive space, a class declaration space, and an
implementation space. The compiler accesses the information in the spaces in a certain sequence of steps.
These spaces are illustrated in Figure 4−1, and comprise the following:

Figure 4−1: The .NET class and its three key spaces

Class declaration space The declaration space is where the class is declared and named. As we will
discuss in the next section, the class declaration provides access information, the type of class it is

•

 Classes: The View from Above

98

(such as enumerator, module, and so on), whether the class is inheriting from a base class or
implementing an interface (or both), class attributes, and so on.
Class directive space The directive space comprises data that directs compilation (Option
statements), references external classes via their respective namespaces (Imports), scopes the class
itself to a namespace, and so on. The directives are placed at the top of the class, which is also known
as the header space in some languages, such as C and C++. The elements that go into the directive
space are placed in an order of priority, which we will discuss in the next section because the order is
important.

•

Class implementation space The implementation space is anywhere in the class between the class
declaration and the class terminator symbol, which is the End Class statement (a closing outer curly
brace in C#). The elements that go into the implementation space include methods, data fields, events,
properties, and so on. We'll discuss these essential elements in more detail in this chapter and in other
chapters.

•

The following sections discuss the preceding three spaces in the typical order in which you will work in them
in the IDE: declarations, directives, and implementations.

The Class Declaration Space

You declare a class before doing anything else when you start coding in Visual Basic, which is why the
declaration space is discussed first. The class declaration consists of several essential components in this
space, starting with the class name and ending with the End Class terminator, as illustrated in Figure 4−1.
The grammar notation provided by the .NET Framework SDK and Visual Basic language is as follows:

[Attributes] (Optional) ClassModifier ::= AccessModifier | Shadows | MustInherit |
NotInheritable (Optional)

ClassTypeName ::= String

ClassDeclaration ::=

 ClassBase ::= Inherits TypeName LineTerminator (Optional)

 InterfaceBase ::= Inherits InterfaceBases LineTerminator (Optional)

[ClassMemberDeclaration+] (Implementation)
End Class LineTerminator

The sections marked (Optional) are not essential elements for the development of simple classes. They may be
left out, in which case the CLR assumes the default. For example, you can mark a class Public, but the CLR
will assume Public if you leave out this modifier. However, the access modifiers modify the class to perform
a specific role or to declare a certain level of visibility from the outside world. For example, if you need to
explicitly seal a class (that is, prevent any of its implementation from being overridden or extended), then you
need to modify the class as being NotInheritable (but we'll get back to the modifiers shortly).

Attributes

Attributes were introduced in Chapter 2, and are more a facility of the CLR and the CTS than of any
individual .NET language. However, attributes can be used to decorate any specific language element in your
source code by declaring AttributeUsage and AttibuteTargets modifiers in your code. The syntax is as
follows:

 The Class Declaration Space

99

Attribute Usage

Attributes ::= < AttributeList >

AttributeList ::=
Attribute |
AttributeList , Attribute

Attribute ::= [AttributeModifier :] TypeName [([AttributeArguments])]

AttributeModifier ::= Assembly | Module

Attribute Arguments

AttributeArguments ::=
AttributePositionalArgumentList |
AttributePositionalArgumentList, VariablePropertyInitializerList |
VariablePropertyInitializerList

AttributePositionalArgumentList ::=
ConstantExpression |
AttributePositionalArgumentList , ConstantExpression

VariablePropertyInitializerList ::=
VariablePropertyInitializer
VariablePropertyInitializerList , VariablePropertyInitializer

VariablePropertyInitializer ::= Identifier : = ConstantExpression

Attributes are discussed in further detail in Visual Basic .NET Developer's Guide (McGraw−Hill/Osborne,
2002) with the subject of reflection and runtime type information technology (RTTI). You will also learn how
to create custom attributes and how to "decorate" classes and class members with attributes.

Table 4−11 lists the elements that can be decorated with attributes.

Table 4−11: Attributable Elements of Visual Basic .NET (and Any CLS−Compliant Language)

Attribute Target Example Applications

Assembly Strong naming, information, identity

Module (as in DLL or EXE modules) Information, identity (similar to assembly)

Class Serialization, information, reflection

Struct (value types) Layout of data fields in the class

Enum Flags for bitwise combinations of values

Interface How an interface is exposed to COM

Delegate Reflecting on Delegate

Constructor Tag names for Web control constructors

Method Information for method reflection

 The Class Declaration Space

100

Field Information for field reflection

Event Event reflection, security permissions

Parameter Variable parameter lists

Return Reflecting on the method return value

Property Reflecting on properties
While creating custom attributes lets you "enhance" your classes, manipulate the compiler, and tame the CLR,
you will mostly use built−in attributes provided by the .NET Framework.

The first element of the class declaration spacein front of the class access−modifiers and class nameis
reserved for optional class attributes. The following line of code illustrates how an attribute is applied to the
target it is decorating the class as being serializable (serialization is discussed in Chapter 15):

<Serializable()> Public MustInherit Class Crew

The preceding attribute prepares the assembly and the compiler to serialize the object, which is the computer
language equivalent of reducing pasta dough to dried spaghetti that can be later reconstituted into a
magnificent bolognaise.

Class Access

The so−called visibility or access characteristics of a class from the outside worldits neighbors in the
assembly, or classes and constructs in other assemblies or further awaygovern how the class can be used and
the level of encapsulation required.

The following syntax and code demonstrates the declaration of a publicly accessible class:

AccessModifier ::= Public | Protected | Friend | Protected Friend | Private

Public Class AforAway
 'Implementation Space
End Class 'Class AforAway

Class AforAway above is Public, while BforBusy defaults to Friend access:

Class BforBusy
 'Implementation Space
End Class 'Class BforBusy

There are five levels of access you can impose on a class: Public, Friend, Protected, Protected Friend, and
Private. The levels and the rules for their usage are discussed in Chapter 9.

Note Only Public and Friend are valid modifiers for outermost classes. Private, Protected, and Protected
Friend modifiers are only valid on composite classes. Furthermore, the default access (no modifier
provided) is Friend, which is less risky as a default modifier than Public.

Class Utility

The utility of a class is denoted by its so−called class modifier, which allows a class to be shadowed,
inherited, or sealed. A shadowed class is a composite class that can redeclare and use the members of its outer
class. A class that can be inherited is an abstract class that permits some or all of its members, if they so allow
it, to be implemented in the deriving, or child, class. A sealed class cannot be inherited and thus its

The Class Declaration Space

101

implementation is "final."

The Visual Basic .NET terms for shadow, inheritable, and sealed classes are Shadows, MustInherit, and
NotInheritable, respectively. Each of these modifiers is discussed at length in Chapter 9.

Class Declaration

Class declaration comes immediately after your class is named and its access and utility are provided.
Declaration starts with the optional declaration that the class either inherits from a single super class or
implements one or more interfaces. The syntax for this declaration is as follows:

ClassDeclaration ::=

 ClassBase ::= Inherits TypeName LineTerminator (Optional)

 InterfaceBase ::= Implements InterfaceBases LineTerminator (Optional)

[ClassMemberDeclaration+] (Implementation)
End Class LineTerminator

If you need to extend a super or base class, such as the Attribute class or the FileDialog class, you need to do
so with the Inherits keyword. And if you need to declare the implementation of one or more interfaces, you
must declare this with the Implements keyword. The following example declares a public class called
NetHelpAttribute that extends the Attribute class:

Public Class NetHelpAttribute
 Inherits Attribute
End Class

The Directive Space

The space above the class declaration space is where you provide specific directives for the compiler,
references to namespaces and classes, and namespace declaration. The order of this information is important
and must be as follows:

Compiler options The first declarationsOption Strict, Option Explicit, and Option Compare.1.
Namespace and Class References This section, which uses the Imports keyword, provides for the
referencing of the types used in the class implementation.

2.

Namespace This section provides for the declaration of the namespace to which the class being
declared and its inner types are scoped.

3.

Compiler Option Directives

Visual Basic .NET provides many different compiler directives and we will investigate them in Chapter 17.
Three of them are Option statements that, if used in your code, must be placed at the top of the class
declaration before any other information. These directives to the compiler govern declarative and semantic
elements of code construction, such as explicit declaration, late binding, typing and so on. The Option
statements are as follows:

OptionDirective ::= OptionExplicitDirective | OptionStrictDirective |
OptionCompareDirective

The Class Declaration Space

102

Option Compare This option directs the compiler to perform String value comparison using either a
binary−processing algorithm or a text−processing algorithm. The binary option performs comparisons
based on a sort order derived from the internal binary representations of the characters being
compared, while the text option looks at the textual or String representations of the characters being
compared, relative to locale. (See the "Comparison Operators" section in Chapter 5 for specific String
comparison information and code. The syntax for the Option directives is as follows:

OptionCompareDirective ::= Option Compare CompareOption LineTerminator

CompareOption ::= Binary | Text

•

Option Explicit This option forces you to explicitly declare all variables in your class. If you do not
specify this option the compiler will assume the default setting, which is specified in the compiler
configuration properties set in Visual Studio, at the project level (discussed later in this chapter). You
can toggle the option using the statement Option Explicit On | Off. Specifically, Option Explicit On
will prompt you to declare a variable before you can use it. The syntax is as follows:

OptionExplicitDirective ::= Option Explicit [OnOff] LineTerminator

OnOff ::= On | Off

•

Option Strict This is a new option for the Visual Basic language that enforces strong type semantics,
which thereby restricts implicit type conversions. The utility of this option is to prevent possible data
loss through errant type conversions. The compiler environment stays one step behind you as you
write your code and generally prevents narrowing conversions. The default setting for this option can
also be set in Visual Studio at the project configuration properties level.

•

Option Strict On also reports an error on the following circumstances:

Late binding (Dim myVar); the variable must have an "As" clause (Dim myVar As Integer)♦
Undeclared variables, because Option Strict On implies Option Explicit On♦

The syntax is as follows:

OptionStrictDirective ::= Option Strict [OnOff] LineTerminator
OnOff ::= On | Off

•

The new Option Strict directive reflects the dilemma inherited by the Visual Basic .NET architects from the
previous versions of Visual Basic and its inherent success as the world's most widely used software
development tool. Visual Basic has traditionally been a very easy language to learn and thus to teach, so its
semantic and declarative elements have traditionally been loosely enforced to aid learning, rather than to aid
powerful application development now possible. While you can write strongly typed code with the earlier
versions of Visual Basic they are a lot more lenient with typing, binding, and declaration.

Visual Basic .NET, however, is used in a variety of development environments for all manner of advanced
and critical mainstream software construction. It thus makes sense to assume that gurus and experts are using
the language, and that they have critical deadlines and a hefty responsibility to turn out quality products.

By setting Option Strict to On, you force the compiler to tighten the code construction process by checking
for declaration errors, type conversion errors, and unintended late binding (see the section on "Method
Binding" in Chapter 7).

For the most part, you should leave both Option Explicit and Option Strict set to On (make On the default
in Visual Studio), because this aids code construction by tightening your code and reducing the number of
possible bugs that may creep through. This also helps conserve resources that get used in exception handling,

The Class Declaration Space

103

but it's not a reason to not use exception handlers in your code (see Chapter 11). In other words, it provides a
filter for bugs that might otherwise have made it into the compiled code.

Setting Option Strict On does not imply that Option Explicit On becomes redundant. Option Strict will not
catch unintended late binding.

Note When reviewing all code in this book, assume that both Option Strict and Option Explicit are
toggled to the On position, because the two options will often be excluded from the code
examples to conserve trees. If a specific reason exists for toggling the options to the Off position,
then the statement will be included and noted.

Another important consideration when setting the Option statements to On is that the directives set the
compiler to continuous background checking. So, whenever you write a statement, Visual Studio waits for
you to finish coding and then checks the code (and you need to work quickly or it will jump ahead of you).
Sometimes, it takes a few seconds to finish its work and that can be an irritating distraction when you are
working against time and are low on memory and processing power. If you are experienced enough to know
how the compiler is going to react to "loose" code, you can code with these options set to Off and then come
back and fix the errors later (or you can get a better computer). For more information, check out Chapter 11,
which covers exception handling, and Chapter 17, which covers debugging and the command line compiler
directives.

Importing Namespaces

The .NET Framework's class library is an excellent place to start to learn about the class namespaces, because
it is a massive library of classes partitioned into many namespaces and packaged in a collection of assemblies.
In many respects, it is the mother lode of classes, because it represents one of the largest collections of
framework classes in programming history. Later in this chapter, I will give you some pointers to "mining"
the treasure−trove of classes in the library. First, let's look at the syntax.

Imports Statement

ImportsDirective ::= Imports ImportsClauses LineTerminator

ImportsClauses ::=
ImportsClause |
ImportsClauses , ImportsClause

ImportsClause ::= ImportsAliasClause | RegularImportsClause

Import Aliases

ImportsAliasClause ::= Identifier = QualifiedIdentifier

Regular Imports

ImportsNamespaceClause ::= QualifiedIdentifier

But what is a namespacein the software−engineering sense of the word? A namespace is a logical grouping of
related classes (types) that ensures that the class names we concoct do not clash, and can thus be easily
referenced. This is illustrated here.

The Directive Space

104

The discussion of structured programming and modules in Chapter 1 stated that, in OOP languages, the class
is the unit of modularity. This means that it is possible for any programmer to create a class and give it the
same name as one of your classes. And any class in the base class library or some other library could have the
same name as one that you are creating.

Note Engineers who create classes for other engineers are principally referred to as class providers in this
book. Engineers who use the provided classes (framework or custom) are principally referred to as class
consumers.

This means that it is entirely possible for class names to clash, because to ensure that every class ever created
is given a unique name would be very limiting, well nigh impossible to implement, and not very practical.
There are, however, other mechanisms for ensuring uniqueness, which are discussed in the next section.

The concept of a module namespace in programming was introduced in 1993 for the C++ language. The main
purpose of a namespace specification was to prevent the clashing of classes and modules imported into the
C++ application from different header files (.h extension), and to provide a reference or visibility (access)
scope. This is achieved by making the class a member of a namespace. The combination of the namespace and
the class ensures that class names do not clash and provides the developer with the freedom to name the
classes without fear of name clashing.

Note A namespace is also a place to "park" your classes; thus, you can think of a "parking space" as
more than a location to park your wheels.

The fully qualified namespace (FQNS) name is the component that is kept unique within the programming
environment. In other words, if you created a class called Console and tried to insert it into the System
namespace (as demonstrated here), the IDE would politely warn you of your infringing ways, because a class
of the same name already existed in the namespace. But you could comfortably create a namespace that starts
with the root Myreader and put (your) Console class into it without any trouble. Referencing that class would
be as follows:

Myreader.Console.ReadMylips("Do Something")

Or, better still, use the Imports keyword, as follows:

Imports Myreader

Or perhaps you could use the following:

Imports Myreader.Console

But you would still need to fully qualify the namespace for your Console class if there is a chance that your
code references the System namespace, which also exposes a class named Console.

As demonstrated earlier, the Imports keyword references the namespace starting at the first word in the

The Directive Space

105

namespace and qualifying the references down to the class of interest. By just importing the namespace root,
Vb7cr, we expose all the types in the Vb7cr assembly.

Tip While the root of a namespace and the assembly can have the same name, the two are unrelated.
As discussed in Chapter 2, an assembly packages many namespaces. See Chapters 2 and 17 for
information on naming assemblies.

It does not make sense to expose the entire net worth of classes in a namespace, like the blast from a shotgun,
if all you need is a reference to one or two classes. Thus, there is a lot to be said for referencing the entire
namespace from the root to the last class in your code or on the Imports line, like a shot from a rifle, rather
than just specifying the root on the Imports line.

On the other hand, if you do need to reference a lot of classes and repetitively reference the entire namespace
for every class you reference, you are going to find yourself doing more typing than an Assembler
programmer. Here's an example of the buckshot Imports vs. the rifle−shot Imports:

Imports Vb7cr 'buckshot, ok
Imports Vb7cr.MyClass 'rifle−shot, better

Declaring Namespaces

The last element to be included above the class declaration is the namespace declaration, and this needs to
happens before you start constructing your class. The namespace declaration is the statement that scopes your
class to its namespace. Here is the formal syntax:

NamespaceDeclaration ::=
Namespace QualifiedIdentifier LineTerminator
[NamespaceMemberDeclaration+]
NamespaceMemberDeclaration ::=
NamespaceDeclaration |
TypeDeclaration

TypeDeclaration ::=
ModuleDeclaration |
NonModuleDeclaration

NonModuleDeclaration ::=
EnumDeclaration |
StructureDeclaration |
InterfaceDeclaration |
ClassDeclaration |
DelegateDeclaration

End Namespace LineTerminator

A familiar example of a namespace is your Internet domain namesuch as hq.sdamag.com. The unique part of
this namespace is sdamag.com, which is being read from the top down on the Internet namespace. Normally
you would read this as sdamag.com, but our class namespaces are read as com.sdamag.hq.

Registration of the unique parts of the namespace, with an Internet registrar, ensures that no other entity can
create the identical domain namespace. The "hq" part of the namespace does not have to be unique, and it

The Directive Space

106

cannot. Thousands of companies have hq as a private subdomain on their respective namespaces, but the hqs
of the world cannot clash because only one hq is allowed on the public Internet. Entities such as com and org
are part of a global public namespace, and the same concept is extended into software engineering.

Note Java, Delphi, and other languages provide similar strategies for module and class name clashing,
such as packages.

The dot notation will be the standard form used to illustrate namespaces throughout this book, both in various
figures and in the text. Namespaces are not represented in UML (see Chapter 9).

Note The C++ notation for a namespace reference is as follows: Myreader : : Myclass. Java also
uses dot notation.

The illustration demonstrates how it is possible that namespaces in the assemblies of various companies or
class providers might clash. You and I could create the identical namespace and classes and they would work
fine for us. But if we both happened to send our files to a third party, the namespaces would clash because we
can't reference both namespaces in our codeeven if they are in different assemblies.

For this reason, it will pay you now to come up with a namespace that you will be able to rely on. A good
suggestion borrowed from the Java world is to use your own Internet domain name (you have one right?)
because you know it's unique. You can then provide a namespace as follows:

Com.Sdamag.Myclass

It is unlikely that such a company name exists, and we know that on the Internet (the real world for us hacks)
the name is unique, thanks to DNS. Now you only have to worry about people in your own organization using
this name. And, of course, you would think twice about a name such as Microsoft.VisualBasic.MyClass.

The minimum namespace name is the name on the extreme left (the first part of the name) of the first dot, and
the class name on the extreme right (the last part of the name) of the last dot. While the root alone makes a
namespace (root and class), it's best to provide a namespace root for all classes. As long as you have these two
names and at least one dot, you have a clearly defined namespace. Referencing from the root to the class file
means your are making a fully qualified reference to your class, no matter how many levels deep.

You are free to add whatever helps you to logically group the names in the middle. The following is a legal
namespace, but it's not very helpful:

Vb7cr.NodeNotFoundException

The following example is better and typical of the namespace names that will be used in this book. Running
two levels deep, they will help you relate the code to the book and the relevant chapter.

Vb7cr.Exceptions.NodeNotFoundException

The Directive Space

107

Note Microsoft suggests using your company name, as it does. I prefer the Internet domain name. It makes a
lot more sense, and, unlike company names, there is not another one like it anywhere in the world.

Creating a namespace is simple and can be achieved in three ways. You can create the namespace for your
class using the namespace declaration placed immediately above the class name in your class file. The syntax
for declaring a namespace is as follows:

Namespace QualifiedIdentifier LineTerminator

[NamespaceMemberDeclaration+]

End Namespace LineTerminator

The following code demonstrates namespace declaration:

Namespace Vb7cr.Exceptions
 Class NodeNotFoundException
 'implementation space
 End Class
End Namespace

The other two ways to place a class into a namespace are via the command−line compiler option specifying
the namespace, when compiling from the command line, or via the Visual Studio .NET interactive
configuration options. The latter is accessible in the Property Pages dialog box for the project, in the General
folder. These two options are explained in Chapter 17 in the "Visual Basic .NET Compiler" section.

Note When you specify a namespace do not include the name of the class as part of the root, or you'll end up
with the class name repeated at the end of the namespace as shown in this example:
Vb7cr.Exceptions.NodeNotFoundException.NodeNotFoundException.

That's all there is to a namespace. As you see, it is a logical naming system you use to organize and reference
your classes. However, a namespace also implicitly encapsulates the scope of the type it harborsits visibility
outside its bounds. Types are by default Public, but they can also be exposed with the Friend modifier, which
restricts visibility to the assembly, but we'll deal with that in Chapter 9.

Note I was tempted to further expand the namespaces used in this book by adding a company name
level, such as Com.Osborne, before identifying the title and the chapter in which the code is
principally covered. However, namespace hierarchies are best kept to no more than three
levels (four is already cumbersome and five would be the absolute limit). There is no
technological limit to the number of levels, but you can overdo it and thus add unnecessary
complexity and typing for your users. More than four levels and your consumers will begin to
think your program is in the basement.

Remember, a namespace is a logical reference to a unique class name; it's not a physical file reference. The
file reference is the assembly.

Note You will see that you can declare multiple classes in a single Visual Basic source code file (*.vb, also
known as the class unit), but you can only have one set of Option directives at the top of the file.
Namespaces can, however, wrap each class in the file, thereby parking each class in its own namespace.

The Directive Space

108

The Implementation Space

The implementation space is the entire class space between the declaration space and the End Class (and End
Module) terminator. This section provides the declaration and functionality of the specific members of a
class. Later in this chapter, we'll investigate the declaration spaces, contexts, and scopes of the class members.

Classes are composed of a number of constructscalled class membersthe most fundamental of which are the
fields that store data and methods. The list of these members is introduced here. The fundamental, built−in
data types are further treated later in this chapter.

Data fields Classes can reference the values of composite data types such as what we understand as
primitive values. The declaration of these types in a class directs the runtime to allocate a memory
location where the data represented by the types is accessed. The locations for the data are known as
the fields. The fields are accessible only to the runtime, on behalf of the class or object's members,
which need access to the data. The data fields should (generally) be hidden (at the least behind
property interfaces) and should not be accessed from the outside world (for a variety of reasons,
discussed in Chapters 8 and 9).

•

Variables Fields hold variable information, hence the term variables. You can think of a variable as
the fundamental storage unit used by your application. Variables are covered in more depth later in
this chapter. Any value type or reference type can be associated with a variable.

•

Constants A class also has access to field data that is marked read−only or that cannot be changed.
Such fields are called constants in the .NET Framework and in most languages, and are also known as
finals. A constant is also a unit of storage, like variables, and is named and accessed in the same way
as variables. (Constants are covered in more depth later in this chapter.) Any value type can be
declared as a constant.

•

Methods Classes contain functions and procedures (collectively known as methods in OOP, which
means nothing more than "a way of doing something"). These methods can modify data in their
classes, interact with methods in the same class or with methods in other classes. Methods "talk" to
each other through a process in OOP known as message passing. In the .NET Framework, the
messages between objects and methods are known as calls, or method invocations. Function methods,
like all functions, return data to the callers. Methods also perform specific services that change the
state of the application. Methods are discussed exclusively in Chapter 7.

•

Properties The .NET Framework supports a construct that provides a structured and protected
interface to the field data in classes. The constructs are known as properties and can be used to both
access and change variable field data, under class control. Properties can be both static or instance
members. The interface or access to a property is via its formal signature. Properties are principally
discussed in Chapter 7.

•

Events Objects that need to notify other objects or any interested constructs that a certain action has
been performed do so with events. Event notification is a key component of OOP, and, as such, OOP
is often referred to as event−driven software development. By clicking a button, for example, the
software fires an event that notifies "subscriber" or "listener" objects that the button has been clicked.
You can then program "responses" to these events in specific event handling spaces, or event
handlers, which delegate to another object in the application to do something in response to the event,
such as opening a dialog box. A full discussion of event handling and the event−handling model,
which is built on the Delegate architecture, can be found in Chapter 14.

•

Indexers If your application creates a collection of like objects, you can index the collections as you
would the elements of arrays or other collections. Indexers are instance members. See Chapter 12 for
more information on collections.

•

Operators You can't build software without operators, which are built−in functions that perform
assignment, arithmetic operations, bit manipulation, type comparison, and so on. Chapter 5 is
dedicated to the subject and demonstrates some operator services in action.

•

 The Implementation Space

109

Constructors To instantiate objects, you need to provide a constructor that will build the object for
you and initialize its various data fields. Constructors run at object creation when you call New, and
just after the object is instantiated. They cannot be directly called or invoked once the object is
created. Constructors are not inherited, and the base class constructor can be called automatically by
the CLR. However, you can overload constructors in the derived classes, and constructors can also be
declared shared (static). Constructors are methods and are discussed in Chapters 7 and 9.

•

Destructors and Finalizers These are constructs that facilitate the tearing down and cleaning up of
an object. In unmanaged applications, the developer is responsible for explicit release of memory;
however, managed environments like the .NET Framework depend on a garbage collector. See
Chapters 2 and 7.

•

Composite or Nested types Classes can be declared within the implementation space of another
class. The "inner" or "nested" composite class can be a static class or instantiated. Composite types
are discussed in Chapters 9 and 12 through 14.

•

Let's now investigate the fundamental value types and how these are declared and used as variables or
constants. Keep in mind, however, that much of our discussion here is still from a very high level. The
chapters that follow will, where appropriate, drill down into the subject in the context of the chapter and
provide many examples. For example, how classes and object variables are referenced is discussed in depth in
Chapters 8 and 9.

Elemental Value Types

The Visual Basic .NET language defines ten fundamental data types: Boolean, Date, Byte, Char, Decimal,
Double, Integer, Long, Short, and Single (or 12 types if you count Object and String). These types are
often referred to as primitive, or built−in, data types. All these terms refer to the same thing, but "primitive" is
technically incorrect (even for Boolean), despite what the syntax says, because the .NET fundamental types
are objects. I will refer to these types as the fundamental value types because they are first and foremost value
types that descend from the root of the .NET object model, at the same time as being the elemental building
blocks of all Visual Basic .NET applications. The syntax for these types is as follows:

PrimitiveTypeName ::= NumericTypeName | Boolean | Date | Char

NumericTypeName ::= IntegralTypeName | FloatingPointTypeName | Decimal

IntegralTypeName ::= Byte | Short | Integer | Long

FloatingPointTypeName ::= Single | Double

The Date is now considered a fundamental data type in .NET and I have included it in Table 4−12, which lists
the storage size and values applicable to the elemental types that are available to Visual Basic .NET programs.
The list is in alphabetical order. It also lists the framework's fully qualified type name, because all types
derive from Object (see Chapters 7 and 10).

Table 4−12: Visual Basic .NET Fundamentals Signed Value Types

Type .NET Framework Size Value

Boolean System.Boolean 2 bytes
(16−bit)

True or False

Byte System.Byte 1 byte 0 to 255 unsigned

 Elemental Value Types

110

Char System.Char 2 bytes 0 to 65,535 unsigned

Date System.DateTime 8 bytes January 1, 1 to December 31, 9999

Decimal System.Decimal 12 bytes +/−79,228,162,514,264,337,593,950,3 35 with no
decimal point
+/−7.922816251226433759354395033 5 with 28
places to the right of the decimal point The
smallest nonzero number would be a 1 in the 28th
position to the right of the decimal point

Double System.Double 8 bytes −1.797693134862231E308 to
−4.94065645841247 for negative values to
4.94065645841247 to 1.797693134862231E308
for positive values

Integer System.Integer 4 bytes −2,147,483,648 to 2,147,483,648

Long System.Long 8 bytes −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Short System.Short 2 bytes −32,768 to 32,767

Single System.Single 4 bytes −3.402823E38 to −1.401298E−45 for negative
values to 1.401298E−45 to 3.402823E38 for
positive values

You will learn further in Chapter 8 that .NET types are separated into value types and reference types. All
value types are stack−allocated; they may also be allocated inline in a structure. Reference types, on the other
hand, are heap−allocated.

All .NET types derive from the root class Object, but the lightweight value types are able to behave and be
treated like fundamental values and not as objects. When a value type needs to act like an object, such as
when you call myInteger.ToString, a wrapper that makes the value type look like a reference object is
allocated on the heap, and the value type's value is copied into it. The process is known as boxing.

The boxing is all done in Microsoft Intermediate Language (MSIL) and you don't need to provide any
instruction to the compiler about boxing. The wrapper is marked in such a way that the system knows that it
contains a value type. To return the object reference to the stack, the type is unboxed. The boxing technique
allows any type to be treated as an object.

Computers classify and manage data according to the specifics of the declared type, the amount of memory
allocated to each type, and where that memory is located. How the value types are referenced at their memory
location by the runtime and your application is covered later in this chapter.

All computer languages provide facilities for converting from one type to another. Visual Basic .NET,
however, is a strongly typed language under the Option Strict compiler directive. However, this language can
also be weakly typed, and allows developers to provide custom type conversion handling scenarios and thus
faster development (which of course leads to more bugs).

The ten fundamental value types can also be grouped as follows:

Ordinal numbers This group is represented by Byte, Short, Integer, and Long.•
Floating and decimal−point numbers This group is represented by Single, Double, and Decimal.•
Characters This group is represented by Char and Date.•
Booleans This group has only one member, Boolean, which can represent either True or False.•

 Elemental Value Types

111

Working with Numbers

When working with mathematical expressions, you have a choice of several classes of ordinal or integer
types, the floating−point types, and the Decimal type, which is a number with a fixed decimal point. When
working with the ordinal types, you should be aware that conversion from one type to another should not
cause problems for your code. However, it is possible to encounter OverflowExceptions when converting
from a type that can hold large values to a type that can only hold smaller values.

The integer types let you safely convert from a small integer type to a larger integer type without the
possibility of OverflowExceptions and data loss. This is known as a widening conversion. When you try to
convert from a larger value type to a smaller value type, say from Long to Short, data loss is inevitable if the
number being held is large, and an OverflowException will occur that, if not handled, will shut down the
application.

An analogy that, I believe, best describes the difference between widening and narrowing conversion and
possible subsequent data loss is the cola bottle conversion problem. In one hand, you have a liter of cola and
for whatever reason you want to transfer the cola to a smaller bottle. If the bottle is full and you try to move
the cola to a 500ml bottle, the inevitable will happenthe smaller bottle will "overflow" and cola loss will
result. You can, however, handle the "overflow exception" and drink half the cola first.

Integer Types

The most commonly used of the fundamental value types is the Integer, which is a type that represents a
scalar, signed ordinal from −2,147,483,648 to 2,147,483,647. It is the most efficient and versatile type, which
aliases System.Int32, because it is optimized for use on 32−bit processor systems, requiring 4 bytes of storage
space, which at the time of this writing is the standard architecture of most of the world's servers and PCs.

While the Integer lets you work with a wide range of numbers, it sometime makes more sense to work with
the value types that might need to be run on 16−bit or smaller computers. So the language includes the Short,
a signed 16−bit ordinal type that only consumes 2 bytes, or 16 bits. The Short can thus represent numbers
ranging from −32,768 to 32,767. The Short value type aliases System.Int16.

Even smaller than Short, however, is Byte, an 8−bit (1 byte), unsigned value type that is used to store binary
data. Byte, which aliases System.Byte, has a range of values from 0 to 255. Byte value types are useful for
handling raw binary data and working with streams and files (see Chapter 15).

If you need to work with very large numbers, more than can be represented by Integer, then Long, or
Systerm.Int64, gives you the capability of working within a signed number range from
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. The Long, however, consumes 8 bytes for
storage. It is a 64−bit ordinal and will become the standard type optimized for 64−bit processors.

When working with the integer or ordinal types, you should be aware that using the smaller types "because
you can" does not necessarily mean that your applications will benefit from memory conservation. In fact, the
System.Int32 or Integer type performs better than the Short 16−bit type, because the so−called worda fixed
length of bitsof most modern computer systems is 32 bits, or 4 bytes, long.

 Working with Numbers

112

Visual Basic 6 to Visual Basic .NET

Experts with Visual Basic 6 (and earlier) experience will very quickly pick up what's new in Visual Basic
.NET by working with the language and going over the declaration examples and the code throughout this
book. However, there are a few items to chew on at this early stage, especially if you have big upgrade plans.

Note You can open a classic VB application in Visual Studio .NET. The IDE will create a new project
for you and will make all the conversion changes that it can.

The ordinal data types you were used to in Visual Basic 6 have been widened in the .NET Framework. For
example, the Visual Basic 6 Integer is 16 bits, but in the .NET Framework, it is a 32−bit−wide type. Long
has been widened to 64 bits.

Point Types

This section discusses data types that can represent large number and decimal points, floating and fixed.

First we have floating−point numbers, also known as floats or real numbers, which are represented by two
"float" value typesthe Single and the Double (aliases of System.Single and System.Double, respectively).
Floats are so named because they are represented in the computer as a sequence of digits and a "floating"
decimal point, which changes position to represent various fractional values. For example, the number 110
can be represented as 1.10 or 0.110 by moving the position of the decimal point in the float value type.

The Single, which stands for single−precision floating point, is a value type that represents IEEE−754 (see the
IEEE−754 sidebar in Chapter 5) floating−point number definitions that are 32−bit, 4−byte, values. The Single
value can range from −3.402823E+38 to −1.401298E−45 for negative values and from 1.401298E−45 to
3.402823E+38 for positive values. The Single is safely converted to wider types of Double floats and the
Decimal value type.

Double value types are allocated 64 bits to store their values and range in value from
−1.79769313486231E+308 to −4.94065645841247E−324 for negative values and from
4.94065645841247E−324 to 1.79769313486231E+308 for positive values. Double values can be safely
converted to values of the Decimal value type.

Single is sufficient for most operations. However, new computers are coming out with processors optimized
for 64−bit floating−point operations and to support complex numeric algorithms.

The Decimal type stores a number in a wide 128−bit signed integer that ranges from a negative number of
−79,228,162,514,264,337,593,543,950,335 to a positive number of 79,228,162,514,264,337,593,543,950,335,
specifying no decimal places. While the Decimal represents a huge integral data type, it is included in this
section because it can represent very large numbers that include a decimal point, albeit fixed. It can be used
for algorithms that cannot afford precision loss caused by rounding. This type is fit for complex numeric
processing, such as scientific calculations and financial applications.

You can declare a variable of Decimal as a signed, fixed−point value consisting of an integral part, or you can
optionally include a fractional part. The integral and fractional parts consist of a series of digits that range
from 0 to 9, separated by the decimal point symbol.

The binary representation of an instance of Decimal consists of a 1−bit sign, a 96−bit integer number, and a
scaling factor used to divide the 96−bit integer and specify what portion of it is a decimal fraction. The scaling

 Visual Basic 6 to Visual Basic .NET

113

factor is implicitly the number 10, raised to an exponent ranging from 0 to 28 to specify the number of digits
to place to the right of the point.

With a scale of 0in other words, no decimal placesthe largest possible value is
79,228,162,514,264,337,593,543,950,335, while at 28 decimal places the value is
7.9228162514264337593543950335. The smallest nonzero value is 0.0000000000000000000000000001
(+/−1E−28). Chapter 7 demonstrates method construction and provides specific examples of using the ordinal
and point types in various arithmetic algorithms.

Characters

The .NET Framework's value type for storing characters is the Char. If you are a Visual Basic 6 programmer,
then the Char will be a new type. But if you are from the world of C/C++, you might be tempted to think the
.NET Char is the same as what you are used toan 8−bit−wide integer data type. However, the .NET Char
represents Unicode character values ranging from hexadecimal 0x0000 to 0xFFFF, or 0 through 65,356 (see
Chapter 5).

The .NET Char is actually the same type as the Java Char, which also stores Unicode in 16 bits. The .NET
hexadecimal values fit into the 16−bit field, which can give you the full range of 0 to 65,536 Unicode
characters, a far cry from the ASCII range of 0 to 255.

Application of Char in algorithms and for international applications is covered in Chapter 17.

Booleans

The Boolean value type can only be one of two values, True or False; however, the underlying storage
structure of the Boolean is 16 bits, or 2 bytes.

If you examine the underlying numerical value of the Boolean, you see that False is 0 and True is 1 for all
.NET languages except Visual Basic. When you convert to or from these types to Integers, that's what you
will get, for example, from a C# class.

For reasons that are not clearly known to me, Microsoft long ago decided that the value of True in Visual
Basic 6 and earlier was equal to 1. The CLR, however, does not see it that way. To the CLR, True is 1 and
False is 0 along with every other modern language in existence, and if you pass True to, say, C#, you'll see
that True is passed through as 1.

During Beta 1 of Visual Basic .NET, Microsoft changed the value of True to be the same as all the other
CLS−compliant languagesthat is, "1." However, by Beta 2, it was changed back to 1 because half a million
VB gurus threatened to burn down Redmond, WA (there's more legacy VB code than pollen in this world).
You can, however, avoid a lot of confusion by just writing code with the reserved word True and avoid code
that tests the numerical valuean old−fashioned idea that has, in any event, long outlived its usefulness in
modern software development (see "Avoid Magic Numbers" later in this chapter and the section on
Enumerations in Chapter 8).

Code examples for this value type can be found throughout the book; however, Boolean is the prime value
type used in the logical operator expressions discussed in the next chapter on operators, and Chapter 6 with
conditional statements such as If and While.

 Characters

114

Literal Notation

A literal is a textual "decorator" that represents a particular value type and it forces the compiler to treat the
object as that particular type. Literals perform a similar function to the Type Characters discussed earlier in
this chapter. Literal decorators are available for Boolean, Integer, Double, String, Char, and Date. Nothing
is a special literal (albeit it does not provide a decorator symbol); it is not considered to have a type and is
convertible to all types in the type system. When converted to a particular type, it is the equivalent of the
default value of that type. The following syntax describes
literal usage:

Literal ::= BooleanLiteral | NumericLiteral | StringLiteral | CharacterLiteral |
DateLiteral | Nothing

NumericLiteral ::= IntegerLiteral | FloatingPointLiteral

Boolean

BooleanLiteral ::= True | False

Integer

IntegerLiteral ::= IntegralLiteralValue [IntegralTypeCharacter]

IntegralLiteralValue ::= IntLiteral | HexLiteral | OctalLiteral

IntegralTypeCharacter ::=
ShortCharacter |
IntegerCharacter |
LongCharacter |
IntegerTypeCharacter |
LongTypeCharacter

ShortCharacter ::= S

IntegerCharacter ::= I

LongCharacter ::= L

IntLiteral ::= Digit+

HexLiteral ::= & H HexDigit+

OctalLiteral ::= & O OctalDigit+

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

HexDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F

OctalDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

 Literal Notation

115

Floating−Point

FloatingPointLiteral ::=
FloatingPointLiteralValue [FloatingPointTypeCharacter] |
IntLiteral FloatingPointTypeCharacter

FloatingPointTypeCharacter ::=
SingleCharacter |
DoubleCharacter |
DecimalCharacter |
SingleTypeCharacter |
DoubleTypeCharacter |
DecimalTypeCharacter

SingleCharacter ::= F

DoubleCharacter ::= R

DecimalCharacter ::= D

FloatingPointLiteralValue ::=
IntLiteral . IntLiteral [Exponent] |
. IntLiteral [Exponent] |
IntLiteral Exponent

Exponent ::= E [Sign] IntLiteral

Sign ::= + | −

String Literals

StringLiteral ::= " [StringCharacter+] "

StringCharacter ::= < Character except for " > | ""

Character Literals

CharacterLiteral ::= " StringCharacter " C

Date Literals

DateLiteral ::= # [Whitespace+] [DateValue] [Whitespace+] [TimeValue]
[Whitespace+] #

DateValue ::= MonthValue DateSeparator DayValue DateSeparator YearValue

DateSeparator ::= / | −

TimeValue ::= HourValue [: MinuteValue] [: SecondValue] [Whitespace+] [AMPM]

MonthValue ::= IntLiteral

 Literal Notation

116

DayValue ::= IntLiteral

YearValue ::= IntLiteral

HourValue ::= IntLiteral

MinuteValue ::= IntLiteral

SecondValue ::= IntLiteral

AMPM ::= AM | PM

If you are writing code with Option Strict set to Off you do not need to declare the type of the literal value in
your variable or constant declaration. The following code is an example of an implicit initialization of the
variable's value to the literal value of 4 minus the declaration of the type:

Public myValue = 4

The problem with the preceding line of code, however, is that the compiler has no guidance to what "type" of
value it is dealing with. In this case, it could be any of the ordinal or integer types, and the compiler will make
it the default of Integer.

You can override the default with a literal type identifier that either encloses the value or is appended to it. For
example, the default value type of myValue is Integer but we can override this by appending the literal
notation character for the Short value type to the value as follows:

Public myValue = 4S

What you gain out of coding like this is speed, but you lose readability and a measure of self−documentation
that comes with setting Option Strict to On.

Some experts who build classes their consumers are very unlikely to fiddle with believe that coding with
literal values has its uses. For example, if you were to create a class that provides a large amount of constant
values for a particular application, the following constant literal declaration would be acceptable:

Public Const BeginDate = #01/01/01# 'Date
Public Const EndDate = #12/31/99# 'Date
Public Const BeginTime = #11:59:59 AM# 'Time
Public Const FirstItem = 1% 'Integer
Public Const LastItem = 134443943789503723941D 'Decimal

The last item in the preceding code is worth a note. Even with Option Strict set to On, the value causes an
overflow error because the compiler thinks the value is a Long. You will have to force the value to be taken as
a Decimal, which can hold such a large number. The same applies with Integer division. Dividing by zero
normally causes an OverflowException because the compiler defaults to Integer division. A
DivideByZeroException would only arise if a Decimal were divided by zero (10D / 0).

Table 4−13 lists the value types that can take literal decorators, the respective literal type identifier, and the
literal type character.

Some literals, however, require their targets to be quoted, such as the Char literal (C), as shown in Table
14−13. Boolean and Byte cannot take literal identifiers.

 Literal Notation

117

Table 4−13: Value Type Literal Identifiers and their Respective Literal Type Character

Data Type Identifier or Enclosures Literal and/or Usage

Char "character" C, "A"C

Date # #01/01/01#

Decimal @ D, 234234324@

Double # R, 400.55#

Integer % I, 300I, 300%, or nothing

Long & L

Short (none) S, 4S

Single ! F, 4.1S

String (Character) "" "there you are"

Type Conversion

Types can be converted from one type to another. This chapter, however, deals specifically with the
conversion of one base value type to another. For example, you can convert from a Short to an Integer, from
an Integer to a Long, and so on. The language provides several mechanisms for cast and conversion
procedures.

When you convert from a smaller value type to a type that can represent more bytes of data, the old value is
placed in a wider memory space (for example, 32 bits/4 bytes to 64 bits/8 bytes). This is called a widening
conversion. The widening process does not generally cause data loss, as demonstrated in the earlier cola bottle
analogy.

Converting from a larger value type to a type that has a smaller data structure is known as a narrowing
conversion. The narrowing process might cause data loss and it might fail outright and result in an exception.
After all, the cola bottle about which we spoke earlier might be half full.

Depending on the conversion, the code might automatically make the conversion for you without any trouble
or requiring an explicit conversion function. This is known as an implicit conversion. A good example of such
a conversion is declaring a Decimal that can easily fit the Long value type. If no decimal point is used with
the number, the compiler will automatically convert to the Long because it uses fewer resources. The
following code illustrates a common form of implicit or automatic conversion:

Dim myNumber As Integer = 10
Console.WriteLine(myNumber)

Here the variable myNumber of value type Integer is declared and represents the value 10. The Console
class can write text to the command line using the WriteLine method and, in this case, implicitly converts the
Integer's declare value to a String. This implicit conversion takes place in the method, and you do not need to
explicitly provide a cast function to perform the conversion to show the text. In other words, the following
code is not necessary:

Dim myNumber As Integer = 10
Console.WriteLine(Convert.ToString(myNumber))

Another example:

Dim myNumber As Short = 10

 Type Conversion

118

Dim ourNumber As Integer = myNumber

Here the declare is for a Short of value 10. The variable ourNumber is assigned to myNumber without any
problems even though they are different types.

Setting Option Strict to On, however, will force you to use a cast function, even if a safe conversion can be
made. This code, for example, will compile with Option Strict Off:

Dim myNumber As Integer = 10
Dim yourNumber As String = "34.54"
Dim ourNumber As Double = yourNumber / myNumber

But Option Strict On will raise an objection (refer to the section "Compiler Option Directives" earlier in this
chapter) and will tell you that "Option Strict On disallows implicit conversions from 'String' to 'Double'." You
will have to change the code to read as follows:

Dim yourNumber As Single = 34.54

or convert the value as follows:

Dim ourNumber As Single = Convert.ToSingle(yourNumber) / myNumber

Table 4−14 lists the safe conversions that can automatically or implicitly take place between the elemental
value types, from smaller to larger (or narrow to wider), including point types and unsigned types. These are
all widening conversions.

Table 4−14: Safe Conversion and Target Value Types

From To
[*]

Byte Byte, Short, Integer, Long, Single, Double, Decimal, Object

Short Short, Integer, Long, Single, Double, Decimal, Object

Char Char, Object

Integer Integer, Long, Single, Double, Decimal, Object

Long Long, Single, Double, Decimal, Object

Single Single, Double, Object

Double Double, Decimal, Object

Decimal Decimal, Object
[*] Unsigned and non−CLS−compliant value types apply.
Although automatic conversion can speed up your development, it is not always possible. Sometimes you will
need to perform a narrowing conversion, or need to convert from an ordinal value type to a Char, String, or
Boolean. To convert to and from various types, Visual Basic .NET provides you with a number of explicit
cast functions, such as CBool and CChar.

Table 4−15 lists the cast functions that can be accessed from the Microsoft.VisualBasic namespace, which
implements the classic VB conversion functions. The table also lists the modern framework conversion
methods, which are accessed via the Conversion class. The syntax is as follows:

CastExpression ::=
CType (Expression , TypeName) |

 Type Conversion

119

CastTarget (Expression)

 CastTarget ::=
CBool | CByte | CChar | CDate | CDec | CDbl |
CInt | CLng | CObj | CShort | CSng | CStr

Table 4−15: Classic VB Conversion Functions and Framework Conversion Methods

Classic Function Conversion Class Return Type

CBool ToBoolean Boolean

CByte ToByte Byte

CChar ToChar Char

CDate ToDateTime DateTime

CDbl ToDouble Double

CDec ToDecimal Decimal

CInt ToInteger Integer

CLng ToLong Long

CObj ToObject Object

CShort ToShort Short

CSng ToSingle Single

CStr ToString String

CType ChangeType Object
Here are more examples of code using the cast functions and the conversion methods:

Dim myNumber As Integer = 0
Dim booHoo As Boolean = CBool(myNumber)
Console.WriteLine(booHoo)

"False" is written to the console in the above example (by the way, the default value of Integer is 0).

Depending on your application's target platform, it might be safer to use the Convert class's methods instead
of the classic Visual Basic cast functions (or any other cast functions wrapped for .NET usage). Your code
will also be more palatable to other .NET languages, like C#. On the other hand, there might be a tradeoff in
performance, because the call to one of Convert's methods is not necessarily faster than the classic cast
function.

In addition to the Convert class methods listed in Table 4−16 are a number of additional framework
type−handling methods that are also accessible from the Convert class, such as ChangeType and ISDBNull.

Working with Variables and Constants

In the average life of an application, it is not uncommon, for example, to find a similar expression to the
following in an application:

Private discount As Integer
Private total, amount As Double
'. . .
discount = 10

 Working with Variables and Constants

120

amount = 56.85

'Compute the discount percent
total = (amount * discount) / 100

This little "algorithm" computes two types of numbersIntegers and Doubles. As you know, an Integer is a
data type that represents a whole number, an ordinal.A Double, on the other hand, represents fractions, a
double−precision floating−point value, which in this example is holding the value 56.85. But discount and
total have something in common. They are both variables.

The variable reserves a place in memory where its value is placed and where it can be accessed by the
processor. In the preceding highly scientific example, the variable allocates 4 bytes of memory for the Integer
discount, which may be any number between −2,147,483,648 and 2,147,483,648 and just happens to be 10.
The variables amount and total allocate 8 bytes each for a Double, which can be any number or fractional in
a wide range of possibilities. The syntax for variable declaration is as follows:

VariableMemberDeclaration ::=
[Attributes] [VariableModifier+] [Dim] VariableDeclarators LineTerminator

VariableModifier ::= AccessModifiers | Shadows | Shared | ReadOnly | WithEvents

VariableDeclarators ::=
VariableDeclarator |
VariableDeclarators , VariableDeclarator

VariableDeclarator ::=
VariableIdentifiers [As TypeName] |
VariableIdentifier
[As [New] TypeName [(ArgumentList)]] [= VariableInitializer]

VariableIdentifiers ::=
VariableIdentifier |
VariableIdentifiers , VariableIdentifier

VariableIdentifier ::= Identifier [ArrayNameModifier]

Variable Initializers

VariableInitializer ::= RegularInitializer | ArrayElementInitializer

Regular Initializers

RegularInitializer ::= Expression

Without such a means of classifying, naming, and locating various types and their values, we would not be
able to do much more with our computers besides 1 + 1 = 2. Remember, computers store these values in Base
2, but in order for us to work with them, we have to dress them up in a variety of wrapping paper, with
specific storage spaces and treatment instructions. Variable values can change at any time during execution,
unless they are explicitly modified as read−only.

Constants are like variables and are declared in similar fashion. But, as the name implies, their values remain

 Working with Variables and Constants

121

constant from the time they are initialized to the time they are removed from memory when the application or
algorithm terminates. You do not have to declare constants read−only, which makes your code easier to read.
The syntax for constant declaration is as follows:

ConstantMemberDeclaration ::=
[Attributes] [ConstantModifier+] Const Identifier [As TypeName] =
ConstantExpression LineTerminator

ConstantModifier ::= AccessModifiers | Shadows

Note Both variable and constant fields are private by default (see the section, "Keeping Data
Private").

The following code demonstrates the declaration of a constant and the usage for such a declaration:

Const num As Integer = 100
Const lightSpeed As Long = 186355 'lightspeed is always constant
Dim feb As Integer = 28 'The number of days in February is not always 28
Const September As Integer = 30 'but there should always be 30 in September

Public Sub IncrNum()
 num = num + 1 'cannot happen because num is a constant
End Sub

Public Sub FlightTime()
 warpTime = warp * lightSpeed
End Sub

The first example may be a bad choice for a constant because the value of num needs to be changed. The call
to the method IncrNum trashes the application. The second choice, lightSpeed, is an excellent choice for a
constant because the speed of light is itself a constant that cannot change. Declaring feb as a variable is a good
idea because the number of days in February changes from time to time. The number of days in September, on
the other hand, is constantly 30. Constants are read−only values and can be used in place of literal values.

A variable is defined in your code with a name, the identifier, the data type it represents, and a value. Here's
an example of the minimum declaration of a variable in Visual Basic .NET:

Dim myNumber = 1

The preceding line of code will compile and work fine as long as declaration and semantics checking are
turned off, by setting both Option Explicit and Option Strict to Off. The reason it compiles is that the
compiler can justify, by the initial value of 1, that the variable myNumber refers to an object "an Integer"
with a value of 1. The compiler then keeps its fingers crossed and hopes for the best. In this simple case,
nothing untoward happens and the code processes fine. However, this is not a very safe way of writing code,
nor is it practical (see the "Compiler Option Directives" section earlier in this chapter, and the sections on late
binding in Chapters 9 and 14). Switch both compiler options to On and you will notice the errors reported and
that the compiler will continue only with the strongest of objections.

The code can be fixed with the following changes:

Dim myNumber As Integer = 1

This line of code adds a slew of characters to the declaration but it now represents a safe and fully declared

 Working with Variables and Constants

122

variable called myNumber, which is declared "As" an Integer, the most widely used of the built−in data
types. The formal syntax is as follows:

[Attributes] [VariableModifier+] [Dim] VariableDeclarators LineTerminator

Notice in the middle of the syntax the word Dim. Dim is the fundamental keyword for declaring a variable of
a type, assigning it a value, and directing the compiler to allocate storage space for it. While Dim can be used
almost everywhere in your code, you must further define the access level and thus "visibility" of the variable,
or anything will be able to target the field dataan undesirable situation. Dim, however, is not used to declare
constants, either within a method or anywhere else.

Also important to notice in the preceding declaration of myNumber is that the value is immediately assigned.
This is known as dynamic assignment, which will be discussed further shortly. This immediate assignment or
initialization, so to speak, is preferred over the longer syntax, which is as follows:

Dim myNumber As Integer
myNumber = 1

In addition, variable access varies according to its declaration space, where it is declared, and the context in
which it is declared. In other words, declaring a variable at the class or module level is very different from
declaring a variable inside a method blockwithin its declaration space. Also, the Dim keyword is
automatically removed from class−level variables declared with the access modifiers. However, Dim is
required for any declarations inside method blocks.

The following access modifiers can be applied to variables of the base data types:

Public Variables declared as Public are visible from everywhere and thus become globally
accessible even outside of the class in which they are declared. You cannot declare a Public variable
inside the method declaration space and implementation.

•

Protected Variables declared as Protected can only be accessed from within the class in which they
are declared and from derived classes. You cannot declare a Protected variable inside the method
declaration space and implementation.

•

Friend Variables declared as Friend can be accessed from the outside world but only from other
classes of the assembly, which are classes that make up the application. You cannot declare a Friend
variable inside the method declaration space and implementation.

•

Protected Friend Variables declared as Protected Friend are afforded the same protection as
Friend access. The difference, however, is that you can also access these variables from derived
classes. You cannot declare a Protected Friend variable inside the method declaration space and
implementation.

•

Private Variables declared Private are only accessible within their declaration space. You cannot
declare a Private variable inside the method declaration space and implementation because the
variable is implicitly private.

•

Static Variables declared Static can be used in the implementation of methods and maintain their
values even after the method has been processed. Static variables cannot be declared at the class level
and cannot take Shared or Shadows as access modifiers.

•

Shared Variables modified with Shared are technically global variables and can thus be accessed
from any class or file. You cannot declare a Shared variable inside the method declaration space and
implementation.

•

Shadows Variables inherited from a base class can be identically redeclared in the derived class with
the Shadows modifier, which does not affect the accessibility provided in the base declaration. In
other words, if a base variable is declared Private, it remains Private in the shadowed declaration.

•

 Working with Variables and Constants

123

You cannot declare a variable modified with Shadows inside the method declaration space and
implementation.
ReadOnly Variables declared as ReadOnly cannot be changed by any local or derived process. The
values these variables hold are thus constant. However, these variables can be declared with any
access modifier, such as Private, and can be additionally modified with both the Shared and
Shadows facility. You cannot declare a ReadOnly variable inside the method declaration space and
implementation.

Note See also Chapters 8 and 9 for additional specific variable declaration requirements.

•

The scope of the preceding access and usage modifiers seems to be blurry at first glance, but they do have
specific application.

Note The use of the keyword Static is rather confusing for variables that survive the termination of the
methods in which they are declared. For the most part, the term universally refers to shared global data
and methods, the equivalent of which is Shared in Visual Basic. See the discussion of the C#
BitShifters class in Chapter 5 for an example of so−called static methods. The words "static" and
"shared" are frequently interchanged in general discussion throughout this book.

Constants are similarly declared with access and implementation modifiers. The following code declares a
public constant:

Public Const maxWarp As Integer = 9

Variable and Constant Declaration Shorthand

The declarations for both constants and variables can take the dynamic initialization shortcut, as demonstrated
earlier for variables. Rather than declaring or initializing the variable or constants on the second line, like this:

Const hisNumber As Integer
hisNumber = 1

you can immediately assign the value as demonstrated in the following code:

Const hisNumber As Integer = 10
Const herNumber As Integer = 5
Const aCoupleAs Integer = hisNumber / herNumber

You can use any expression that will yield a legal value to be assigned to the variable or constant. In the
preceding code, aCouple is assigned a value computed from the product of the two earlier constants. The
following code, assigning the result of some fancy function, is also perfectly legal for a variable or constant
declarationand assignment:

Const familyNumber As Integer = Complex(Sqrt(aCouple.AtWork))

Another form of declaration shorthand lets you declarebut not initializemore than one variable (declarator) in
the same expression. The following code declares three variables, and each variable is assigned the default of
0 by the CLR:

Dim hisNumber, herNumber, itsNumber As Integer

Both of the following lines of code, however, are not legal:

 Variable and Constant Declaration Shorthand

124

Dim hisNumber, herNumber, itsNumber As Integer = 1
Const hisNumber, herNumber, itsNumber As Integer

In the preceding incorrect examples, the first line fails because you are not allowed to assign values to
multiple declarators in the same declaration; each variable declaration must be separately declared and
initialized. The second example fails because you are not allowed to declare multiple constants in the same
declaration expression. The correct style for each declaration example is as follows:

Dim hisNumber As Integer = 1, herNumber As Integer = 2, myNumber As . . .
Const hisNumber As Integer = 1, herNumber As Integer = 2, itsNumber As . . .

Default Initialization

The Visual Basic .NET compiler can also provide default values for the various value types. These values are
listed in Table 4−16 and are assigned if the declarations omit any initial value assignment in the declaration of
a variable or constant.

Table 4−16: Default Initialization Values for Value Types

Value Type Default Value

Numbers (Integers, Bytes, Longs, Decimals and so on)0

Boolean False

Char Character 0 or hex 0x0000

Date #01/01/0001 12:00:00AM#

String
[*]

Null
[*] String is included here because it is used a lot as a primitive type. However, it is not in the strictest sense a
value type but rather an immutable reference type (see Chapter 15).
Null

The Null constant is no longer supported in Visual Basic .NET. If you need to represent a null value, such as a
null database field, use the System.DBNull class and its Value field.

The following code generates a type mismatch error:

Public Shadows Sub ShadowMethod(ByVal myArg As Integer)
 myArg = System.DBNull.Value
End Sub

The compiler will tell you that you cannot convert an Integer value to DBNull.

Many Visual Basic functions also no longer return Null, as was the case with CurDir, LCase, LTrim, Left,
Right, and so on. In cases where it is possible to receive the DBNull.Value field, like null database records,
you should test null with the IsDBNull function, as follows:

If (Microsoft.VisualBasic.IsDBNull(jField)) Then
'Do what's necessary
End If

Occasionally, it is legitimate to work with a field, such as a database field, that does not represent a known
value. Many databases understand an empty field, nothing but white space, as a value. A good example is the

 Default Initialization

125

second address line in a table, which is often left "blank."

The DBNull class differentiates between a null value (a null object) and an uninitialized value (represented by
DBNull and its Value field, which is a shared public value). When a table contains records with uninitialized
fields, these fields will be assigned the DBNull value. (This class is also used in COM−.NET interoperation to
distinguish between a VT_NULL variant, which is associated with a null object, and a VT_EMPTY variant,
which is associated with the DBNull.Value instance. See Chapter 14, which discusses COM adaptation.)

You cannot equate DBNull with anything. It is also a singleton class, which means only one instance of this
class can exist at any given time in your application. That sole instance represents the DBNull.Value.
Data−intensive applications accessing SQL databases must use the System.Data.SqlTypes classes, which
have inherent support for null values.

If you need to reference a Null constant and Nothing is not useful to you, you can create your own Null
object as described in the discussion of the Null pattern in Chapter 13.

Keeping Data Private

Variables and constants are declared at the class level or scope for two main reasons. The first and most
frequently used reason is to allow the variable or constant fields to be accessed by all members of the class,
and composite classes. Access to the field is either direct from the class methods or via class properties. The
data is thus global to the class.

The second reason a field is scoped to the class level is to allow it to be accessed externally. To make it
available or visible to the outside world, the field must be declared Public, Friend, or Protected Friend
(Protected Friend makes the field visible to derived classes). An example of such a public field is the
read−only Value field of the System.DBNull class. The value lives inside a singleton class and thus the "null"
value is available to anyone that needs it.

You may have other reasons to make a class's field public, but you should stick to the practice of keeping
fields, and thus the data, private. The reason for keeping data fields hidden, and thus off limits, is that it makes
your code easier to maintainmaking it more robust and less prone to errors (which also is a reason why
variable lifetimes should be kept as short as possible).

Note Research has shown that hidden data can improve code robustness by a factor of four. Other benefits of
hidden data include security and reentrance.

When data fields are kept hidden, only a small number of changes need to be made in the class when the field
is changed. Changes to the fields will no doubt affect the methods of the class, but they should only affect the
methods of the class that encapsulates them, not any consumers of the class (besides, the less you hard−code
to global fields, the easier your software will be to maintain; see Chapter 7).

If you need to expose values of an object to the consumers of the object, you can do so via properties (see
Chapters 7 and 9). The property acts as a "gateway" that conveys data to and from the field and the external
environment of the class. Properties are methods, so the interface and implementation of the property allow
later improvements without having to change the way a consumer accesses the data.

The principle of keeping fields private or hidden is one of the central tenets in both structured and
object−oriented engineering. It extends the principle of black box functions in the structured design age. In
object−oriented engineering, information hiding is known as encapsulation. Encapsulation refers to the
containment and hiding of not only data fields, but all class members, so we will return to the subject again in

 Keeping Data Private

126

later chapters, particularly Chapter 7 on methods and Chapter 9 on classes and objects.

Encapsulation makes the classes easy to version because a field and a referencing property cannot be changed
to a property while maintaining binary compatibility. The following code example illustrates the correct use of
private or hidden instance fields with Get and Set property accessors:

Public Structure Trajectory

 Private xCoord As Integer
 Private yCoord As Integer

 Public Sub New(ByVal xArg As Integer, ByVal yArg As Integer)
 Me.xCoord = xArg
 Me.yCoord = yArg
 End Sub

 Public Property PositionX() As Integer
 Get
 Return xCoord
 End Get
 Set(ByVal Value As Integer)
 xCoord = Value
 End Set
 End Property

 Public Property PositionY() As Integer
 Get
 Return yCoord
 End Get
 Set(ByVal Value As Integer)
 yCoord = Value
 End Set
 End Property
End Structure

And the above structure can be accessed as follows:

Dim spaceT As New Trajectory()
Public Sub Location(ByVal aArg As Integer, ByVal bArg As Integer)
 spaceT.PositionX = aArg
 spaceT.PositionY = bArg
End Sub

It is good practice to expose a field to a derived class by using a Protected property that returns the value of
the field. This is illustrated in the following code example:

Public Class MyBaseControl
 Private visible As Boolean
 Protected ReadOnly Property IsVisible() As Boolean
 Get
 Return visible
 End Get
 End Property
End Class

Use public static read−only fields or constants for object instances that expose data for a predefined role. In
most cases, however, you should use the facilities of structures or enumerations as discussed in Chapter 8. See
also the discussion on using Pascal case in the "Visual Basic .NET Mini Style Guide" section earlier in this

 Keeping Data Private

127

chapter.

Scope

Variables and constants can be written in any block in a class, the class itself, composite classes, or in any
method. When a variable (and that means constants, as well, from here forward unless noted otherwise) is
declared in the class bodynot within a method bodyit is typically accessible to all other class methods without
qualification or additional reference. We call this unfettered access the "scope" within which a variable can be
accessed. Viewed another way, we can say that generally a variable is not accessible outside the scope in
which it is declared.

The scope of a variable can range from the deepest or narrowest level, in a block of code such as an IfThen
block (see Chapter 6) to the widest level in the open declaration space of the outermost class (see Chapter 9).

Variables declared at the class level and modified as Public are "global" variables and this implies public
access to the variable from outside the class, even a considerable distance away. "Class variable" is probably a
better choice to describe a so−called "global" variable that is not public. However, a variable that is declared
within the confines of a method or a block is known as a "local variable." For example, the following blocks
of code encapsulate the variable in the narrowest scopes, methods, and blocks:

Sub CheckScope
Dim narrow As Integer = 2 'narrow
 If narrow <= 3 Then

Dim moreNarrow As Integer = 1 'narrower
 End If
End Sub

So three key variable scopes exist in a .NET class: the scope that is defined by a class, the scope defined by a
method, and the scope defined by a nested block of code within a method (such as the IfThen construct
shown in the preceding example). Also, variables declared in composite or inner classes are not accessible
from the outer or container classes.

Composite class methods can also access the variables but need to qualify the accessthrough inheritance or
variable reference. This is demonstrated in the following code as in the following code two "out−of−scope"
code segments:

 'Example 1
Class Class1

Dim myVar As Integer = 4
 Class Class4 : Inherits Class1
 Sub Sub4()

Debug.WriteLine(myVar) 'myVar is an inherited member
 End Sub
 End Class
End Class

'Example 2
Class Class1

Dim myVar As Integer = 4
 Class Class4
 Sub Sub4()
 Dim C1 As Class1

Debug.WriteLine(C1.myVar) 'myVar is a member of reference C1
 End Sub
 End Class

 Scope

128

End Class

'Example 3
Class Class1

Shared myVar As Integer = 4
 Class Class4
 Sub Sub4()

Debug.WriteLine(myVar) 'myVar sees the shared variable of Class1
 End Sub
 End Class
End Class

'Example 4
Class Class1

Dim myVar As Integer = 4
 Class Class4

Shadows myVar As Integer
 Sub Sub4()

 Debug.WriteLine(myVar) 'myVar sees the shadow variable of Class1
 End Sub
 End Class
End Class

In the first example, the inner class, nested several classes deep, "sees" the variable myVar because the
variable is inherited from Class1. In Example 2, myVar is seen through the reference variable to Class1,
which is C1. In Example 3, myVar is seen by virtue of the visibility Shared modifier. And in Example 4,
myVar is redeclared using the Shadows keyword.

The hierarchy of access is from the inner classes to the outer classes. In other words, the innermost class
members have the potential to "see" all the variables of each encapsulating class, but the outer classes cannot
see the variables of the inner classes.

If you need to work with a variable from an outer class at the class level of a composite class, then you need to
redeclare the variables in the composite class with the Shadows keyword.

Variable and Constant Lifetimes

The scope of variables and constants, previously discussed, also provides the "lifetime" that the variable has
after its declaration. The variable is created when its scope is entered, and this can happen in several ways.
When a class is referenced, its scope is entered and this serves to create the variable. For example, in this
code, Dim ClassOf69 As New MyClass serves to begin the lifetime for the variables declared within the
class, at the class level. The lifetime ends when the object is disposed of. The same lifetime policy applies to
both static classes as well as instances of a classan object's lifetime.

Variables local to methods begin their lives when the method is activated or called, and end their lives when
the method code completes. Each time that the method or class is referenced, the variable is reassigned its
default or initialization value.

Also, while a variable can be declared anywhere in the class or method, the code that uses the method must
proceed the declaration. The compiler will pick up the following code as an error that cannot be tolerated:

Debug.WriteLine(myValue)
Dim myValue As Integer = 5

 Variable and Constant Lifetimes

129

The first line cannot possibly write the value of myValue to the output window because the variable has not
yet been declared. It's not difficult to remember this rule; just think of the classic chicken−and−egg or
horse−and−cart clichés. In general, all variables and constants at the class level should be declared at the top
of the class, and all variables and constants in methods should be declared at the top of the method, just after
the signature. It is also important to remember that parameter declarations are scoped to the method and thus
their scope is no different to variables or constants declared within the method body (see Chapter 7).

Span

The distance between a declare in a class or a method and the code that references the data is often referred to
as span. In the following example, the space between the lastName declare and the line of code that accesses
it is three lines. Thus, we can say that the span is three lines.

Dim lastName As String
Dim firstName As String
Dim birthDate As Date
GetName(lastName)

You can compute the average span in a class to test for its readability. But why should you be concerned
about span? The short answer is that it makes it easier to construct code and to read the code you construct.
Declares that are not used until much later in a method, or class, force you to keep referring back to areas
higher up in the unit to refer to the data in the field.

Note You can declare variables without providing the initial value, because the compiler will always provide
the default initialization value. For example, if you declare an Integer without an initial value, the
compiler will automatically assign it 0.

Keeping Lifetimes Short

Keeping lifetimes short also helps to make code less buggy and easier to maintain. Variables that are "live"
from the moment a class is instantiated to its death introduce more opportunities for bugs. The live variables
also make the code harder to maintain, even if the data is encapsulated in private fields. You are forced to
consider all class members and code as possibly misusing a variable, as opposed to localizing the access to
one line, a few lines away from where it first declared, or inside the methods that use them (see Chapter 7 for
more on method parameter lists, passing arguments and so on).

This is, however, a somewhat controversial subject, because one school of thought says that declaring class
variables and constants is better than having to pass the data though methods like a game of rollerball. I
personally prefer to keep the class−level variables to a minimum, and instead pass arguments to method
fields. The fields are more hidden, more secure, and easier to maintain, and the code is easier to read. In short,
this keeps the problem of "hard coding" to a minimum.

Nevertheless, if data needs to be live for the duration the instance is live, then instance data is perfectly
reasonable. However, a good rule is to use read−only fields instead of properties where the value is a global
constant. This pattern is illustrated in the following code example:

Public Structure Int32
 Public Const MaxValue As Integer = 2147483647
 Public Const MinValue As Integer = −2147483648
End Structure

Variable and Constant Lifetimes

130

Avoid Magic Numbers

Magic numbers are the literal numbers that appear out of nowhere in the middle of your code. Here is an
example:

Dim alarm() As Integer = {}
Dim intI As Integer
 For intI = 0 To 40
 alarm(alarmValue) = 190
 Next intI

The number 40 here is a magic number. Magic numbers should be avoided for several reasons:

Code is harder to read In the preceding example, it's not immediately apparent why 40 is the limit.•
Changes are hard to make and can break code more easily In the preceding example, the array
length (40) can't be changed without changing the ForNext loop. The value 190 is also a magic
number that can cause errors.

•

Code is less reliable Magic numbers like this force you to make changes in every method that relies
on the magic number. By using a named constant that all interested items can refer to, you only need
to make the changes in one place. The preceding code eliminates the magic number syndrome by
using the UBound function, as follows:

Dim alarm() As Integer = {}
For intI = 0 To UBound(alarm)
 alarm(alarmValue) = Alarms.HighAlert
Next intI

•

In this example, the expression 0 To UBound(alarm) eliminates the magic number, because code depends on
the UBound of the array (its upper boundary) rather than the magic number, which becomes useless if the
array size changes. See the section "Enumerations" in Chapter 8.

Observations

We broke ground in this chapter and exposed the fundamental foundations of all Visual Basic applications.
What do we know? We know that a Visual Basic application is a collection of classes that interact with each
other. A Visual Basic application can be one class or a class module, or it can be made up of many classes.

We know that Visual Basic is a language with a rich and diverse syntax and that it has very peculiar and
unique lexical and idiomatic elements that set it apart from all other languages. We also know that Visual
Basic, while maintaining syntax and a number of grammatical similarities to its predecessor, has also been
fundamentally changedrewritten in fact from the ground upto allow it to perform as a first class member of the
.NET Framework.

We investigated the base or fundamental types in this chapter, often referred to as primitive types. We
investigated where they derive from, and how they are declared, accessed, and used. And we also saw that
there are some very important differences between the fundamental types of Visual Basic 6 and Visual Basic
.NET.

The most important observation is perhaps that a Visual Basic class consists of three critical spaces. The first
space is the class declaration space which names the class, declares how it can be accessed, and states whether
it inherits from any other class. The second space is the Options space. Here we see that you can choose to
write code either with loose semantics and syntax or with tight semantics and syntax by toggling the Option

Variable and Constant Lifetimes

131

Strict and Option Explicit directives to the On or Off position. The Options space must precede all other
declarations and code. The third space is the Namespace declaration space. Here we see how namespaces and
classes are referenced such that they can be accessed from within the implementation space of the class.

The next three chapters deal more specifically with class implementation. Chapter 5 extensively covers the
use of operators; Chapter 6 covers flow and control constructs as well as conditional constructs; and Chapter 7
provides the means of accessing the functionality through the construction and provision of the methods of
our classes.

Variable and Constant Lifetimes

132

Chapter 5: Visual Basic .NET Operators

Overview

Operators are to computer programming what nails, staples, glue, and studs are to carpentry. Without these
small elements, there would be no way to prevent the various parts of our creations from falling apart. This is
true of standard operators: the many languages that exist within and outside of the .NET Framework use the
same standard operators even though their symbol usage and data processing may differ.

Even if you know your operators, the information in this chapter will be worthwhile to assimilate because
Visual Basic introduces fresh topics. This is also the first chapter that mixes in some C# code for some
interesting language interop possibilities. We delve into bit shifting and see examples of how to use the C#
shift operators in VB projects. This chapter lays the foundation for many of the algorithms we tackle in later
chapters.

Note The word interop stands for interoperation. In the context above it relates to the interoperation of C#
code with Visual Basic code, or interop with a Visual Basic application. The term is also used to express
the interoperation of .NET (managed) code with unmanaged code such as COM components.

What an Operator Does

An operator performs an operation on one or two operands: a unary operator executes an operation on one
operand, a binary operator does so on two.

Unary operators use prefix or postfix notation against their operands.

If the operator comes before the operand, it is a prefix unary operator, as is demonstrated here:

operator operand

or in code as

+ X

where X is the operand.

If it comes after the operandwhich is an uncommon occurrenceit is a postfix unary operator. Here's an
example:

operand operator

or in code as

X++

(The above ++ is the C# .NET unary operator for incrementing the operand by 1. The Visaul Basic .NET
equivalent is X += 1 or X −= 1, which are unary in "nature" but are considered binary because the operator
increments or decrements the value on the left with the value on the right. In this chapter, we will elucidate the
significant differences between Visual Basic .NET and C# .NET operators.)

133

A binary operator performs an operation on more than one operand and uses infix notation, because the
operator is positioned between the operands as follows:

operand operator operand

or in code as

X < Y

The ternary conditional operator (?:), which is used in many languages such as C#, J#, and JScript, is
"shorthand" for the IfElse conditional construct discussed in the next chapter (If = ? . . . Else = :). If you ever
plan to use C# or JScript, it helps to know about this operator, which we will exemplify in C# sample code in
this chapter.

Operators return the values based on their functions and on the type of operand. For instance, if you add two
integers, the + operator returns the result of the integer addition. Operators thus evaluate to their results.

The operator returns the type of value (known as operator resolution) for which it has been defined. When
dealing with operands of different types, you need to be sure that the operator is going to return the type you
expect.

The default behavior of the operator is as follows: operands that are wider or narrower than the range for
which the operator is defined will be narrowed to the type the operator will return. Conversely, operands that
are narrower than the type for which the operator has been defined will be widened to the type the operator
will return (see also Chapter 4).

Note An operand can be a single value or an entire expression, which should be enclosed in parenthesis for
clarity and to minimize bugs.

This chapter will also classify operators into their specific function groups as follows:

Arithmetic Operators Operators that perform arithmetic functions on the operandssuch as +, − ,or *•
Relational Operators Operators that perform relational evaluation of the operandssuch as Is, Like,
<, >

•

Assignment Operators Operators that return a value and then assign the value to the operandsuch as
= and +=

•

Concatenation Operators Operators that combine the data of their operands and then return the new
combined valuesuch as + and &

•

Bitwise Operators Operators that perform bitwise (acting on the bits) operations on numbers and
then return the bit result

•

Numbering Systems Reviewed

This section discusses the numbering systems that programmers of all languages use. Understanding them is
key not only to coding useful algorithms and solving mathematical problems, but also to writing analysis
software, working with arrays, and writing sophisticated game programs. These systems are also applicable to
any software that communicates down to the so−called metal in the world, where only combinations of 1s and
0s are recognized currency. As you may know, .NET makes extensive use of large numbers for security
uniqueness, complex mathematics, and numerical operations.

 Numbering Systems Reviewed

134

Here are the fundamental numbering systems used in computer programming:

Binary (Base 2) This is the language computers use internally to represent bits. Binary means 2 and
the only digits used are 1 and 0. Digit 1 is known as the high−order bit (one less than the base of 2)
and 0 is known as the low−order bit.

•

Octal (Base 8) This system encompasses digits 0 through 7 (one less than the base of 8).•
Decimal (Base 10) This familiar numbering system is used for writing integers. These are the
standard numbers which use digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (9 is one less than the base of 10).

•

Hexadecimal (Base 16) This system employs the 10 digits of the decimal system plus the letters A
through F.

•

The octal and hexadecimal (hex) numbering systems are popular in computer programming because it's easier
to work with their numbers versus binary numbers, which can become very large. Today's 32−bit systems are
rapidly yielding to 64−bit computers and software (arriving in 2002/2003), which makes it imperative to fully
understand the octal and hexadecimal systems, especially the latter one. The following table demonstrates the
differences among the four systems.

Binary Octal Decimal Hexadecimal

0 0 0 0

1 1 1 1

High = 1 2 2 2

Base 2 3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

High = 7 8 8

Base 8 9 9

High = 9 A (10)

Base 10 B (11)

C (12)

D (13)

E (14)

F (15)

High = F (15)

Base 16
The hexadecimal number system is the most complex because it requires 16 digits, the last 6 of which are the
letters A through F. It is thus possible to have a "hex" number comprising just numbers (345), numbers and
letters (4C26D), or just letters (DEEE).

Positional Notation

Each numbering system employs a positional notation, which describes the positional value of the digit. In
the decimal system, we describe the digit positions as ones, tens, hundredths, thousandths and so on.
However, it's easier to refer to large numbers in terms of the power to which they are raised, such as 10 to the
5th power.

 Positional Notation

135

Base 2, or binary position lingo, describes the value of the bits from left to right. The number 5 in binary is
101, so we say that a high−order bit is in the right−most position, which is the ones position, the 0 is in the
twos position, and the left−most bit of 1 is in the fours position. As the number increases, the notation grows
from the right to the left by the power of the base1, 2, 4, 8, 16and so on. Increasing or decreasing the number
is known as shifting. By shifting the bit 1 left in the ones position to the twos position, we are raising the
number by the power of 2, the base. Shifting three positions is the same as raising the number to shift by the
power of 4, such as 2 to the 4th power.

The positional values for the octal numbering system increase by its base of 8. So for a number like 350, we
say that the 0 is in the ones, 5 in the eights, and 3 in the sixty−fours position.

Hexadecimal numbers work the same way, but the positional values rise by the power of the base, 161s, 16s,
256th positions, respectively.

The following tables list the positional values in each number system.

Binary Number System: Base 2 (. . . 128, 64, 32, 16, 8, 4, 2, 1)

Digit 1 0 1

Position Fours Twos Ones

Power of base 2
2

2
1

2
0

Octal Number System: Base 8

Digit 3 4 8

Position Sixty−Fours Eights Ones

Power of base 8
2

8
1

8
0

Decimal Number System: Base 10

Digit 5 6 5

Position Hundredths Tens Ones

Power of base 10
2

10
1

10
0

Hexadecimal Number System: Base 16

Digit D 0 E

Position 256ths Sixteens Ones

Power of base 16
2

16
1

16
0

Converting from One System to Another

Now that you understand the various conventions for positional notation within each numbering system, it
will be easy to convert from one number in a system to another and to perform conversions in your code. Let's
first see how we convert from the familiar decimal system to binary, octal, and hexadecimal. We'll begin by
converting the number 42 from the decimal system.

Converting From Decimal to Binary, Octal, and Hexadecimal

In order to convert to binary, first decide which high−positional value shown in the binary positions and
powers chart above is higher than the number 42. Then stop at the smaller positional value. In other words,
128 and 64 are bigger than 42, so we would need to stop at 32. Now how many times can 32 go into 42 and
what's the remainder? Write down the results in the grid as follows:

Position 32 16 8 4 2 1

 Converting from One System to Another

136

Division 42/32 10/16 10/8 2/4 2/2 0/1

Result 1 0 1 0 1 0

Remainder 10 10 2 2 0 1
The number 42 divides by 32 once and leaves a remainder of 10. So we write 1 in the result row and 10 in the
remainder row. Then working from left to right, we divide 10 by the next positional value, (10 / 16). The
result is 0, so we carry the 10 to the next position. There we find that 8 can go into 10 once, with 2 left over.
Write down 1 for the result and 2 for the remainder under the 8s column. Then we try to put 4 into 2, which
doesn't work; thus, 0 is the result and the remainder 2 moves to the right. Since 2 goes into 2 exactly once, we
enter 1 in the 2s columns and 0 in the 1s column. Our binary number10 1010is now in the result row of the
grid.

The same technique works for converting from decimal to octal, as seen here in the octal grid:

Position 512 64 8 1

Division N/A N/A 42/8 2/1

Result N/A N/A 5 2

Remainder N/A N/A 2 0
The result is that decimal 42 is octal 52.

Let's do the same thing now for hex:

Position 4096 256 16 1

Division N/A N/A 42/16 10/1

Result N/A N/A 2 10?

Remainder N/A N/A 10 10
The hexadecimal system makes sense for large numbers; however, with the number 42 there could be a slight
confusion. The last column leaves us with 10, which is A in the hex system. Thus, the hex result is 2A.

Converting From Octal and Hexadecimal to Binary

Converting from these systems to binary is straightforward. You simply place octal and hex value positions up
against the binary value positions in a grid. For example, octal to binary works by placing the octal right−most
value up against the 3−digit binary equivalent like this:

Position 101 010

Octal 5 2
This yields the binary result of 101 010, or 10 1010. The hex to binary works similarly up against a 4−digit
column:

Position 0010 1010

Hex 2 A
Converting From Binary, Octal, and Hexadecimal to Decimal

When you encounter one of the "alternate" numbers in your code, you'll need to convert the numbers to
decimal to present them to users or do math that requires you to work with the decimal system. You can easily
write software that multiplies 2A by 2A, but chances are very slim that 6E4 will mean anything to your user.

Converting from One System to Another

137

The formula for converting to decimal is very easy and can be derived manually or in a grid. With binary
values, simply multiply the binary digit (starting left to right) with its positional value and sum the results. For
example, to arrive back at 42 from 10 1010, perform the following math:

(1*32=32) + (0*16=0) + (1*8=8) + (0*4=0) + (1*2=2) + (0*1=0) Answer: 42

Octal to decimal works along the same lines. Multiply the number value by its positional value:

(8*5=40) + (2*1=1) Answer: 42

and hex:

(2*16=32) + (A*1=10) Answer: 42

Operator Precedence

For simple operations, the left operand is always evaluated first at run time. We say that the operators are "left
associative," which means that the operations on the expressions are performed left to right.

However, when expressions contain more than one operator, the precedence of the operator, not the order of
appearance, controls the order in which the expressions are evaluated. For example, in the arithmetic group, if
the multiplicative (*) operator comes after the additive (+) operator in the sequence, the two operands that
straddle the multiplicative operator are multiplied, and the result is added to the operand on the left of the
additive operator. The following example proves this:

Dim x As Integer = 5
Dim y As Integer = 1
Dim Z As Integer = 2
Dim Answer As Integer
Answer = x + y * Z
Debug.WriteLine(Answer)

The answer is 7 because y * z is the first procedure, which returns 2; the 2 is then added to the 5 to yield 7. If
the additive had taken precedence over the multiplicative, the answer would have been 12.

Table 5−1 lists the precedence of operators when evaluating expressions.

Table 5−1: Operator Precedence Table (*The ++ or − − Unary Operators are Not Accessible in VB .NET)

Class of Operator Precedence of the operators in the class

Primary * (x), x.y, foo(x), foo[x], x++, x− −

Exponentiation ^

Unary +, −

Multiplicative *, /, \, Mod, +, −

Concatenation &, +

Comparison =, <>, <, >, <=, >=, Like, Is, TypeOfIs

Logical Not, And, Or, Xor, AndAlso, OrElse

Bitwise And, Or, Xor

 Operator Precedence

138

Miscellaneous Or, OrElse, New, TypeOf

Changing Precedence Order with Parenthesis

You can change the order of operations by enclosing the expression you want to process first between
parentheses. In the preceding example, if we had bracketed the operands around the additive operator, we
would have gotten 12 as the return value:

Dim x As Integer = 5
Dim y As Integer = 1
Dim Z As Integer = 2
Dim Answer As Integer
Answer = (x + y) * Z
Debug.WriteLine(Answer)

Now 12 is the output to the Debug window. Can you work out why? This complex example

Dim Value As Double
Value = 3 * 10 / 3 ^ 2 + 10 − 11
Debug.Writeline(Value)

writes 2.33333333333333 to the Debug window. But this one

Dim Value As Double
Value = 3 * 10 / 3 ^ (2 + 10 11)
Debug.Writeline(Value)

writes 10 to the output window. Let's process the operations as a stack, moving from the first operation to the
last:

Example 1:

3 ^ 2 = 9 (exponentiation is the highest operator in the expression)1.
3 * 10 = 30 (multiplicative comes second)2.
30 / 9 = 3.33 (regular divisional comes next)3.
3.33 + 10 = 13.33 (+ comes before −, but with regular math this is benign)4.
13.33 11 = 2.335.

Example 2:

(2 + 10) 11 = 1 (the parenthetical operation processes first)1.
3 ^ 1 = 3 (exponentiation comes before multiplicative)2.
3 * 10 = 30 (multiplicative comes next)3.
30 / 3 = 10 (the regular divisional comes after multiplicative)4.

Here is a short list of additional rules to remember:

The math or arithmetic operators evaluate first, followed by comparison operators, then by logical
operators.

•

The concatenation operator (&) precedes all of the comparison operators, but it follows the
mathematical operators.

•

The comparison operators have equal precedence.•

 Changing Precedence Order with Parenthesis

139

Unary Operators

There are three unary operators supported by Visual Basic: +, −, and Not (Unary Plus, Unary Minus, and
Unary Logical Not, respectively). They are defined as follows:

Unary Plus The value of the operand•
Unary Minus The value of the operand subtracted from zero•
Unary Logical Not Performs logical negation on its operand. (This operator also performs bitwise
operations on Byte, Short, Integer, and Long [and all enumerated types], which we'll discuss later in
this chapter.)

•

Unary Plus is also the additive operator. However, the operator is "overloaded" to perform a concatenation
function if the operands are discovered to be of type string. For example, the following code

Dim S As String = "what is "
Debug.WriteLine(S + "this")

writes "what is this" to the Debug window.

Tip Use the & symbol for concatenation because it makes code easier
to read.

Unary Minus converts a positive number into a negative one. For instance, this simple math

x = 3 + −1
Debug.WriteLine(x)

writes 2 to the Debug window. However, it's the same thing as 3 minus 1.

The Unary Logical Not is different altogether. It can change a Boolean result (False becomes True or True
becomes False). As mentioned earlier, it can also perform a bitwise comparison on a numeric expression.
Here are the rules for the Unary Not Boolean expressions:

If the Expression is False, then the Result is True•
If the Expression is True, then the Result is False•

Here's an example:

Dim x As Integer = 5
Dim y As Integer = 1
Dim z As Boolean = True
If Not (x > y = z) Then
 Debug.WriteLine("True")
Else
 Debug.WriteLine("False")
End If

Normally, the result would be "True" to the debug window, but in the above case truth is Not true. The
Boolean condition inside the parentheses (this entire expression is the operand) is reversedin this case True is
made False. See Chapter 6 for examples of using the Not operator in conditional statements, especially Null
If conditionals. You will also learn about Logical Operators and Bitwise Operators later in this chapter.

 Unary Operators

140

Arithmetic Operators

The full complement of arithmetic operators is available to Visual Basic .NET. Unary Plus and Unary
Minus can also be considered arithmetic operators, as shown in Table 5−2.

Table 5−2: Visual Basic .NET Arithmetic Operators

Operator Description Action/Usage

+ Addition Value = Expression + Expression

− Subtraction Value = Expression Expression

* Multiplication Value = Expression * Expression

/ and \ Division Value = Expression / \ Expression

Mod Modulus (division returns only the
remainder; % in J#, C# C++, etc)

Value = Expression Mod Expression

^ Exponentiation Value = Expression ^ Expression
Arithmetic operators are straightforward in their performance; however, there are several delicate situations.
When number crunching, it is possible to cause a number of system exceptions, such as an
OverflowExceptionwhen the sum of two operands is outside the range that the operator returns (see Table
5−3). For example, Byte is a data type that can have a value from 0 to 255. In the following code, the sum of
the two operands raises the OverflowException, because the type cannot hold 258.

Public Sub TryItOut()
 Try
 Dim num1 As Byte = 253
 Dim num2 As Byte = 5
 Debug.WriteLine(num1 + num2)
 Catch Except As OverflowException
 Debug.WriteLine("Bad Byte Math: " & "num1 + num−−−" & Except.Message)
 End Try
End Sub

Note Debug statements are stripped from release builds so the Debug statement inside the Catch handler will
not be executed. For more information on using Debug, see Chapter 17.

Table 5−3: Arithmetic Exceptions

Exception : ArithmeticException Purpose

DivideByZeroException To handle an exception raised when an attempt is made to divide a
number by zero.

OverflowException To handle an exception raised when the result overflows the range
of the type (usually the result of an invalid cast or conversion).

Tip TryCatch are the constructs for structured exception handling (SEH). If you are new to SEH you can
jump to Chapter 7 for a short treatise on SEH or tackle Chapter 11 which specializes in this subject, but I
would not worry too much about the SEH stuff just now.

Assignment Operators

These operators assign values to variables, which are the left operands of an assignment expression. The
assignment operators come in two forms, simple and compound, as listed in Table 5−4.

 Arithmetic Operators

141

Table 5−4: Assignment Operators

Operator Description Action/Usage

= Assignment Value = Expression

+= Addition/Concatenation assignmentVariable += Expression

= Subtraction assignment Variable −= Expression

*= Multiplication assignment Variable *= Expression

/= and \= Division assignment FloatingPointVariable /= Expression
IntegerVariable \= Expression

^= Exponentiation assignment Variable ^= Expression

&= Concatenation assignment Variable &= Expression
The simple assignment uses the equal sign to assign the operand on the right side to the operand on the left
side. For example, the following code

X = 5

assigns the number 5 to the operand x.

The compound version assigns the result of a numeric operation specified by the operator to the left operand.
The most useful of these compounds is the += operator, which increments the left operand by the value of the
right one and then assigns the result back to the left operand. For example

Dim x As Integer = 5
x += 1

increments the value of x by 1, so the new value of x is 6. This operator is the equivalent of the C# unary
increment/decrement operators, ++ and −− respectively. However, you are not limited to incrementing or
decrementing by 1. The following code is also valid.

Dim x As Integer = 5
x += 5
Debug.WriteLine(x)

This equation prints 10 to the debug window. The *= operator would yield 25, the −= would yield 0.

Tip When you declare variables, you can use a shortcut to make your code more concise and readable
by assigning the value of the variable in the same line as its declaration: Dim X As Integer = 5 is
the same as Dim X As Integer, X = 5.

Notice how the compound operators function in an example of the addition/concatenation operator (+=):

Dim firstname As String = "Donald "
Dim lastname As String = "Duck"
firstname += lastname
Debug.WriteLine(firstname)

This writes "Donald Duck" to the Output window.

When using the assignment equals compound, remember that if the expression is numeric, the operation will
be addition. However, if the expression is a string, it will be concatenation.

 Arithmetic Operators

142

You can also use the compounds with array operations. In this example, an array value is incremented by 1
using the += operator.

Dim t(5) As Integer
t(1) = 1
t(1) += 1
Debug.WriteLine(t(1))

The answer is 2.

Comparison Operators

The comparison, or relational, operators evaluate an expression on the right side of the equal sign and return
True or False (Boolean), depending on the comparison, as seen in Table 5−5.

When comparing types, the following behaviors must be noted:

With Byte, Short, Integer, and Long we compare the numeric (literal) values of the operands.•
With Single or Double we compare the operands according to the IEEE 754 (see sidebar on the
following page).

•

With Decimals we compare the numeric values of the two operands.•
With Boolean values (True and False) compared for equality, the equals operator (=) will return
True if both operands are either True or False. The Not Equals (<>) is the reverse.

•

With Dates we compare the complete date and time values of the two operands.•
With Chars we compare the Unicode values of the operands.•
With Strings the operators perform either binary or text comparison. The two options can be set using
the Option Compare (Binary | Text) directive (see Option Directives, Chapter 4). Binary mode
compares the numeric Unicode value of each character in the operands. If each is the same, it returns
True. Text mode makes the comparison on the current culture in use in the application environment
(see Chapter 4).

•

Table 5−5: Comparison Operators Supported in Visual Basic .NET

Operator Description Action/Usage

< ess Than Expr1 < Expr2

<= Less Than or Equal To Expr1 <= Expr2

> Greater Than Expr1 > Expr2

>= Greater Than or Equal To Expr1 >= Expr2

<> Not Equals Expr1 <> Expr2

= Equals Expr1 = Expr2

IEEE 754

IEEE 754 is the IEEE's (pronounced eye−triple−E, the acronym of the Institute of Electrical and Electronics
Engineers) standard for computer specifications for floating−point operationsrepresenting binary
floating−point arithmetic.

It governs how number formats are represented, basic floating−point operations, conversions, and applicable
exceptions. Another standard, IEEE 854, extends the scope of 754 to include decimal arithmetic. We

 Comparison Operators

143

anticipate IEEE will merge these standards that guide software language architects in accessing the
floating−point facilities in modern computer hardware.

According the IEEE, the latest version of the standard proposes the following: "[754] provides a discipline for
performing floating−point computation that yields results independent of whether the processing is done in
hardware, software, or a combination of the two. For operations specified in this standard, numerical results
and exceptions are uniquely determined by the values of the input data, sequence of operations, and
destination formats, all under programmer control."

In particular, IEEE 754 specifies how software languages should provide support for precision, underflow,
overflow, and extended precision. Software languages like Visual Basic and C# look to IEEE 754 for
implementing square−root functions and the like.

Concatenation Operator

The concatenation operator, represented by the ampersand (&), combines two string operands and returns a
single string expression. The usage is

Value = operand & operand

Here is an example:

Dim X As String = "1"
Dim Y As String = "23"
Debug.WriteLine(X & Y)

The result of the operation X & Y writes "123" to the debug window.

When this operator encounters integer operands, it will convert the integers to strings. The conversion is safe
because the process results in a widening cast. The + operator is implicitly overloaded to perform
concatenation when it encounters strings for operands. To avoid ambiguity, concatenate strings using the &
operator.

Logical Operators

Logical operators take Boolean (logical) operands and return the Boolean result of their operations. Logical
operators (see Table 5−6logical And, Or, and Xor) can be confused with their bitwise counterparts because
they have the same operator symbol. Classic VB documentationas opposed to that of every other
languagemerged the two operator functions. Microsoft tried to introduce a more "logical" separation of these
functions, but met with resistance from the VB community. Thus Visual Basic .NET remains "different" than
the other .NET languages.

Bitwise operators return bitsthey do not return True or False. It is important to understand and differentiate
between the functions of logical and bitwise operators: both are critical in software development. Here we'll
examine logical operators; we'll discuss bitwise ones in the next section.

Note The operator is overloaded to return bits in Visual Basic .NET when it is required to operate on

 Concatenation Operator

144

numbers.

Table 5−6: Logical Operators and Their Functions, and C# and JScript Equivalents (** Not ApplicableAll
Logical Operators in JScript or C# Short−Circuit)

Logical Operators Operation C#, J#, or
JScript

And (logical And) Returns True if both operands are Trueotherwise False &&

Or (logical Or) Returns True even if one of the operands is Truereturns
False only if both are False

|

Xor (logical Xor) Returns False if both operands are either True or
Falseotherwise it returns True

!

AndAlso Returns True if both operands are True returns False if only
the first operand is True but if the first operand is False,
the second operand is not evaluated and True is returned

**

OrElse If the first operand is True, the second is not evaluated and
the operator returns True Returns False if both are False
and True if only the second operand is True

**

The key to understanding logical operations is to forget about numbers and bits. Think only in terms of True
or False, which represent the types of operands and the return type of the operator. For example, in the
following code, a logical And operation is performed on two Boolean operands:

Dim catlovesdog As Boolean = False
Dim doglovescat As Boolean = True
Dim weirdromance As Boolean
weirdromance = catlovesdog And doglovescat
Debug.WriteLine(weirdromance)

The operator And returns False here because the Cat operand is False (cats are unimpressed with dogs). If
the Cat operand were initialized True, the operator would have returned True. Let's look at the different
types of logical operators and their functions in Table 5−7, then we can examine how to use them.

Logical And, Or, and Xor

Table 5−7: Conditions upon which Logical Operators Return True or False

If cat loves dog And dog loves cat is love in the air?

True True True

True False False

False True False

False False False

If cat loves dog Or dog loves cat is love in the air?

True True True

True False True

False True True

False False False

 Logical And, Or, and Xor

145

If cat loves dog Xor dog loves cat is love in the air?

True True False

True False True

False True True

False False False

If cat loves dog AndAlso dog loves cat is love in the air?

True True True

True False False

False Irrelevant False

If cat loves dog OrElse dog loves cat is love in the air?

True Irrelevant True

False True True

False False False

Short−Circuit Logical Operators

The AndAlso and OrElse are new short−circuit operators introduced to Visual Basic .NET. If you use And,
the runtime will evaluate the entire expression, even if the first operand is False. Compare this to the And
example in the preceding tableif the first operand is False, the operator returns False, even if the second one is
True; thus you don't need to evaluate the second operand and the procedure "short circuits" the comparison.
The best way to understand this is through code.

Module LogicTest
 Sub Main()
 Dim x As Integer = 1
 Dim y As Integer = 1
 If A(x) Or B(y) Then
 Debug.WriteLine("x= " & CStr(x) & ", y = " & CStr(y))
 End If

 If A(x) OrElse B(y) Then
 Debug.WriteLine("x= " & CStr(x) & ", y = " & CStr(y))
 End If
 End Sub

 Function A(ByVal v1 As Integer) As Boolean
 v1 = v1 + 1
 Return True
 End Function

 Function B(ByVal v1 As Integer) As Boolean
 v1 = v1 + 1
 Return True
 End Function
End Module

Copy and paste this code into Visual Studio or build and run the LogicTest console application in the Vb7cr
solution (see the Introduction for instruction for downloading this demo). Insert a break point in the code at
the following line:

If A(x) Or B(y) Then

 Short−Circuit Logical Operators

146

When execution stops at the above breakpoint step into the code using the F11 key. You can now observe the
short−circuit in action. The standard Or causes the compiler to invoke both methods A and B, but as you step
into OrElse you will notice that method B does not get invoked.

Note See the project LogicTest in the Vb7cr solution.

Originally, all Visual Basic .NET logical operators short−circuited, but in Beta 2 they reverted back to the
way they operate in VB 6. We'd prefer to see "Option Classic Off" let "seventh generation" Visual Basic
programmers choose the modern operators found in the other .NET languages.

Bitwise Operators

When your operands are numbers instead of Boolean values, And, Or, and Xor perform bitwise operations
on the operands instead of logical ones. Instead of returning True or False, they return either a 1 or a 0
depending on the outcome. For example, in the following statement

expression1 And expression2

the operator returns 1 if both operands are 1; but it returns 0 if one of the operands is 0. However, the
following statement

expression1 Or expression2

returns 1 even if only one of the operands is 1. It will return 0 only if both are 0. In the first example, nothing
happens unless both operands are 1. This is fundamental electrical engineering: you have a gate and the circuit
will be completed only if both the anode and the bnode are closed. In the second example above, only one
operand or the other needs to be 0 to trigger the action.

You can use the bitwise Not operator with numerical expressions to negate the return value provided by the
operator. The following rules apply to using Not:

If the bit is 0, then Not makes the bit result 1.•
If the bit is 1, then Not makes the bit result 0.•

Here's how to use this:

Dim x As Integer = 5
Dim y As Integer = 1
Dim z As Integer
z = (Not x)
Debug.WriteLine(z)
z = (Not y)
Debug.WriteLine(z)

The value returned is the negation of the bits that represent binary x and y (1s and 0s) ; thus, for x the value
returned is 6 and for y it's 2. Looking at this in binary as demonstrated earlier, 5 is expressed as 00000101.
Negating the bits turns the binary version of 5 into the following 11111010, which is 6 in decimal. This would
be clearer seen in the following binary chart negating the bits representing 5 (Not 1 is 11111110, which is −2)
:

5 = 0 0 0 0 0 1 0 1

 Bitwise Operators

147

−6 = 1 1 1 1 1 0 1 0
Note See the BitShifters demo later in this chapter which can do the conversion for you.
Table 5−8 shows the bitwise operators and the value they return.

Flag Sets

Bitwise operations are useful for manipulating flag sets (also known as bit sets, bit maps, bit tables, flag
tables, or flag maps) for state management in a variety of applications and algorithms. You'll find many
opportunities for employing flag sets, such as components, visual controls, state machines, schedulers, and
database applications.

Table 5−8: Bitwise Operators and the Values They Return; the C# and JScript Equivalents

Bitwise Operators Operation C# or JScript

And (bit And) Returns 1 if both operands are 1otherwise 0. Valid types are
Byte, Short, Integer, Long, or enumerated types.

&

Or (bit Or) Returns 1 if either is 1otherwise 0. Valid types are Byte,
Short, Integer, Long, or enumerated types.

|

Xor (bit Xor) Returns 1 if either operand is 1, 0 if both are 1, and 0 if both
are 0. Valid types are Byte, Short, Integer, Long, or
enumerated types.

^

Not (bit Not) If the bit of an operand = 0, then bit in result = 1. If the bit of
an operand = 1, then bit in result = 0.

~ (complement)

In computer telephony, PBX, or call−processing applications, flag sets are used to indicate the current state of
a message (fax mail, email, or voice mail) or phone extensions (on−hook, busy, call waiting, signed off/on). A
typical flag set for messages could be declared as follows:

Accessed: No = 0, Yes = 1•
Archived: No = 0, Yes = 1•
Deleted: No = 0, Yes = 1•

As soon as a mailbox receives a message, flags corresponding to its state are established in a database. All
new messages would be enumerated so that the person accessing the mailbox would hear something like "you
have 5 new messages." Then as soon as it is accessed, the system changes its accessed bit to 1 and the new
value is saved to the database. The following grid represents the flag table for a message after it has first been
retrievedthe accessed bit it set to 1.

Flag Bit

Accessed 1

Archived 0

Deleted 0
The next prompt would be "you have 4 new messages and 1 accessed message." The user can do one of two
things with it: archive itits flag would be set to 1 and the value saved to the databaseor delete itits flag would
be changed to 1. If the user deletes it, the dead−message collector would see that it's ready for trash, as
illustrated here:

Flag Bit

Flag Sets

148

Accessed 1

Archived 0

Deleted 1
What would happen if the user decided to trash the message without first hearing it? How do you code the
decision not to delete the message? You could use a conditional construct to check the flag value and then
decide to delete or not. Or, you could perform various bitwise operations on the flags to test the message
states rather than Boolean operations or If conditionals on the actual value.

The GetMessages application shown next loads the flag set for a message and then performs bitwise
comparisons on the flags to control execution and flow. (See Chapters 13 and 14, which provide examples of
state machines.) Besides exemplifying bitwise operators, this code uses If Else conditionals, Select Case
construction, and nested exception handlers extensively. Chapter 6 covers the If conditional and Select Case
and Chapters 7 and 11 cover exception handling.

Module GetMessages

 Dim menuChoice As String
 Dim inPut As String 'string to be blasted to bits
 Dim outPut As Integer
 Dim Completed As Boolean = False
 'Flags representing flag fields table for a message

 Dim messageFlag As Integer
 Dim isAccessed As Integer
 Dim isArchived As Integer
 Dim isDeleted As Integer
 Dim newMessage As Integer

 Sub Main()

 While Not Completed
 Console.WriteLine(" ")
 Console.WriteLine("−−−−−−−−−−−−MENU−−−−−−−−−−−−−")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.WriteLine("Press 1 to hear message. ")
 Console.WriteLine("Press 2 to archive message.")
 Console.WriteLine("Press 3 to delete message.")
 Console.WriteLine("Press return to end.")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")

 inPut = Console.ReadLine()
 If Not (inPut = "") Then
 Console.WriteLine("")
 Completed = ProcessMessage(Convert.ToInt32(inPut))
 Else
 Completed = True
 End If
 End While
 End Sub

 Public Function ProcessMessage(ByVal messageAction As Integer) As Boolean
 If (messageFlag And newMessage) = 1 Then
 Console.WriteLine("There are no more messages... ")
 Return False
 Else
 Select Case messageAction
 Case Is = 1 'Access the message
 AccessMessage()

Flag Sets

149

 Case Is = 2 'Archive the message
 ArchiveMessage()
 Case Is = 3 'Delete the message
 DeleteMessage()
 Case Else
 Console.WriteLine("Not a valid input, try again... ")
 Return False
 End Select
 End If
 End Function

 Sub AccessMessage()
 Console.WriteLine("Message accessed")
 messageFlag = 1
 isAccessed = 1
 End Sub

 Sub ArchiveMessage()
 If (messageFlag Xor isArchived) = 1 Then 'check if archived
 Console.WriteLine("The message is now archived")
 isArchived = 1
 Else
 Console.WriteLine _
 ("Cannot archive message until it has been heard.")
 End If
 End Sub

 Sub DeleteMessage()
 If (messageFlag And isAccessed) = 1 Then 'check if accessed
 If (messageFlag Xor isArchived) = 1 Then 'check if archived
 Console.WriteLine("The message was deleted")
 newMessage = 1
 Else
 Console.WriteLine _
 ("The message is archived and cannot be deleted")
 End If
 Else
 Console.WriteLine _
 ("Cannot delete message until it has been heard.")
 End If
 End Sub

End Module

Note See the project GetMessages in the Vb7cr solution.

Shifting Bits

Bit shifting is an important facility for enabling computer languages to handle sophisticated numeric
programming and complex numbers. Visual Basic .NET does not have bit−shifting operators (or the ability to
overload operators); its architects chose not to endow it with advanced numeric and number−crunching
facilities (at least in the first version of Visual Basic .NET). However, C# has these featureslanguage interop
allows us to work with C# "muscle" by accessing C# classes and structure directly from Visual Basic.

Language interop makes it far less important that these features are missing in Visual Basic, because once you
compile the entire application and reference C# class down to MSIL, the boundaries between the C# code and
Visual Basic code vanish. C# becomes a natural extension of Visual Basic (and any other .NET language),
something that has never been achieved before. The following code demonstrates both the language interop
and C#'s bit−shifting operators. To keep this simple, I have created a console application that presents a menu

Shifting Bits

150

similar to the GetMessages demo application discussed earlier. The menu lets you choose to return a decimal
value in its binary form using the shift operators to populate a bit−mask. You can also choose to shift left or
shift right a decimal value and simple return the decimal result.

You could have arithmetic exceptions in these operations so we have enclosed the calling methods between
Try . . . Catch blocks.

Imports Vb7cr.BitShifters
Module SeeBits

 Private inPut, byShift As String
 Private outPut As Integer
 Private isCompleted As Boolean = False

 Dim E As BitShifters

 Sub Main()
 Private menuChoice As String
\
 While Not isCompleted
 Console.WriteLine(" ")
 Console.WriteLine("−−−−−−−−−−MENU−−−−−−−−−−−")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.WriteLine("a: Decimal to Binary.")
 Console.WriteLine("b: Left Shift.")
 Console.WriteLine("c: Right Shift.")
 Console.WriteLine("d: Anything else to end.")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−")

 Console.Write("Choose a process: ")
 menuChoice = Console.ReadLine()
 Select Case menuChoice
 Case Is = "a"
 DecToBinDemo()
 Case Is = "b"
 LeftShiftDemo()
 Case Is = "c"
 RightShiftDemo()
 Case Else
 isCompleted = True
 End Select
 End While

 End Sub

 Public Sub DecToBinDemo()
 Console.Write("Enter a number to convert from Dec to Bin: ")
 inPut = Console.ReadLine()
 If Not (inPut = "") Then
 Console.WriteLine("")
 isCompleted = ProcessInput(inPut)
 Else
 isCompleted = True
 End If
 End Sub

 Public Sub LeftShiftDemo()
 Console.Write("Enter a number to shift left: ")
 inPut = Console.ReadLine()
 Console.Write("How many shifts left?: ")

Shifting Bits

151

 byShift = Console.ReadLine()
 If Not (inPut = "") Then
 isCompleted = GoLeft(inPut, byShift)
 Else
 isCompleted = True
 End If
 End Sub

 Public Sub RightShiftDemo()
 Console.Write("Enter a number to shift right: ")
 inPut = Console.ReadLine()
 Console.Write("How many shifts right?: ")
 byShift = Console.ReadLine()
 If Not (inPut = "") Then
 isCompleted = GoRight(inPut, byShift)
 Else
 isCompleted = True
 End If
 End Sub

 Public Function ProcessInput(ByVal Num As String) As Boolean
 Try
 Dim a As String = getKibbles(CInt(Num))
 Console.WriteLine("Answer: " & a)
 Catch E As InvalidCastException
 Console.WriteLine("Not a number, try again...")
 Return False
 End Try
 End Function

 Public Function GoLeft(ByVal Num As String, ByVal Shift As String) _
 As Boolean
 Try
 Dim b As String = leftShift(CInt(Num), CInt(Shift))
 Console.WriteLine("Answer: " & b)
 Catch E As InvalidCastException
 Console.WriteLine("Not a number, try again...")
 Return False
 End Try
 End Function

 Public Function GoRight(ByVal Num As String, ByVal Shift As String) _
 As Boolean
 Try
 Dim c As String = RightShift(CInt(Num), CInt(Shift))
 Console.WriteLine("Answer: " & c)
 Catch E As InvalidCastException
 Console.WriteLine("Not a number, try again...")
 Return False
 End Try
 End Function

End Module

Note See the project SeeBits in the Vb7cr solution.
The following C# source code is the class that contains the bit−shifting methods. The class is sealed and the
methods are declared static (shared) so that the class does not need to be instantiated in order for you to use
these bit−shifting methods.

using System;

Shifting Bits

152

using System.Text;
namespace Vb7cr
{
 /// <summary>
 /// A C# utility class as a backend facility for
 /// shift operators which are not supported in VB .NET.
 /// Jeffrey R. Shapiro, Visual Basic .NET: The Complete Reference
 /// September 3, 2001
 /// </summary>
 public sealed class BitShifters {
 public BitShifters() {
 //
 // TODO: Add constructor logic here
 // Jeffrey Shapiro: "Nothing to do here."
 }
 public static String getKibbles(int value) {
 int kibbleMask = 1 << 31;
 StringBuilder sBuild = new StringBuilder(35);
 for (int s = 1; s <= 32; s++) {
 sBuild.Append((value & kibbleMask) = = 0 ? '0' : '1');
 value <<= 1;
 if (s % 8 == 0)
 sBuild.Append(' ');
 }return sBuild.ToString();

 }

 public static String leftShift(int value, int shiftBy) {
 value <<= shiftBy;
 return value.ToString();
 }

 public static String rightShift(int value, int shiftBy) {
 value >>= shiftBy;
 return value.ToString();
 }
 }
}

Note See the project BitsShifters in the Vb7cr solution.
Did you see anything you like? The interesting method is getkibbles, which we will examine in detail here.
It's very simple and demonstrates both the shift and the bitwise AND in action:

public static String getKibbles(int value) {
 int kibbleMask = 1 << 31;
 StringBuilder sBuild = new StringBuilder(35);
 for (int s = 1; s <= 32; s++) {
 sBuild.Append((value & kibbleMask) = = 0 ? '0' : '1');
 value <<= 1;
 if (s % 8 == 0)
 sBuild.Append(' ');
 }return sBuild.ToString();

First, the bit−shifting operators of C# shift the left operand's bits to the left or right according to the number of
positions specified by the right operand. So 16 shifted to the left by 4 returns decimal 256 as demonstrated in
Table 5−9. If you compile and run the above code, you can try several numbers and shift them left or right by
any number of positions.

Shifting Bits

153

Table 5−9: Resulting Decimal and Its Corresponding Binary Representation After Shifting Numbers by 1 or
More

Left shift Yields Decimal and Binary

1 << 1 2 10

2 << 1 4 100

4 << 1 8 1000

8 << 1 16 10000

16 << 4 256 1 00000000
In the getKibbles method, the first operation is to assign 1 shifted left by 31. The shift operator moves the 1
bit to the left 31 times and then drops it at position 32 (to give 32 bits). The positions to the right of this 1 bit
are then filled in with zeros and we end up with a mask (kibbleMask) of 32 bits as follows 10000000
00000000 00000000 00000000.

Next we use a very useful class that you will learn about in Chapter 15, the StringBuilder class. This class
allows us to build a string "buffer," which appends to and grows the string as we need (the standard String
object is immutable and thus useless for something like this).

The next important piece of code is the for loop which for 32 loops does a bitwise AND of the value passed
into the method against the mask. If the left−most bit ANDed yields 1, then 1 is appended into sBuild;
otherwise 0 is. After each comparison, the loop left shifts the value variable by 1 (value <<=1).

for (int s = 1; s <= 32; s++) {
 sBuild.Append((value & kibbleMask) = = 0 ? '0' : '1');

Then at the end of the loop all we need to return is the string value in the sBuild object by calling its ToString
method.

return sBuild.ToString();

The utility of both the bitwise operators and C#'s shift operators can be used in a single application. For
example, you can design the algorithm around decimal numbers and then use the C# shift operators to move
the decimals right or left as needed. You can then use the bitwise And, Or, and Xor to control program flow
on the literal value of the numbers. Thus, if you shift "1" to the left by 1 you get 2, and if you shift "2" to the
left by 1 you get 4, as seen in Table 5−9 above.

Specialized Operators

The .NET Framework defines a number of specialized operators. I have provided some light coverage in this
chapter to introduce them. More examples are available in the chapters listed in Table 5−10.

Table 5−10: Specialized Operators

Operator Description Action/Usage See Also

Is Compares objects Result = objectX Is objectY Ch. 8 and 9

Like Compares string patternsResult = String Like Pattern Ch. 10

TypeOf...Is Tests for the type of
object

If (TypeOf Object Is) Then Ch. 6, 8, 9, 10, 11, 15

 Specialized Operators

154

Is

The Is operator takes objects as operands and compares them for equality. Using this operator can be tricky
because it does not perform a comparison at the object level, rather at the reference−variable level (see
Chapters 8 and 9). In other words, if two reference variables refer to the same object, you will receive True
from the comparison. Here is a snippet of code that shows Is in action:

Dim ring1 As New String = "ring1" 'an object of type String
Dim ring2 As New String = "ring2" 'an object of type String
Dim isIt As Boolean
isIt = ecTor1 Is ecTor2 'Is returns False, which is assigned to isIt.

The Boolean result of the above operation is False because both ring1 and ring2 refer to different String
objects. The following code, however, returns True:

Dim ring1 As New String = "ring1" 'an object of type String
Dim ring2 As New String = "ring2" 'an object of type String
ring1 = ring2
Dim isIt As Boolean
isIt = ecTor1 Is ecTor2 'Is returns True, which is assigned to isIt.

The Boolean result of the above operation is True because both ring1 and ring2 refer to the same String
object by virtue of the expression "ring1 = ring2."

The use of Is will be clearer once you understand what a variable reference is. This is discussed in detail in
Chapter 8. To compare the actual objects, you should implement the Equals method that is always inherited
from the root Object. How to do this is discussed in Chapter 9. You may override and provide your own
implementation to compare two objects and decide, for your purpose, what constitutes equality of the two
objects.

Tip Don't use the = (equals) operator to compare two objects. The = operator will feature heavily in
Visual Basic's anticipated arrival of operator overloading.

Like

The Like operator is used as a pattern−matching utility for character, numeric, and wildcard−character
operands. It returns a Boolean result. The operator returns True if the left operand matches the right. The
Like operator, however, can take a mask character as a substitute to facilitate the pattern matching. Table
5−11 shows pattern making characters.

Table 5−11: Pattern Matching Mask Characters for Comparing Strings

Character Meaning

? The wildcard for matching any single character

* The wildcard for matching zero or more characters

The wildcard for matching any single digit (0−9)

[] The character list surrounded by the square brackets can match any character in the
list you provideexample [VB .NET]

[!] The character list surrounded by brackets but prefixed by an exclamation point
(bang) can match any single character not in the list

 Is

155

X X The characters separated by a hyphen can specify a range of Unicode characters
The following example demonstrates the Like operator and pattern matching in action:

Dim X As String
X = "boody"
If (X Like "b??dy") Then
 Debug.WriteLine("True")
End If

In the above code snippet the two wildcards ?? can be substituted for anything. For example, if expression X =
"buddy" would also return True.

Operator Overloading

The .NET Framework permits its member languages to implement custom or "user−defined" operators. This
is known as operator overloading.

Overloading an operator is simply the ability to redefine its operation for a specific type. The built in +
operator is used as a unary operator, as the addition (infix) operator, and even as a concatenation operator.
Clearly the very architecture of Visual Basic .NET supports operator overloading. Without overloading the +
operator, or without the ampersand (&) concatenation operator, joining two or more strings would involve
writing code like this:

Dim Str1 As String = "God"
Dim Str2 As String = " bless"
Dim Str3 As String
Str3 = Str1.Concat(Str2)

Instead, using the overloaded + operator, we have a much less complex alternative as follows:

Str3 = Str1 + Str2

or

Str3 = Str1 & Str2

You would also be surprised to find out how much the Concat method impacts performance (see Chapter 8).

In complex mathematics and numeric programming, the + and operators can have very well−defined
functionality. This means that in a C# class the + operator can be used to perform a complex operation
between operands, something that might otherwise result in a lot of additional code.

Operator overloading provides notation in a customary style for mathematicians and statisticians. We would
not be as advanced as we are today if the simple equation

E = MC2

had to be coded as

E = M.Multiply(C.Mulitply(C))

instead of

 Operator Overloading

156

E = M *(Pow(C, 2))

or just

E = M * C * C

Operator overloading is especially important in endowing a language with high−end mathematical or
numerical computing abilityfloating−point operations. It is often the very high−end capabilities that elevate a
language to critical acclaim. Java, for example, has struggled to penetrate the finance, statistics, and
floating−point software markets precisely because it lacks operator overloading.

Not all .NET operators can or should be overloaded, however, because certain ambiguities may arise, which
will only complicate rather than simplify development. For example, the compound assignment operators are
split into two operators at the lower level, so there would be no way to change the definition of one or the
other in the combination; besides, there would be no reason to. On the other hand, once operator overloading
is made available to Visual Basic programmers, operators like Pascal's :=, might find their way into Visual
Basic classes.

Visual Basic .NET currently does not provide the developer with the ability to overload any operators. We
mention this for several reasons:

C# does support it and that will make many Visual Basic programmers curious. Language interop is
important in .NET and C# will often be used as an extension to Visual Basic and vice versa. Visual
Basic programmers might switch to C# one day, specifically to develop a value type or some other
class that overloads an operator (remember, even the floating−point "primitives" are objects).

•

Controversy surrounding operator overloading has long preceded .NET and is worth investigating.•
Visual Basic programmers may be frustrated with Microsoft, as many Java programmers are with Sun
Microsystemsfor not allowing operator overloading in Java (see note).

•

Microsoft has added some very powerful features to Visual Basic that without operator overloading
may seem somewhat emasculated (see Value Types in Chapter 8 and Multidimensional Arrays in
Chapter 12).

•

Operator overloading will at some point be possible with Visual Basic .NET.

Note A number of independent software vendors have been fighting for several years to get operator
overloading into Java, as part of an effort to improve Java's ability to handle advanced numeric
and precision algorithms.

•

The debate over operator overloading centers on several issues. Its proponents claim that it is essential to
doing complex numerical work in their language. Coding complex constructs can be very cumbersome
without the ability to provide a custom operator. In many cases the standard notation and syntax elements are
so complex and confusing that the best tack would be to use another language. A small percentage of Visual
Basic programmers might think this way and then intermix C# classes in their code as I have in this chapter.

The opponents (in our case the Visual Basic .NET architects) believe (as Java's architects do) that operator
overloading works against team projects and can make code harder to maintain. The following section makes
the case for it facilitating complex numerics. (See Chapter 8.)

Table 5−12: Referenced Exceptions

Exception Object Purpose

 Operator Overloading

157

DivideByZeroException See the Arithmetic Operators section

InvalidCastException To handle an exception raised when attempting to make an invalid
type conversion

OverflowException See the Arithmetic Operators section

Exceptions Referenced in this Chapter

Table 5−12 above lists important exceptions that you may encounter when working with operators. Arithmetic
operators can cause divide−by−zero exceptions (DivideBy Zeroexception) when the right operand evaluates
to zero. The InvalidCastExamption and the OverFlowException can be raised when implicit type
conversion fails during assignment.

Observations

This chapter presented the first major encounter with C# mixins and language interop in a Visual Basic
project. Many programmers will dislike this and wonder what C# code is doing in a Visual Basic book. Let's
remember that it's not unusual to find HTML, JScript, and SQL in many books devoted to classic VB. More
importantly, the common language runtime allows us to do something with other .NET languages that might
not be that elegant, clean, or even possible with Visual Basic.

We believe that this "deficiency" will be short lived for Visual Basic and have therefore stopped short of
elaborating upon operator−overloading code in C#. In fact, not long before the final release of the first version
of Visual Basic .NET, Microsoft began laying the foundation for operator overloading in Visual Basic. When
you consider that an expression like A Mod B is the equivalent of A −Int(A / B)* B #
CLng(Math.Sign(A))<> Math.Sign (B))*, then you will appreciate how important this is.

Finally, for further reading on floating−point arithmetic, a good starting point is the Internet, which links to
many pages devoted to the IEEE 754 specification.

 Exceptions Referenced in this Chapter

158

Chapter 6: Software Design, Conditional Structures,
and Control Flow

Overview

The logical and typical flow of execution of a program is top down. Just as you read the words on this page
starting at the top of the page and moving to the end, so too is it natural for execution to proceed in this
sequential ordered manner. This is known as sequential execution. However, you can alter execution flowto
provide choices that execute one expression or a block over anotherwith statements that either transfer control
to other locations of the method or otherwise branch or jump from the line that it is currently on to another
area in the routine.

During the 1960s and 1970s, overuse of this transfer of control created programs that were hard to maintain
and debug. A user could typically jump from one place to another with many lines of code in between. The
problems programmers faced were often blamed on the infamous goto statement, which was cited as a reason
advancements in software engineering were slow from the mid−1900s toward the end of the 20th century.

If you are new to programming, goto lets you transfer control to any number of labels in a method. The more
labels you have the more incomprehensible the program becomes. In the early days of computing, most
programs were reams of unstructured code that were to software what a mile of ticker tape is to modern
communications.

You may remember programming like that in Dbase: trying to find a bug required printing miles of code on
tractor−fed printer paper (laser printers cost about $8000 then). Those goto statements were like black holes in
spaceonce you got sucked into one there was no way out.

The most important tenet of modern control−flow programming is to keep the line to be executed and the
decision to execute that line as close together as possible. In other words, if you are going to execute a line
based on a test that returns True, then that line should be the next line, not one that is 15 lines away.

Before the advent of structured programming, goto could transfer from line 15 to line 156443. Today, goto
can only leapfrog short distances in the method, which is how it has been with classic Visual Basic. Now there
is no reason for it to exist in object−based programming, or in the .NET languages. As a programmer, it's hard
to see how goto is still with us for backward compatibility when so much legacy or classic code has to be
rewritten.

Well−known engineers of the formative years of computer science, such as C.A.R. Hoare, Niklaus Wirth,
Edsger Dijkstra, Corrado Bohm, and Guiseppe Jacopini, actively lobbied for the abolishment of goto. They
held conferences and wrote many papers demonstrating the superfluousness of goto. Using flow diagrams
similar to the ones in this chapter, they would demonstrate how alternative structured control/flow constructs,
such as Case and If, could be used to control the sequence of execution and improve the readability and
manageability of program code by an order of magnitude.

These constructs heralded the age of structured programming. Nevertheless, goto still made it into the BASIC
language where it loiters to this day. Its inclusion in Visual Basic .NET is not auspicious to say the least, but
we will discuss it again later in this chapter.

Before you embark on this chapter, keep this important rule in mind: The code in your methods should be
organized as straight−line as possible. Avoid code that is anything but top−down. When you read this page

159

you don't expect me to suddenly finish this sentence in the middle of the page, then jump to the sentence at the
end and then return here. This can be avoided by keeping the related statements as close together as possible.

Note See also Corrado Bohm and Guiseppe Jacopini, "Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules." Communications of the ACM, Vol. 9 (May
1966), 366371.

Control Structures

Although control and flow structures like If statements have been around for a while, old habits and poor
education have carried structured software development into the world of object−based programming and
object−oriented development. One example is how the code on Web sites suffers from this malaise, which is
why Web sites cost so much to maintain. It's as if we are back where we started, four or five decades ago.
ASP.NET goes further than any other technology to change that situation for Web developers (see Chapter 1).

The aforementioned Bohm and Jacopini showed us back in 1964 how programs (sans goto) could be
expressed in terms of three core control structuresthe sequence structure, the selection or decision structure
and the repetition structure. These structures are further explained as follows:

The Sequence Structure The default of all .NET languages in which instructions are executed in
sequence, as they are written.

•

The Decision Structure This structure uses the If statement to test the verity of a condition. Multiple
choices for tests include the selection structures such as Case. These constructs interrupt the sequence
and transfer control to another location in the program.

•

The Repetition Structure This structurealso known as the iteration structurecomprises actions that
repeatedly execute lines of code until a condition changes, such as a number (until x = y) or when the
end of a list or data structure is reached. They include the recurring While, Do, and For loops, and
they are useful for iterating through lists, arrays, and other data structures. (Iteration is also achieved
through recursive method calls, which are discussed in the next chapter.)

•

Control Flow

Algorithms will process one line of code after another if that's what we want them to do. We should always
write code on the premise that the line of code after the one currently being executed may not always be the
next logical choice of instruction or statement to process. Good program design and implementation should
always be cognizant of the state of the program and its data, the environment, the machine, the user, the
network, and thus of the entire system at any given time. Every line of code executed should be "fully
considered." See the use of assert methods in Chapter 17.

Much of what we discuss in this chapter will also be applicable when enclosing code in the exception
handling constructs (Try . . . Catch . . . Finally) discussed in Chapters 7 and 11, so pay attention. It's all very
well saying "I will just send the command to the server and, if the connection is not open, an exception will be
raised to take care of the error."

That's not good programming. Triggering or raising exceptions does not always happen immediately. So the
program and the user sit waiting and wondering if the sky has fallen out of the universe before an error pops
up saying "network not available" or "database is off−line." Exception objects are very useful and very
important but they are objects that take up space in memory, processor cycles, and garbage collector "energy."
Better to test the logic of making the call before shooting first and then "waiting" to see what happens (see

 Control Structures

160

Chapter 17).

Note If you are new to exception handling, see Chapters 7 and 11. Many lazy programmers besotted on the
wonders of SEHrely too much on exception handling, which results in poor code.

Every line of code you write that will alter the program's state should test a condition for every instruction you
are going to give the computer. This is called defensive or assertive programming. You don't want to get
carried away with this, though. It would be a waste of energy to perform a fancy logic check just to change the
font of a label (see Chapter 17).

The introduction of and aggressive training in structured−programming techniques helped to accelerate the
transformation of strictly top−down code execution to a more deterministic execution where, at any given
time in a program, execution could substitute one course of action for another.

The scope of the jump in object−based programming has been narrowed to small and manageable methods.
Inside our methods there may be lines of code that are never executed because the conditions are always
favorable. If the flight deck is always kept clear when the jets land on the carrier, then there is no need to raise
alarms.

A good example of code that programmers never expected to execute lay in the many thousands of lines of
our Y2K software. Despite the billions spent to make sure such code remained unexecuted, there were still
many annoying errors at the end of the century.

OOP and the intermessaging or call process between objects and between methods allow both concurrent
execution and transfer of execution to take place in an organized fashion. The transfer or flow can be
intra−object, which means one method calling another method in a class (as illustrated in Figure 6−1), or
inter−object, which means one method calling another method in another object, through message
interchange, possibly even in another process, on another machine. Polymorphism between objects plays an
important part in all this, as we will discuss in Chapters 10, 13, 14, and 15.

Figure 6−1: Execution transfer as a result of a method call always returns
While the aforementioned calls transfer control out of a method, it is worth noting that they always return to
the methods that made the calls. This return process is not only inherent in the .NET architecture, but in all
modern object−oriented software development languages. While methods return you can write code that lets
you continue with another process while the called method continues to work on its problem. This is known as
an asynchronous method call (the target method makes a call back) and the techniques are discussed in
Chapters 7 and 14.

Returns from method calls can bring back data in the form of references to objects and actual values. These
are called return values. Standard subroutines return without data. Methods are discussed in greater depth in
Chapter 7.

We call this continuous execute−test data−transfer model the control and flow, regardless of where it occurs
in the program. Understanding the basics in this chapter will prepare you for the upcoming discussion of the
construction and programming of objects.

 Control Structures

161

Fully Sketched Code

In the software design process, it is imperative to design, model, and fully consider your algorithm before you
code it. When you're constructing code, a number of formal "notations" allow you to "sketch" out a design.
These include the following:

Step−Form Notation•
Pseudocode•
Nassi−Schneiderman Charts•
Flowcharts•

Step−Form Notation

This process helps you design algorithms by requiring you to list the steps of the code as illustrated here:

Determine if the array is longer than one element.1.
If it is, create a variable to represent the first index of the array and2.
Create a variable to represent the last index of the array.3.
Check if the value of the first index's element is less than or equal to that of the last one.4.
If the value is higher, swap the values.5.
While the first index variable is not at the end of the array and the last index variable is not at the
beginning, increment the first index variable by one and decrement the last index variable by one.

6.

Repeat step 6 until the index positions intersect in the middle of the array.7.

Designing algorithms in this manner, or with the notation discussed in the next sections, might seem tedious
and unproductive. Yet, when you have a complex algorithm to code, you will discover that it's expeditious.

Pseudocode

Pseudocode is the "language" you use to "think" out your code before you convert it into Visual Basic code.
There are no formal specifications, and it can intermix source code English, and other languages. However,
you must keep the pseudocode consistent. We will use some pseudocode to explain concepts here and
throughout the book.

The preceding step−by−step notation can be expressed as pseudocode like this:

If array length is greater than 1, then1.
Create a variable for index 0 and then2.
Create a variable for the index at the length of the array.3.

There appears to be little difference between these two forms of notation; however, the softer style of
pseudocode lets you be more expressive, and thus more precise. Pseudocode is more popular for designing
algorithms; in later chapters we'll sketch some algorithms and define the methods.

Nassi−Schneiderman Charts

Nassi−Schneiderman (NS) charts provide a more graphical means of expressing algorithms. These charts are
represented using the symbols illustrated in Figure 6−2.

 Fully Sketched Code

162

Figure 6−2: The Nassi−Schneiderman (NS) charts for graphically designing algorithms
The NS chart in Figure 6−3 represents the formal design of our step−form and pseudocode notations
described above (abridged).

Figure 6−3: NS Chart for designing the process to step through the array
NS charts are easy to use, yet difficult to maintain in larger programs; thus, few programmers use them
currently. Most prefer to work with flowcharts, the de facto graphical notation for designing and expressing
control flow and program states.

Flowcharts

Flowcharts formally express selection, decision making, and repetition using diagrams to depict the control
and flow. These graphics use symbols that represent start and stop points. The decision diamond, the rectangle
where processing (such as incrementing a number) occurs, is usually constructed with True taking the action
path to the right and False taking the action path to the left.

Figure 6−4 illustrates the symbols used in simple flowcharts and, at the same time, represents the formal
design of our step−form and pseudocode notation described earlier.

 Flowcharts

163

Figure 6−4: The flowchart for stepping through the array
A number of advanced symbols have been added to the flowchart notation over the years. Refer to Visio 2002
for Enterprise Architect, for an extensive assortment of symbols and alternative flowchart structure.

Flowcharting is the best way to design software that requires a lot of switching, decision making, and
selection. A good example is computer telephony programs in which you have a lot of selection
constructspress 1 for English, 2 for Xhosa, 3 for Zulu, and 4 for Yiddish.

Design Pitfalls

There's a point at which you must decide on a design and begin to write code. If you overdesign, either you
never write or your customers get exactly what the model specifies, even if it's wrong. If you underdesign,
your customers get everything but what they wanted. The latter is more common and often results in
undocumented code. The only person who knows what's going on is the one who wrote it. Code should be
written well enough that any programmer could quickly decipher the process and purpose at the code level.

The model provides the abstraction and identifies the scope, flow, and sequence of events. But the model is
not the asset; the only true documentation for your code is the code itselfas long as it is well written. This is
especially true of modern object−oriented software development architectures. The various languages
(including Java) are all so similar that if you can read one you can read them all.

Modeling languages like Unified Modeling Language (UML) are invaluable for high−level design. UML
models could be used as the base for quality control, maintenance, and documentation if they could make the
natural connection, or bridge, to the code more profound. In many projects, UML models turn out to be the
sophisticated sketchpads tools for abstractionof the software architect's mind. But the programmers who write
the code seldom get to work from the models.

Note Chapter 9 introduces basic UML constructs used in this book.

Many code segments, however, need to be expressed in natural language before they can be converted to
code. The mind that can think in code like this is rare. In many cases, designing complex data structure cannot
be achieved without "playing" out the procedures in a flow diagram, pencil drawings, or in pseudocode.

You also need to fully understand what inheritance, aggregation, interfaces, and so on can do for your
products. The biggest problem with object−oriented architectures is that few people are aware of all their
features, know how to use them, or care to use them. Many programmers criticize features like inheritance and
interfaces without really knowing why they have been provided.

 Design Pitfalls

164

Often code is repeated throughout an application, yet there is no formal design or architecture created via a
pattern, interface definition, or diagram. It's no wonder that electrical engineers make such good software
programmers. They often design software as they do circuit boards or CPU chips or light bulbs.

Conditional Statements

Conditional statements control the execution of other statements in our algorithms. To clarify thisthe
execution of certain statements is effected on the conditions that may be present in our code. These are
determined by evaluating data that represents a condition, such as the following: a machine may be on; the
temperature inside a fuel injector may be 10,000 degrees Celsius; our velocity may be increasing to a point
that could cause system destruction.

The conditionals allow us to either execute the statement, or avert or circumvent its execution. They afford us
the ability to fully consider taking important steps in our code, or redirecting the flow of execution to achieve
certain objectives. Conditional statements have existed for decades in all programming languages and were
first introduced by the doyens of our profession, such as C.A.R. Hoare (Case) and John McCarthy (While).

Visual Basic .NET supports several conditional and looping statements for control and flow in programs. We
will also look at the Error conditional (goto's partner) and cases shortly, but a much larger treatise of error
handling and the new to Visual Basic structured−exception handling (SEH) constructs are covered in Chapters
7 and 11.

Table 6−1 lists the conditional statements that are supported by Visual Basic .NET. There are also a number
of legacy conditional functions, such as Else If, that we will discuss later in this chapter.

Table 6−1: Conditional Statements

Conditional Action Statement

Decision Making and Switching If. . .Then, Else, Else If, Select Case

Branching GoTo, OnError

If

The If statement is probably the most important conditional of all programming languages and is used in
virtually every one. Conditionals derived from C often do not make use of Then in the statement, which is
evident with C# and J#. The C−derivative languages use curly braces to delineate the block to be processed
(see Chapter 4).

The condition can be one of two types. First and typical, it can evaluate if something is either true or false.
This form of If is the classic usage. Second, it can test for the type of an object passed to a method using the
TypeOf keyword or operator. The latter lets you code conditional routines depending on the type of object
being referenced in a method.

The simplest form for this conditional is just plain If . . . Then. The entire If construct, however, must be
terminated with the End If statement.

The If works as follows: If the test is found to be True (what you want to be so), the process continues into
the block, and the code will be executed. If the test is found to be False, then the program jumps over the code
directly after the test and exits the If block. Figure 6−5 shows how this works when your code is executed.

 Conditional Statements

165

We will use flow diagrams to explain these elements.

Figure 6−5: The If syntax flowchart
As we have seen, when a variable tests True, the statement after Then is executed. The syntax for the above
flowchart is as follows:

If condition Then [Then statements]

And coding it is straightforward, as shown here:

If X = Y Then 'if condition is true then
 Debug.WriteLine("True") 'execute this statement
End If

When the condition to test is complex, use brackets to make the code more readable. However, be sure the
expression is being properly evaluated according to the operator rules of precedence. See Chapter 5,
"Operators." Here is an example of such bracket usage:

If (i >= j > (j + z)) Then
 Swap(a(i), a(j))
End If

Stacking and Nesting If

You may often find yourself nesting or stacking If statements. The following example demonstrates the
stacking of multiple If statements:

If (if a.Length > 0) Then
 pivotChar = leftSideIndex
End If
If leftSideIndex >= rightSideIndex Then
 swap(pivotChar, a(rightSideIndex))
End If

The above code is nothing more than independent If statements arranged one on top of the other. When you
stack repeatedly like this, code becomes hard to read, is error prone, and might not perform as expected. When
you need to test additional elements under the control of a single If construct, then use the Else If discussed
later in this section.

Note Visual Basic .NET also supports a multiple−selection construct called Select Case, which we will
investigate later in this chapter, so if you need to "stack" more than two If statements, your design may
be better off with a Select Case statement. Also, there will be times when you need to construct a

If

166

complex Boolean expression to test against and you may find that the functions contain superfluous
variables. To build these correctly, you need to know how to articulate using high−level Boolean
algebra, which you can accomplish using a Karnaugh map representation of a logic truth table.

If the intention is to enact the second If statement on condition that the first If premise is true, then the
preceding code must be nested as follows:

If (if a.Length > 0) Then
 pivotChar = leftSideIndex
 If leftSideIndex >= rightSideIndex Then
 swap(pivotChar, a(rightSideIndex))
 End If
End If

In this code, if the length of the array called a is greater than 0, the second If statement will be processed. If,
however, a.Length is not greater than 0, the inner If statement will not be processed because it belongs to the
executable code of the outer If statement.

Alternate Syntax for Simple If Statements

When the conditions are all placed on one line, the If statement can be executed using the new line marker ":"
as follows:

If (i >= j > (j + z)) Then : j += 1 : Swap(a(i), a(j))

Notice that the End If terminator is not needed in the single−line construct.

Tips for If

You will find that the Try . . . Catch (SEH) construct discussed in Chapters 9 and 11 is a lot like the If
conditional, and thus much of what we discuss here will be equally applicable for SEH.

Never put the code you are going to execute at the other end of the nested If blocks; put it right underneath the
conditional test in order to execute it. Here's an example of what not to do.

If Inj1.IsOnline Then
 If cTemp <= 0 Then
 Inj1.oState = −1
 End If

cTemp = Inj1.oTemp
End If

What's wrong with the above code? First we check if the Injector system (a space flight engine component) is
online. We find that it is, so we test if the cTemp value is less than or equal to zero. The problem in the code,
however, is that the line of code that obtains the current injector temperature, obtained from the object's
oTemp property, is executed after the inner If block. This means that we are probably setting the oState on a
stale value rather than a current one. This could result in an injector overload that could cause a major
disaster. The right way to code this is as follows:

If Inj1.IsOnline Then
cTemp = Inj1.oTemp

 If cTemp <= 0 Then
 Inj1.oState = −1
 End If

If

167

End If

Else

The Else statement is optional, but dependent on If, and it is executed only if the If statement tests false. The
Else works as follows: If the test is found to be true (what you want to be so), the process will continue into
the block, and the code will be executed. However, if the If test is found to be false, then the execution jumps
over the code directly after the test and enters the Else block.

The syntax for the flowchart illustrated in Figure 6−6 is as follows:

Figure 6−6: The Else syntax flowchart
If Condition Then
(If Statements)
Else
(Else Statements)
End If

And coding it is straightforward, as shown here:

If Inj1.IsOnline Then
 cTemp = Inj1.oTemp
 If cTemp <= 0 Then
 Inj1.oState = −1
 End If
Else
 Inj1.oState = −1
End If

In the above code, the injector's state is set as 1 because it was found to be offline. Without the Else, the block
would have terminated without the benefit of making a change based on the false result, or providing some
other exchange.

Else If

We use Else If to advance the test to additional elements. It works as follows: If the first If test is found to be
false, execution "jumps" over the code directly after the first test and enters the first Else If block. This next
block then proceeds as if it were the original If test. In other words, this feature affords you additional chances
to test a condition. Figure 6−7 shows how the conditional Else If works when your code is executed.

 Else

168

Figure 6−7: The Else If flowchart
The syntax for the above flowchart is as follows:

If Condition Then
(If Statements)
Else If Condition−n Then
(Else If Statements)
Else
(Else Statements)
End If

The Else statement is also optional and you can nest multiple If statements in the original block as well. The
code for the above flowchart is as follows:

If numReceived = DialTone Then
 pTone = localDialtone
ElseIf numReceived = TieTone Then
 pTone = tieLineDialTone
ElseIf numReceived = OperatorTone Then
 TransferToOperator
Else
 pTone = fastBusy
End If

In the above code block, each Else If after the If tests for additional conditions. As soon as one variable is
found to be true, the code inside that Else If block is executed and then the entire If construct is abandoned.

Tips for Else and Else If

Else If should be used to test multiple conditions. It is helpful in situations when you have two, or at the most
three, statements that you want to test within the one logical If block. Your code will become too hard to read
or debug if you are running more than three Else Ifs.

 Tips for Else and Else If

169

Using Else If, you can decide that if the first test is false, then possibly the next one might be true and if the
second is also false, then the third might be true.

If level = desiredLevel Then
 ShutDown(ShuttleInjector)
ElseIf desiredLevel > 14 Then
 Alarms(Critical)
ElseIf desiredLevel < 24 Then
 Alarms(Warning)
 Exit Sub
End If

But if you need to evaluate only one variable, your code would be easier to read using the Select Case
conditional.

Avoid a Null If

I have often seen code in which the programmer has chosen to do nothing when the condition tests true. This
is known as a classic "null If" and looks like this:

If (intI >= intJ) Then
 '
Else
 intI += 1
End If

While this code compiles, it's pointless to include the Else. It is better to negate the predicate in the If
statement and drop the Else option altogether. The code is better as follows:

If Not (intI >= intJ) Then
 intI += 1
End If

Badly Formed If Statements

A common mistake in nests is to interject the logical progression of the code with Else statements. At best,
this makes the line hard to read and at worst, produces coding disasters. While the following code will
compile, it not only makes it harder to read but prone to bugs.

If Inj1.IsOnline Then
 cTemp = Inj1.oTemp
Else
 Inj1.oState = −1
 If cTemp <= 0 Then
 Inj1.oState = −1
 End If
End If

What's wrong with this code? By interrupting the logical progression of the code with the Else, the code that
should be executed is pushed to the end of the outer If block instead. The result is that values are changed in
the wrong order.

This next example is better.

If Inj1.IsOnline Then

Tips for Else and Else If

170

 cTemp = Inj1.oTemp
 If cTemp <= 0 Then
 Inj1.oState = −1
 End If
Else : Inj1.oState = −1
End If

The general idea, which also applies to the SEH Try . . . Catch blocks, is to fully code the outer If block
before you mix in the nested blocks or alternative constructs. Once you have done this, make sure the line you
need to execute on the first true condition is completed before you begin the next conditional (if the condition
was true). When you have fully written the outer If, you can code the next If block and nest deeper.

If at the end of the construction the left side of the If block looks like a haphazard broken plank, then you
have a problem. If on the other hand, through proper indentation, the code looks like an arrowhead and all the
Else If and Else statements are neatly stacked under it, then you are on the right track. The entire collection of
If statements should be on the upper part of the arrowhead.

Off−by−One Errors

You should also avoid off−by−one errors in If statements by fully considering when the less than or equal to
operators (or the greater than or equal to operators) are more appropriate than the less than (or greater than)
operators. In other words, the code:

If Inj1.Temp > CriticalTemp Then '40 degrees

is better written as

If Inj1.Temp >= CriticalTemp Then

if the temperature should absolutely not rise above 40 degrees. On the other hand, the following example
produces the reverse of the desired results if you use the "less than or equal to" sign.

If Customer.Age <= legalAge then
 CanBuyBeer = False
Else
 CanBuyBeer = True
End if

While the age limit for buying beer is 21, this code forces the drinker to wait an extra year.

There will be times when the condition should be either less than or greater than; but the key is to not redirect
or avert the process when in fact you should be executing. In the above example, if the critical temperature is
40 and above, then the operator should use >= to avoid the off−by−one error.

Select Case

What would a programming language be without its Case or Switch statements? The Visual Basic .NET
SelectCase conditional structure is identical to the one in VB 6 and earlier versions.

The Select Case works as follows: An expression is passed to the Select Case function, which proceeds to
test each "case" until it finds a Case value that matches the test expression. The procedure will then continue
into the matching Case block, and its code will be executed. Afterward, the Select Case is abandoned. Figure
6−8 shows how the conditional works when your code is executed.

Tips for Else and Else If

171

Figure 6−8: The Select Case flowchart
The syntax is as follows:

Select Case expression_to_test
Case Value1
 Statements−for−value1
Case Value2
Statements−for−value2
Case Else
Case−Else−Statements
End Select

Here is an example of Select Case:

Select Case Color
 Case Gray
 Grid.BackColor = Color.FromArgb(128, 128, 128)
 Case Red
 Grid.BackColor = Color.FromArgb(255, 0, 0)
 Case Black
 Grid.BackColor = Color.FromArgb(0, 0, 0)
 Case Else
 Grid.BackColor = Color.DefaultColor
End Select

In the above code segment, the method receives a variable representing the color chosen by a component user.
For example, if the argument Red is passed to the Color parameter, the code in the second case (Case Red) is
executed. The other lines are ignored. The optional Case Else is a safety net that triggers if the argument does
not have a matching Case scenario in the Select Case construct. Normal execution resumes on any code that
comes after the End Select statement.

Each Select Case expression can be complex and comprise elements such as function calls, multiple values,
complex Boolean logic, and sundry comparison operators. When a Case expression is complex, the Case

Tips for Else and Else If

172

block that is executed will be the first one that matches the result of the complex call or computation. The
following example demonstrates this:

Select Case Target.Position
Case TargetDown
'do something
Case TargetUp
'do something
Case TargetTurningIn
'do something
Case TargetTurningOut
'do something
Case TargetNoChange
'do something

You can use the new line symbol ":" to make the code easier to read for simple Select Case blocks as follows:

Select Case x
 Case 1 : x += 1
 Case 2 : x −= 1
End Select

The big difference between the If. . . Else If statements and the Select Case is that If. . . Else If can be used to
test a number of alternative Boolean expressions in each block of the entire construct while Select Case
examines only one and then uses the result to return the case paired with the True condition or run the code in
that case.

GoTo

As mentioned earlier, goto (or GoTo) is still used in Visual Basic to help port code and assist with backward
compatibility, though it is not essential to the .NET Framework. Since GoTo was one of the primary elements
of classic BASIC and many other languages, programmers trained in these systems may find it difficult at first
to write code without it.

It is surprising that C# supports goto because C# rarely needs to help port. This brings to mind only Java and
J++ code, but Sun eliminated goto from Java so it wouldn't "pollute" the language.

Here's how it works. The GoTo keyword causes execution to jump from the current line to a label somewhere
else in the block. The syntax is as follows:

GoTo Label

The following code illustrates the "disciplined" usage of GoTo branching. Anything more advanced would
become too complex to understand and document.

Start: str = Console.ReadLine()
 num = CInt(str)
 Goto Line0 'Check num and branch to its corresponding label.

Line0: If num = 1 Then Goto Line1 Else Goto Line2
Line1: Console.WriteLine("This is Line 1 and you typed 1")
 Goto Line3

Line2: Console.WriteLine("This is Line 2 and you typed 2")
 Goto Line3

 GoTo

173

Line3: If num > 2 Then Console.WriteLine() Else Goto Start

Notwithstanding its shortcomings, there are some rules that govern the use of GoTo in Visual Basic. They are
as follows:

GoTo can be used to branch to regions of code only within the procedure blocks in which it is
referenced. It cannot jump all around a unit of code as they did in the days of unstructured procedural
programming.

1.

GoTo can be used in the new Try . . . Catch . . . Finally blocks discussed in Chapter 11, but a GoTo
in the Try block cannot direct execution to a label or line in the Catch or Finally blocks of the same
SEH block.

2.

A GoTo statement anywhere in the SEH block cannot direct execution to any line outside the entire
handler.

3.

OnError

The OnError statement will also be familiar to classic VB experts. The following OnError conditionals are
supported:

OnError GoTo line•
OnError Resume Next•
OnError GoTo 0•
OnError GoTo 1•

The OnError statement is a conditional construct, which is why we have mentioned it here. It effects a jump
to an error−handling code segment marked with a label that you need to specify. There is no inherent
error−handling support built into the web and woof of the software language that is supported by the
compiler, as there is with SEH. See Chapter 11 for examples of OnError.

Loops

Visual Basic supports the usual loop statements that let you execute one or more lines of code repetitively
while a condition is a certain value, or until it becomes a certain value. The following loops are supported by
Visual Basic .NET.

Do . . . Loop•
For . . . Next•
For . . . Each . . . Next•
While

Note While is supported but it now terminates with End While and not Wend, as was the case with
earlier versions of Visual Basic.

•

DoLoop

The Do . . . Loop command repeats the execution of a block of code for as long as a condition remains True
or until it becomes True. The two variations use the key words While or Until to test the condition: the
former uses While, the latter Until. The syntax for both tests is as follows:

 OnError

174

Do [{While | Until} condition]
 statements
Exit Do
 statements
Loop

Visual Basic .NET also supports the following variation:

Do
 statements
 Exit Do
 statements
Loop [{While | Until} condition]

Here is a simple example of the Do . . . Loop:

Do
 number = number + 1
 Debug.WriteLine("*")
Loop Until number = 50

Now we become more advanced with nesting and other techniques:

Dim incR As Integer
Dim conD As Boolean
 Do
 Do While incR < 500
 incR += 1
 Console.WriteLine("Now at: " + CStr(incR))
 If incR = 500 Then
 conD = True
 Console.WriteLine("Now at: " + CStr(incR) + " and Finished")
 Exit Do
 End If
 Loop
 Loop Until conD = True

There is no limit to the number of levels you can nest to, as demonstrated in the preceding code. But the more
you nest, the more unreadable your code becomes. There is also not much difference between using While
and Until. Use whatever makes your code more intelligible and suits the algorithm.

For. . . Next

The For . . . Next statement is a classic and has been preserved for this version of Visual Basic. The following
example illustrates this loop:

sArray = s2.Split(seps)
 For intI = 0 To Ubound(sArray)
 Console.WriteLine(sArray(intI))
 Next intI
Console.WriteLine(s2.Join("*", sArray))

 For. . . Next

175

In this illustration, I is an Integer declared as a "counter" that increments every Next I of the loop ranging
from 0 to the upper bound of the array (0 To Ubound(sArray)). You can run this loop for the duration of any
range of ordinals, but you should avoid updating Short or Long counters because the Integer is a highly
optimized type. Of course, the difference would impact your application only if you were performing
thousands of operations, such as parsing a huge file or sorting a massive array. The following example would
be slow if the counter I were declared a Decimal.

Dim foo As Long
For foo = 0 To Ubound(massiveArray)
 FillArray(sValue)
Next foo

If the number of elements in this array exceeded 32,767, you would have to declare I as Long, but it would
run much slower than if I were an Integer because Long is much wider.

For Each . . . Next

For Each . . . Next is similar to For . . . Next, but it loops for each element or subscript of an array or
collection instead of for a specified number of times. (See the chapters that cover arrays and collections and
data structures, Chapters 12 and 13 respectively.) Here is the syntax for this loop:

For Each (elementvariable) In collection

'Statement block to be executed for each value of elementvariable.

Next [elementvariable]

For each iteration of the loop the variable elementvariable is set to one of the elements in the collection before
the statement block is executed. When all the elements in the collection have been assigned to
elementvariable, the For Each loop terminates and control passes to the statement following the Next
statement.

You can choose to specify the element variable on the Next statement. Doing this will improve the readability
of your program but you must specify the same variable that appears in the For Each statement.

The following method accepts a data structure and forces every object in the structure to erase its data fields:

Sub EraseAllNodes(ByRef OldTree As Tree)
 Dim OldNode As Node
 For Each OldNode In OldTree
 OldNode.Erase
 Next OldNode
End Sub

The elements of a collection can be of any data type; however, the type of elementvariable must be such that
each element of the collection can be converted to it.

If you plan to loop through custom collections, the collection must be an object that exposes GetEnumerator
method. GetEnumerator returns an enumerator object that exposes a Current property and a MoveNext
method. (See Chapters 12 and 13 for information on the IEnumerator interface.) The Visual Basic uses these
to traverse the collection. In addition, the elements returned by the Current property must be convertible to
the data type of elementvariable.

 For Each . . . Next

176

Because arrays are implemented as collections, you can use a For Each . . . Next loop to iterate through them.
This procedure presets all the elements of an array to 128:

Dim foo As Long
For Each foo In massiveArray
 FillArray(sValue)
Next foo

See the FillArray method in Chapter 12, which demonstrates advanced implementation of For Each . . .
Next.

While

While executes a group of statements while a certain condition is True. The procedure is the same as it was in
earlier versions of Visual Basic; however, this loop now needs to be terminated with End While and not
Wend. The syntax for While is as follows:

While condition
 statements
 End While

The condition parameter can evaluate to True or False. If the value is null, then it is considered False. As
soon as the variable evaluates to false, the loop will end; as long as it evaluates to True the code in the
statements section will be executed. The following is another way of executing the Do . . . Loop example
provided earlier (While is actually more complex when taken to several nested levels):

Dim incR As Integer = 0
Dim conD As Boolean = True
 While conD = True
 incR += 1
 Console.WriteLine("Now at: " + CStr(incR))
 If incR = 500 Then
 conD = False
 Console.WriteLine("Now at: " + CStr(incR) + " and finished")
 Exit While
 End If
 End While

The Exit While keywords are redundant in this loop but are included for illustration. The loop will end at the
next iteration of the outer loop because the Boolean value Cond will evaluate to False when the counter Incr
reaches 500.

One or the Other Conditional Functions

The classic either/or selection functions (Choose, IIF, and Switch) have entered Visual Basic .NET via the
Microsoft.VisualBasic namespace. We'll discuss them briefly in this section. The underlying architecture for
all three functions is the same.

Choose

The Choose function is a conditional element that returns an index value based on a list of function arguments
provided as choices. The first is index 1 (it is not a zero−based list), the second is index 2, and so on. The

 While

177

function looks like this:

Choose(index, choice−1[, choice−2, ... [, choice−n]])

and it works as follows:

Dim indx As Integer = 2
Console.Writeline(Choose(Indx, "Pears", "Apples", "Oranges", "Mangos"))

The list of four fruits in the example is indexed 1 through 4. The argument indx is an integer that is initialized
to 2 in the example. Calling the function Choose and passing "2" as the index value for indx, results in
selecting item 2 (Apples) from the list.

IIF

The IIF function returns one of two objects based on the Boolean result of an expression. Here's an example:

Function CanSwallowBeer(ByVal age As Integer) As String
 CanSwallowBeer = IIF(age = 21, "No swallowing", "OK to swallow")
End Function

The IIF function takes three arguments. If age is less than 21, the condition for the first argument to pass to
the IIF's first parameter will be False and the third argument will be returned. A True condition returns the
second argument.

The syntax for this function is as follows:

Public Function IIf(ByVal Expression As Boolean, _
 ByVal TrueArg As Object, ByVal FalseArg As Object) As Object

All three arguments must be provided. The Expression is that which you want to test, the TruePart is a type
that is returned if Expression evaluates to True; the FalsePart is a type that is returned if Expression
evaluates to False.

You can pass method calls to this function as the first argumentin the first position, the call will return a
Boolean result. IIF tests the function call passed as an argument, so expecting IIF to call a function based on
the Boolean result of the first method call can be tricky, if not overly complex code.

This example uses the IIf function to evaluate the level parameter of the CheckLevel procedure and returns
the word Safe if the amount is greater than 1000; otherwise, it returns the word Critical.

Function CheckLevel(ByVal level As Integer) As String
 CheckLevel = IIf(level = 500, "Safe", "Critical")
End Function

Switch

The Switch function evaluates a list of expressions provided in the form of a parameter array (see Chapter 7)
and returns the type and data associated with the first expression in the list that is True.

The syntax for this function is as follows:

 IIF

178

Public Function Switch(ByVal ParamArray VarExpr() As Object) As Object

The argument to send to the VarExpr() parameter must either be a single−dimension array containing an even
number of elements or a list of object variables separated by commas (the function parses the list of
subscripts, be it in list or array form).

The Switch function argument VarExpr() must comprise paired expressions and values because it analyzes
them from lowest to highest subscript in the array or list and then returns the value associated with the first
one that evaluates to True. For example, if VarExpr(0) is True, Switch returns VarExpr(1), and if VarExpr(0)
is False but VarExpr(2) is True, Switch returns VarExpr(3), and so on. This code should elucidate the
foregoing:

 Function SwitchSuppressant (fire As String) As String
 Return Switch(fire = "Wood Fire ByVal", "Water", _
 fire = "Gas fire", "Sand", fire = "Chemical Fire", "Foam")
End Function

If you do not supply the VarExpr argument, Switch returns Nothing. If the number of elements in VarExpr is
not divisible by two, an ArgumentException error occurs. As mentioned earlier, the foundation architecture
on which these are built is the same, so be careful when including function calls in the list or parameter array.

Note Using these functions requires you to set Option Strict to Off, which permits the late
binding. You need to also remember to Import the Microsoft.VisualBasic namespace or
fully qualify the path to the method's class.

Pausing, Resuming, and Exiting Iteration

Visual Basic provides the Stop and Exit keywords that can be used to suspend or break out of loops.

Stop can be used anywhere in methods to suspend execution, and it works like a breakpoint during
debugging. Stop suspends processing; it does not close down the application, free resources, or close files and
connections like the End keyword discussed in Chapter 4. However, the Stop statement works just like End if
you leave it in a compiled, executable (.exe) file, so take care when removing it or comment it out in beta or
release candidate code or when compiling in the so−called "retail" release mode (see Chapters 4 and 17).

This example demonstrates the Stop statement suspending executing for each iteration through the For . . .
Next loop (see Chapter 17, "Getting Ready to Release").

Dim intI As Integer
For intI = 1 To maxChecks 'Starts the For...Next loop.
 ShuttleInjector.PostLevel(CheckLevel(CurrentCase))
 Stop 'Suspend execution during each iteration and wait for input
Next intI

Use the Exit statement to directly exit out if any conditional structure, loop, or method. Invoking Exit
immediately transfers execution to the point in the code following the last control statement.

Exit is not used alone. You need to qualify the type of conditional or iterative construct you are exiting from
so that Visual Basic can correctly intervene. The ensuing list enumerates the types of constructs in which you
can call Exit:

Exit Select•

 Pausing, Resuming, and Exiting Iteration

179

Exit Try•
Exit Do•
Exit While•
Exit For•

The same qualifying rule applies to exiting out of methods. You can exit directly from a Function, Sub, or
Property procedure by specifying the type of method to qualify the Exit. The method qualifiers are as
follows:

Exit Sub•
Exit Function•
Exit Property•

The method Exit statements can also be used inside the conditional and loop structures, for example inside If .
. . Then . . . Else blocks. These are useful when you need to force a method to return at some point in your
code.

Exit Idiosyncrasies

When Exit is encountered in nested control−flow or conditional structures, execution of code continues with
the statement following the end of the innermost control statement of the kind specified in the Exit statement
and execution returns to the previous level in the structure (Exit should not be confused with the End
keyword). In the following example, Exit For is located in the inner For loop, so it passes control to the
statement following that loop and continues with the outer For loop.

Public Sub InvertMyElements(ByRef myArray(,) As Double)
 Dim intI, intJ As Integer
 For intI = 0 To UBound(myArray, 0)
 For intJ = 0 To UBound(myArray, 1)
 If myArray(intI, intJ) = 0 Then
 Exit For
 Else
 myArray(intI, intJ) = 1 / myArray(intI, intJ)
 End If
 'this line is now processed when Exit For is executed.
 Next intJ
 Next intI
End Sub

You can also insert multiple Exit statements in conditional and control flow constructs. The following
example shows this inside a Do loop:

Do Until level = desiredLevel
 If level <= desiredLevel Then Exit Do
 desiredLevel = CheckLevel(actualLevel)
Loop

The Exit Do statement works with all versions of Do loop syntax (with While or Until), and Exit For works
with all versions of For loop syntax (with or without Each). Here is an example of Exit in all three places.

Sub CheckLevel(ByVal desiredLevel As Integer)
 Dim intI, level As Integer
 Do
 For intI = 1 To 5000

 Exit Idiosyncrasies

180

 level = CheckLevel(ActualLevel)
 If level = desiredLevel Then
 Exit For
 ElseIf level > 25 Then
 Exit Do
 ElseIf level < 0 Then
 Exit Sub
 End If
 Next intI
 Loop
End Sub

In the above code a For. . . Next loop of 1 to 5000 is set up inside a Do . . . Loop, which will end if not
preempted before 5000 iterations. Inside the For loop we retrieve a value from a call into the CheckLevel
method and test the result in the If . . . ElseIf construct. We can then decide on the finality of the Exit based
on the result received from CheckLevel.

The Exit For statement lets you exit a For Each . . . Next loop before it has traversed the collection, which
provides a nifty short−circuit feature. For example, you could decide to exit a loop upon detection of a
condition that makes it unnecessary to continue iteration. A good example is acting on a user request to cancel
a download or a file copy to a remote location. Also, if you catch an exception in a Try . . . Catch . . . Finally,
you can use Exit For at the end of the Finally block.

Observations

We have devoted considerable time to the issues of control flow, iteration, and conditional structures because
understanding these constructs will enable you to correctly apply these tools to creating your algorithms, no
matter what the form, platform (Web or traditional applications), or problem may be.

Chapter 7 will take us to the next levelmethodsand explore an important alternative iterative model to loops:
recursion. It will further explore control flow in relation to recursion, method calls, and invoke−keywords. We
will also apply the concepts studied in this chapter to method development and construction.

You will find more examples on iterating, traversing, and working with arrays in Chapter 12. Chapter 11 deals
with structured exception handling. Traversing collections and data structures is further discussed in Chapters
12 and 13. For discussions on Boolean logic see Chapters 4, 7, and 16. See Chapter 4 for the scope and life
times of variables that are declared inside conditional code blocks such as If and Select Case.

There is perhaps no better way to end this chapter than with a quote from one of the fathers of software
development, Dr. Edsger W. Dijkstra: "We should do our utmost to shorten the conceptual gap between the
static program and the dynamic process, to make the correspondence between the program (spread out in text
space) and the process (spread out in time) as trivial as possible."

 Observations

181

Chapter 7: Methods

Overview

We started the sojourn into the Visual Basic language by looking at the fundamentals, such as declaration, the
built−in value types, and conversion. In Chapter 5, we explored operators and the operations they perform on
types. Chapter 6 investigated the variety of control, iteration, and flow mechanisms used in Visual Basic
algorithms. In this chapter, we bring together much of what we have covered in the past chapters to construct
our algorithms, methods, and properties.

This chapter is about making methods. We will investigate what methods and properties are, what they
constitute, their specific characteristics, and their application. This is a big chapter, divided into writing code
to call framework methods and writing code to implement your own methods.

This chapter also introduces theory on method performance and the running time analysis of algorithms. The
subject is not critical to building Visual Basic algorithms, but it is important if your focus will be on building
iterative or recursive algorithms and time−, resource−, and computation−centric solutions (as opposed to data
presentation). If you want to create the best possible solutions for your programming problems and
challenges, the subject is invaluable (it will also help you understand the .NET Framework documentation,
which makes more than casual references to algorithm performance).

In the pages to follow we will not only explore the implementation of methods but also the design and
construction of methods. We will build on the foundations laid to create industrial strength algorithms and
build sophisticated applications.

While this chapter is mostly about methods, it also discusses properties, which are sufficiently similar to
methods in construction and purpose to warrant discussion in this chapter.

What Is a Method

A method is a unit of functionality, an operation, within a class or an object. Programs comprise multiple
methods, organized in objects, and accordingly combined to solve a particular problem. As any dictionary will
tell you, a method is simply a way of doing something. In OOP, methods are the way we do things with
procedures and functions.

You can think of the term routine as a noun used to refer collectively to procedures and functions in
structure−oriented languages like generic Pascal and BASIC, while method is the collective noun in OOP.
Procedures are known as Sub methods in Visual Basic (short for subroutine) and do not return a value. To
return a value, you use a Function method. Both method types, respectively, are demonstrated as follows:

'A Sub method
Sub MyMethod()
 'Make hay . . .
End Sub

'A Function method
Function MyMethod()As Integer
 'Make hay and return the amount made
 Return amount 'or
 Return MyMethod 'or
 MyMethod = Amount

182

End Sub

A method is the encapsulation of specific blocks of functionality and data within a class, no matter whether
that method can be summoned or invoked statically (shared) or dynamically through object creation and the
subsequent collaboration with that object (see Chapters 2, 8, and 9).

By encapsulating functionality, methods fulfill the tenet of structured programming, discussed in Chapter 1.
Thus, methods provide the smallest unit or module of functionality in our Visual Basic applications. Methods
avoid code repetition and promote reuse, because numerous consumers may execute the same code. The
method thus has to be implemented only once in order to serve many.

Methods also provide additional levelsbehind the object interfaceof abstraction and encapsulation, the benefits
of which are described in many places in this book. Specifically, hiding data and functionality behind methods
reduces complexity, because once a method is defined, designed, and implemented, you can pretty much
forget about it. Using the method's functionality becomes a simple matter of calling the method (or sending it
a message as they say in Smalltalk circles). You no longer need to know or worry about how the method
workswhich means your method or class consumers don't either.

The illustration provides an abstract view of a method definition in a class.

The following is the "formal" syntax for the declaration of Visual Basic methods. Do not worry if you do not
understand the syntax at first (it's very cryptic); you'll pick it up as you check out the corresponding code.

MethodDeclaration ::= SubDeclaration | FunctionDeclaration
SubDeclaration ::=
[Attributes] [ProcedureModifier+] Sub Identifier [([FormalParameterList])]
[HandlesOrImplements] LineTerminator
 [Block] (implementation)
End Sub LineTerminator

FunctionDeclaration ::=
[Attributes] [ProcedureModifier+] Function Identifier
[([FormalParameterList])] [As [Attributes] TypeName]
[HandlesOrImplements] LineTerminator
[Block] (implementation)
End Function LineTerminator

The method declaration consists of several essential components in this space, starting with the method name
or identifier and ending with the End Sub or End Function method terminator.

 Chapter 7: Methods

183

The first elements in the declaration space of methods are the optional attributes, which were introduced in
Chapters 2 and 4. Access and implementation modifiers, however, are required (although there are defaults).

Types of Methods

The generally accepted style for organizing methods in classes is to categorize them into two groups:

Accessor methods An accessor method (often called a "get method") is used to access information
from another object or a local field in the current object and it does not manipulate the object or
change its data in any way. An example of an accessor method is one that would allow us to query the
current state of an object. Accessor methods are also often used to perform calculations and compute
data.

•

Modification methods A modification method (often called a "set method") lets you manipulate an
object and change its data. It can be designed to compute values, perform calculations, interact with
external objects, and ultimately change the specific state of an object, values in variable fields, and so
on. An object might have an "on" condition, for example, and you could use the modification method
to set the condition to off.

•

Both accessor and modification methods can access the object's data fields (the instant variables and
constants). The accessor methods access data and can even be activated or called by the other members of the
class. The modification methods also use the data provided by the instance fields to perform computations and
carry out the processing required by the algorithm. You don't have to organize your methods into the two
groups, but doing so helps to logically organize a class.

Accessor methods are usually short and do little else other than access data and information. Accessor
methods provide a return value (otherwise they would not work very well). They can (and should) also be
used to let the consumer compute data or perform work without actually setting any variables in the object.

Note Properties, which we will discuss at the end of the chapter, can be substituted for accessor
methods. I have my own rules for when to use a property and when to use an accessor method,
which we will discuss later.

You can also name these methods in such a way that consumers of the class can tell at a glance whether the
method is an accessor method or a modification method. For example, accessor method names can be
prefixed with Get, as in GetSpeed or GetDriveState. The modification methods, on the other hand, are given
names that describe what they modify, change, or compute. For example, the modification method that
changes the speed might be called SetSpeed and the modification method that changes the state of the drive
might be called SetDdriveState.

Synchronous vs. Asynchronous Method Calls

Most of the method calls you make are synchronous, which means that your algorithm waits for the call to
complete before you can carry on with the next line that follows the call. This is not something you can
normally control. There is no keyword that amounts to saying "call the method and then wait for the resultgive
it five minutes and then give it the boot." If the method you are calling needs to perform a complex operation
that could take many minutes to complete, your thread will be blocked waiting for the called method to
complete. This is often felt when you try to open a connection to a database server that is having a hard time
validating your security credentials, or when you try to log into a mailbox. There is nothing you can do but
wait for your standard synchronous call to return.

 Types of Methods

184

On the other hand, there are occasions when you know in advance that the called method needs to go and do
something else in order to serve your call. You can then make the call and attend to other tasks. This is known
as an asynchronous method call. Such programming has specific and powerful support in the .NET
Framework.

Another solution to the blocked calls from synchronous methods is to explicitly use another thread.
Asynchronous calls and callbacks (when the asynchronous call returns to the caller with a result) is a subject
beyond the scope of this book.

Threading is extensively covered in the aforementioned book in the chapter "Concurrent Programming."
Threading is introduced in Chapter 17.

Method Data

Methods typically need to be provided with data (values or references to values) to process when they are
called or contacted. They can get this data from four places:

Class−level global data (see Chapter 4), or data the method can see elsewhere in the class•
Data from external classes and objects•
Method−level data (inside the method or within method blocks)•
Data passed to a method via its parameter list. Parameter fields expose data to the method.•

Class−level data is data stored in the variable and constant fields, or within properties, which are scoped to the
class. The following code shows a simple method accessing class−level data:

Public Class Calcs
 Const C As Integer = 186355 'mps
 Dim warp As Integer = 5 'not good to hard code like this

 Public Function FactorLightSpeed() As Integer
 Return C \ warp
 End Function

End Class

In the preceding code, the C is a class−level constant (global to the class) used by the method
FactorLightSpeed. There are good things and bad things about class−level data fields used by methods. If
you make it so your methods depend on class−level variables, then you are explicitly coupling methods that
use the variable, one to the other, because a method that changes the data for itself changes it for all methods
that used that variable. The methods in a sense become hard−coded, or hard−wired. In the preceding example,
any method that changed warp affects the FactorLightSpeed method. Strive to maintain loosely coupled
methods, as discussed later in this chapter.

Data from external objects or classes is data that is explicitly made available to calling methods. Such data is
usually provided from properties, fields, or return values from methods that exist in an object with which the
calling method is associated. In the following example, the calling method uses the data received from a
specialist object to continue with its calculations:

Public Class Calcs
 Const C As Integer = 186355 'mps

 Public Function FactorLightSpeed() As Integer

 Method Data

185

 Return C \ SpaceMath.CurrentFactor(warp)
 End Function

End Class

Method−level data is data in variable or constant fields that is scoped local to the method or any block nested
inside the method. Such data is the most encapsulated data in an object because only the method in which the
variables or constants are declared has direct access to the data. The following example shows variables and
constants declared inside the method:

Public Class Calcs
 Const C As Integer = 186355 'mps

 Public Function FactorLightSpeed() As Integer
 Const C As Integer = 186355 'mps
 Dim warp As Integer = 5
 Return C \ warp
 End Function

End Class

Visual Basic allows you to declare method−level static variables that have values that survive the termination
of the method. In other words, the static variable is not disposed of with the destruction of the method call that
comes after its completion. In the following example, a static method (the only place in Visual Basic you can
use the Static keyword) retains its value after the execution steps exit the method:

Public Class Complex

 Public Function FactorLightSpeed() As Integer
 Const C As Integer = 186355 'mps
 Static warp As Long = 5
 Return C \ warp
 End Function

End Class

Note The use of Dim is optional with a static field.
We will look at static variables again later in this chapter.

Data that is passed to a method's parameters comprises values or references required by the method to
perform. This option is demonstrated in the following code:

Public Class Complex
 Const C As Integer = 186355 'mps

 Public Function FactorLightSpeed(ByVal warp As Integer)_
 As Integer
 Return C \ warp
 End Sub

End Class

The ability to pass data to a method in this fashion is the most powerful option you have for making data
available to the method. It is also the most dynamic, soft−coded way. The caller or sender of the message
maintains the utmost control over the data that is sent as an argument to the method's parameter. The method
is also able to tightly control the data that it receives, because it can perform checks on the inbound references

 Method Data

186

or values and take action accordingly. It can perform such checks in a number of ways, which includes
specifying the type required, a built−in strong typing filter.

The level of method coupling varies in the previous four key options for providing data to the method. The
highest level of coupling between methods results from the class level or global variables, while the lowest
level of coupling is achieved when data is explicitly sent to the method via its formal parameter list. There
will be more information on method data later in this chapter.

Method Data: Global vs. Local

Methods perform their work with local data or class data. When you need to modify variables for other
methods in the class or for operations that interest the entire class, then use class variables. If no other method
requires access to the variable or needs to use it, then declare it local to the method. In my opinion, you should
not declare class variables if you don't need to, because the narrower the scope of access on a variable, the
more secure it is and the less coupled your method will be to other methods in the class.

There is another school of thought, however, that says passing arguments to methods requires more resources
from the run−time environment. I don't believe this is a valid argument (no pun intended) in the world of
managed code and execution, because the common language runtime manages the call stacks with a very high
degree of sophistication. Providing too many global variables eventually leads to problems.

Another criterion for declaring class variables or constants is when the values need to remain intact after the
method has performed its work. Local variables are created and initialized either to the default values of their
types or values you provide when the method is invoked or called. The data and references are subsequently
destroyed when method execution ends. As mentioned earlier, you can use a static variable in a method if you
require value persistence after execution, but static variables are more resource−intensive than class−level
variables, because static variables are stored on the heap as boxed values (see Chapter 8).

Local variables are declared in either of two declaration spaces in a method: as a parameter in the formal
parameter list space, or as a local variable in the method's local declaration space. The following illustrates the
two declaration spaces we are talking about:

Public Sub Space(Parameter lists declaration space)
local declaration space

End Sub

The method's local declaration space can also mean local to the block of code within the method
implementation. This means that you can declare at any level as needed, because each nested block become its
own declaration scope and context. This is demonstrated in the following code:

Public Sub BirdsNest ()
 Dim field1 As Integer = 1
 Const field2 As Integer = 2
 While field1 <= field2
 Dim field3 As Integer = 3
 Const field4 As Integer = 4
 While field3 <= field4
 field3 += 1
 End While
 field1 += 1
 End While
End Sub

 Method Data: Global vs. Local

187

Note the following rules for declaring variables and constants in method block and parameter lists:

The variable declared in the parameter list cannot be redeclared in any method block.•
A variable declared in an outer or containing block cannot be redeclared in a nested block (or any
other block for that matter). You cannot shadow method data, so consider the formal parameter list as
the outermost declaration space before class data.

•

Method declarations are scoped to the block in the method in which they are declared.•
Method variables and constants are implicitly declared public, and you cannot modify the access
characteristics with keywords like Private or ReadOnly.

•

The Option Strict and Option Explicit compiler directives (refer to Chapter 4) influence variable
and constant declarations. You can implicitly declare (by simply just using the variable) and use loose
syntax by setting both options to Off for the class. This practice is, however, greatly discouraged
because it causes buggy and hard to maintain code. (Refer to Chapter 4 for more information on
implicit and loose syntax declarations.) There is an exception to this rule, however. A local method
variable may not be implicitly declared when it is the target of a function call, an indexing expression,
or a member access expression. Also, implicitly declared locals are always scoped to the entire
method body.

•

When you declare implicitly, the type of the variable defaults to Object if no type character was
attached to the implicit declaration; otherwise, the type of the variable is the type of the type
character. In the following example you can see how it is possible to set yourself up for problems with
implicit declaration. The return value will continue to be wrong no matter what gets passed to the
method until someone realizes the simple spelling mistake:

Public Function FactorLightSpeed(ByVal warp As Decimal)_
 As Decimal
 speed = 186355 \ waro
 Return speed
End Function

•

Variable initializers on method locals are equivalent to assignment statements placed at the textual
location of the declaration. Thus, if execution branches over the local declaration, the variable
initializer will not be executed. Also, if the method variable declaration is executed more than once,
the variable initializer will be executed an equal number of times. It is important to note that locals are
only initialized to their type's default value once, upon entry into the method (refer to "Local
Declarations" in the next section).

•

Local Declarations

Local, or method, declarations can store both constant data using the Const keyword, which is no different
from a class constant declaration, or variable data. Variables can be declared using the Dim keyword or the
Static keyword. The following syntax represents local declaration:

LocalDeclarationStatement ::= LocalModifier LocalDeclarator StatementTerminator
LocalModifier ::= Static | Dim | Const
LocalDeclarator ::=
LocalIdentifiers [As TypeName]
Identifier [ArrayNameModifier]
[As [New] TypeName [([ArgumentList])]] [= VariableInitializer]
LocalIdentifiers ::=
Identifier [ArrayNameModifier] |
LocalIdentifiers, Identifier [ArrayNameModifier]
LocalVariableName ::= Identifier

 Local Declarations

188

As the name suggests, constant data cannot be changed. It consists of read−only values, but the ReadOnly
keyword is not valid in either of the method declaration spaces (see the "Properties" section later in this
chapter).

Static Data

The Static keyword modifies a local variable declaration to static, which plays an important role in code
reentrance, isolation, encapsulation, and recursion (see Chapters 4, 12, 13, and 14 and the later section
"Recursive Design of Methods" in this chapter). When you declare static variables, their values are retained
for future calls to the method.

It is critical to be aware that declaring a static local in a shared method means that the value of the static is
retained for all references to the type. In other words, there is only one copy of the static local at all times.
Dependence on the data held by the static must therefore be carefully reviewed. Remember that static methods
(which are declared with the modifier Shared in Visual Basic and static in C#) are not instance methods. For
all intents and purposes, the method and the static data are both global entities. (See the section "Improved
Performance with Shared Classes and Modules" in Chapter 9.)

When you declare a static local in a nonshared method, which allows instantiation, then a separate copy of the
static exists for each instance of the object, and the static's value is retained for the clients that have a
reference on the object that encapsulates the static. The following code demonstrates declaring a static
variable in a nonshared method (notice the use of Hungarian notation for clearly marking static variables):

Private Function ChurnOut(ByVal Param As Integer) As Integer
 Static stChurnval As Integer
 '...
End Function

Returning with Values

By default, all methods return to the caller or sender that called them. And as demonstrated in Chapter 6, you
can use the Return keyword to terminate and exit out of a method at any point, even from a Sub method. In
this regard Return works exactly like Exit Sub.

However, when you declare a function, you are advising the parties concerned that a value will come back
from the method being called, so you must supply a return value and that value must be the same type as the
value declared as the return value variable. This is demonstrated as follows:

Private Function ChurnIn(ByVal Param As Integer) As Integer
 '... do something with Param
 Return Param
End Function

The return value declared after the parameter list is a local variable declaration, just like the parameters and
the variables declared in the body of the method. The function name is the name of the variable. For example,
looking at the preceding method ChurnIn, you can see the variable declaration if you drop the parameter list
as follows:

Function ChurnIn As Integer

To return ChurnIn as an Integer, you do not need to use Return unless there are several places in the
function where return is possible (such as in a Select Case construct or a nested structure). However, if you do

Local Declarations

189

use Return, you must supply the value returned. Here are the additional variations to returning the value:

Private Function ChurnIn(ByVal Param As Integer) As Integer
 '... do something with Param and assign to ChurnIn
 'ChurnIn returned implicitly
 ChurnIn = Sqrt(Param)
End Function

or

Private Function ChurnIn(ByVal Param As Integer) As Integer
 '... do something with Param
 ChurnIn = Sqrt(Param)
 Return ChurnIn
End Function

or

Private Function ChurnIn(ByVal Param As Integer) As Integer
 '... do something with Param
 Dim valuable As Integer
 valuable = Sqrt(Param)
 Return valuable
End Function

Note Chapter 12 investigates passing and receiving arrays from methods.

Passing Arguments to Parameters

As discussed earlier in this chapter, the parameters of a method are declared by the method's formal parameter
list. (The parameter list and method name, or identifier, are combined to form the method's signature.)

The parameter declarations of a method are the "placeholders" for the data sourced external to the method and
the means by which the data can be "communicated" to the method for its use. For example, if a method needs
to multiply two numbers represented by x and y, then you can communicate the value for x and the value for y
by sending the respective values to the parameters.

The "sender" of the values refers to these values as the arguments for the parameters. Parameters are the
"receivers"; you can think of them as pigeonholes or slots into which the arriving data is channeled. It's
important to get the difference between arguments and parameters right. Many programmers confuse the
terms to their own detriment (parameters receive; arguments send).

A method can receive a variety of types to its parameters: value types, reference types, and a collection (of
types) that arrives as a comma−delimited list. The latter parameter is known as a parameter array. A fourth
type of parameter is the "optional" parameter, which lets the sender choose not to send an argument. The
method applies a default value to the optional parameter and then passes that into the method.

Method processing can be very tightly controlled by the optional parameter, as you will see later in this
chapter and in later chapters.

The formal parameter keywords are listed in Table 7−1.

Table 7−1: Parameter Types Excepted at Methods

 Passing Arguments to Parameters

190

Parameter Type Keyword

Value Types ByVal

Reference Types ByRef

Optional Parameter Optional

Array Parameter ParamArray
You can specify multiple parameters in the parameter list; however, each parameter declaration must be
separated by a comma so that the compiler can discern the bounds of each parameter. You can use loose and
implicit syntax in the declaration of parameters (if Option Strict and Option Explicit are set to Off), but if
you use the As keyword for one parameter declaration, you need to use it for all. If you use implicit syntax
and do not declare the type of parameter, then the type defaults to Object.

The syntax for declaring the parameter list is as follows:

FormalParameterList ::=
FormalParameter |
FormalParameterList, FormalParameter

FormalParameter ::=
[Attributes] ParameterModifier+ Identifier [As TypeName]
[= ConstantExpression]
ParameterModifier ::= ByVal | ByRef | Optional | ParamArray

Pass by Value

Value parameters are passed by value and are explicitly declared with the ByVal modifier. If you omit the
modifier in your code, the compiler automatically defaults the parameter acceptance mode to ByVal.

The Value variable is created when the method is called, and is destroyed when the method execution ends
(returns). The scope of the parameter's variables is the entire method, including any nested blocks. Here's an
example:

Public Sub ValueIn(ByVal Data As String)
 Console.WriteLine("Data received is: " & Data)
End Sub

You are permitted to change the value received to the parameter (that is, the value that was sent to the method
as the argument). Remember, once the value is passed to the parameter, changing the value in the method
does not affect the source of the original datathe argument sent is a copy of the data, not a reference to it. As
mentioned earlier, the parameter list is a declaration context, and the argument merely serves to initialize it
with the value it carries to the method. This is demonstrated in the following example:

Public Function ValueIn(ByVal Number As Integer) As Integer
 Number += 5
 If (Number > 10)
 Return Number
 End If
 Return 0
End Function

Passing Arguments to Parameters

191

Pass by Reference

When you pass by reference, the data and construct represented by reference are directly affected by the
operations on the parameter. Passing by reference means you do not make a copy of the value and pass that to
the method. No new storage location is created to hold any data. Think of the pass by reference as the baton in
a relay race. There is only one baton being passed and if it gets dropped the passer gets disqualified.

You can pass both value types and reference types using the ByRef keyword. Passing by reference will
become more clear in the next chapter and Chapter 9, which delve into the object reference models. When you
pass a value by reference, you are essentially requesting the method to directly and immediately act on the
original data. The following example demonstrates passing a value type by reference:

Public Sub ChangeUp(ByRef myVal As Integer)
 ChangeUp(myVal)
End Sub

Despite the declaration of a reference parameter, Visual Basic .NET may still use copy−in/copy−out
semantics when a reference variable is passed to a ByRef parameter. This usually happens when there is either
no storage location to pass a reference to, which is what happens when the argument references a property, or
when the type of the storage location is not the same as the parameter type's. The latter situation happens, for
example, when you pass an instance of a parent class to a ByRef derived class parametera technique called
upcasting. Thus, a reference parameter may not necessarily contain a reference to the exact storage location of
the object, and any changes to the reference parameter may not be reflected in the variable until the method
exits.

Optional Parameters

Optional parameters can be passed to methods. An optional parameter is declared with the Optional modifier.
Parameters that follow an optional parameter in the formal parameter list must be optional as well or you will
choke the compiler. Thus, if you have numerous parameters in the parameter list, make sure all the optional
ones are in their specific order and are placed after the other three parameter types. The following code
provides an example:

Function DDB(ByVal rcost As Double, _
 ByVal rsalvage As Double, ByVal rlife As Integer, _
 ByVal rperiod As Integer, _

Optional ByVal rfactor As Decimal = 2) As Double

 Dim book As Double = cost salvage
 Dim deprec As Double
 Dim year As Integer = period
 While year > 1
 deprec = book * factor / life
 book = book deprec
 year −= 1
 End While
 Return book

End Function

Optional parameters must specify constant expressions to be used as the default value if no argument is
specified, as demonstrated in the bold type in the preceding code. This is the only situation in which an
initializer on a parameter is valid. The initialization is always done as a part of the invocation expression, not
within the method body itself. Also, optional parameters may not be specified in Delegate or Event

Passing Arguments to Parameters

192

declarations.

Passing a Parameter Array

A parameter array is a single dimension data structure that can be passed as an argument to a parameter. The
differences between passing arguments to a parameter array and passing a regular array reference as the
argument are as follows:

The ParamArray parameter expects the argument as a value and not as a reference.•
You can only declare one ParamArray in the parameter list, while you can declare more than one
parameter that expects a reference to a regular array or collection.

•

The ParamArray parameter is useful for sending on−the−fly lists of data to the method, without the
need to specially pass over a reference to any collection. It is ideal for varying the number of
arguments needed by the method. This is demonstrated in the following code:

Module ParamArrayTest
 Sub Main()
 Dim arrayA As Double() = {1, 4, 2.5, 3.9}
 GetArrayVals(arrayA)
 GetArrayVals(10.6, 20, 30.0, 40.87, 987.3)
 GetArrayVals()
 Console.ReadLine()
 End Sub

 Sub GetArrayVals(ByVal ParamArray arrayargs As Double())
 Debug.Write(arrayargs.Length & " elements passed:")
 Dim intI As Integer
 For Each intI In arrayargs
 Debug.Write(" " & String.Format("{0:c}", intI))
 Next intI
 End Sub
End Module

•

This example produces the following output:

4 elements passed: $1.00 $4.00 $2.00 $4.00
5 elements passed: $11.00 $20.00 $30.00 $41.00 $987.00
0 elements passed:

In the above code the first call simply passes a pre−packaged array to the parameter. The second call creates a
five member comma−delimited list and passes the list. The third method call demonstrates that you can pass
zero elements to the ParamArray parameter.

When you are passing a simple list to the ParamArray parameter it is often difficult to distinguish between
the list of values and values in regular arguments because the argument list is not distinguishable from the list
intended for the parameter array. While the compiler can make the distinction because it knows where the
ParamArray starts in the receiving method, you may see the subtle "bug" when you make the call. For
example, can you tell that the following call is actually sending two arguments?

GetVals(1, 10.6, 20, 30.0, 40.87, 987.3)

You can now if you examine the method signature as follows:

Sub GetVals(ByVal intI As Integer,_
ByVal ParamArray pArgs As Double())

Passing Arguments to Parameters

193

You can avoid the problem by first avoiding hard−coding and doing away with magic numbers and arbitrary
values in your code as shown in the following call:

GetVals(MyDayEnum.Sunday, MoneyToParamArray)

To send data to a parameter array your need to declare the parameter with the ParamArray modifier. And
you cannot declare a parameter of type ParamArray without specifying the ByVal (ByRef is invalid). Like
the optional parameter discussed earlier the paramarray parameter must be the last parameter in the formal
parameter list. Unlike the optional parameter you do not have to provide default values. If the sender does not
send an argument to the parameter array the array will default to an empty array.

Parameter array usage is as follows:

The parameter array will perform a widening conversion on the argument if the argument is narrower
than the parameter. However, if the argument is wider than the parameter array or incompatible an
exception will be thrown.

•

The sender can specify zero or more arguments for the parameter array as a comma−delimited list,
where each argument is an option for a type that is implicitly convertible to the element type of the
paramarray. An interesting activity takes place on the call. The caller creates an instance of the
paramarray type with a length corresponding to the number of arguments, initializes the elements of
the array instance with the given argument values, and uses the newly created array instance as the
actual argument to give to the parameter.

•

Paramarray parameters may not be specified in delegate or event declarations.•

Parameter arrays are useful and you don't need to treat the parameter any different, from inside your method,
as you do the regular array reference.

Calling Methods

Methods are called (or invoked) via an interface, which is accessed by referencing the class or object
containing the method, followed by a reference to the method's signaturewhich is its name and (mostly) any
arguments of the type and order, in the target method's parameter list. When you reference a method, you
invoke it or call it. Some OOP experts also refer to the invocation of the method as "sending a message to the
method." And thus the term sender is frequently used, especially in event models. Conversely, the method on
the receiving end of the message or call is known as the receiver.

From time to time, we will refer to the construction of our code by the particular method calls that have to be
made. Later in this chapter, we will see how Visual Basic methods can call themselves (recursion).

Call by Reference or Call by Value

As noted in Table 7−1, arguments can be passed to parameters by value or by reference. When you pass by
value, you are passing the actual value to the method (some prefer to say "call by value"). When you pass by
reference, you are passing only a reference to an object. Value typessuch as the built−in Integer, Short,
Single, and Doubleare passed by value. Reference typessuch as arrays, strings, and custom objectsare
typically passed by reference.

Suppose the method you are calling needs to receive an array. You don't need to send the array to the method
(although this was once the case some time ago) but rather a reference to the array. This means the object
stays exactly where it is and the method can still go to work on the array. This will become clearer to you in

 Calling Methods

194

Chapter 8, in the "Object Reference Model" section, which covers both how value types and reference types
are references, and in the method design and construction sections later in this chapter.

The same procedurepassing the reference and not a copy of the valueapplies when receiving the return value
back from the function. If the function returns a value type, you'll receive a copy of the value; but if it returns
a reference type, such as an array, you'll only get the reference to the array from the function.

Passing the actual value to the receiving method does not change any data that exists in the calling method or
elsewhere, because a copy of the value is sent to the receiver. The value copy is then used and discarded.
However, when you pass by reference, any changes made to the object by the receiving method affect the
original object, because you don't send a copy of the object, you send a "message" telling the calling method
where to find the object that needs to be worked on. The procedure is akin to sending someone the keys to a
house, rather than the house itself. For example, when you send a reference to an array that needs to be sorted,
all entities referencing the array will see the results of the sort. This is an important consideration to keep in
mind when designing your software.

For the most part when you call a method, you do not need to worry about whether you are passing by
reference or passing by value. Visual Basic enforces the calling procedure and knows whether it should pass
by value or by reference (see Chapter 12 for information on passing and receiving arrays).

The following line of code is a typical method call found in many Visual Basic applications. Notice that this
method does not pass any arguments.

Beep()

All this method does is make a call to the Beep functionwhich beeps the speaker in the class maintained in the
Microsoft.VisualBasic namespace. (The Microsoft.VisualBasic represents the classic VB runtime and its
collection of types, libraries, and run−time constructs that provide the interface to the Win32 library for the
classic Visual Basic languages. Any .NET language can now reference it thanks to the framework's interop
layers and wrapper classes that adapt legacy code for access from the world of .NET.)

The fully qualified namespace for the method is as follows:

Microsoft.VisualBasic.Interaction.Beep

In other words, the Beep method can be found in the Interaction class contained in the
Microsoft.VisualBasic namespace. Table 7−2 provides the entire list of legacy function calls you can access
in this "wrapped" class.

Table 7−2: Legacy Functions in the Microsoft.VisualBasic.Interaction Class

Function Purpose

AppActivate Launches an executable (see also Shell)

Beep Standard speaker beep

CallByName Sets and gets properties and invokes methods at run time by providing
arguments to the CallByName method

Choose Selects and returns values from a parameter list

 Calling Methods

195

Command Returns the argument portion of the command line used to launch VB apps

CreateObject Creates a reference to a COM object

DeleteSetting Deletes Registry settings

Environ Returns the OS environment variables as a string

GetAllSettings Returns all the settings related to an application's Registry settings

GetObject Returns a reference to an object provided by a COM object

GetSetting Returns a key setting from the Registry

Iif Returns one of two objects passed as arguments and tested against a Boolean
key

InputBox Creates a dialog box for user input and then returns the input to the caller

MsgBox Display a dialog box, presents options for the user, and then returns an Integer
based on the choice of the user

Partition Calculates a set of numeric ranges

SaveSetting Saves an application's Registry setting

Shell Runs an application and returns its process ID from the OS

Switch Evaluates a list of expressions

Function or Sub Methods

In all modern computer languages, methods can be constructed to return with or without a value to a caller.
As mentioned at the start of this chapter, the methods that return a value are called functions and the methods
that don't return a value are called subroutines or subprocedures. Visual Basic methods that return without
values are declared with the Sub keyword.

Consider the Beep method we looked at previously. If you were to open up the Interaction class and search
for the Beep method, you would find the following definition:

Public Sub Beep()

Public refers to the accessibility of this method (you can call it from anywhere). It is referred to as a Sub
procedure because it does not return with a value.

Note The .Net Framework documentation refers to the Beep procedure as a function, which is technically
wrong. Technically, it is not a function because it does not return any value to the caller. But the VB
runtime calls it a function, even though the .NET code defines it as a Sub. You will find many such
inconsistencies in the documentation of various languages, .NET included. I even traded insults with
another writer over the term method when first embarking on Visual Basic .NET.

The following line of code is an example of a function call:

Public Function Choose(Index As Integer, ParamArray Choice() _
As Object) As Object

Choose is another classic VB function, and in this declaration, the method requires you to send an argument
of type Integer for the Index parameter and the Choice array object for the ParamArray parameter. The
returning type for this function is declared at the end of the method declaration; in this case, the return type is
Object.

 Function or Sub Methods

196

Choose is an interesting function. It returns with an object in the parameter array at the index position, 1 or
higher, expressed in the Index parameter. In other words, if the argument to Index is "1" then the first item in
the parameter array is returned to the caller.

You would invoke this method as follows:

Choose(num, "red", "white", "blue")

If num in the preceding call is 2, then "white" is returned to the caller. Digging around in the VB runtime (or
what we used to call it before it got "inter−roped"), we find another useful function, the Rnd function:

Public Function Rnd() As Single

Rnd is also accessible to .NET, which returns a number (in this case, the number is of type Single) that we
can use to generate a random number in a particular range. The VB runtime provides a Randomize procedure,
which reads system internals, to produce guaranteed random selection.

Without going into the specific implementation "under the hood" of these randomizing functions, consider the
following formula, which bubbles up from the VB runtime to the .NET Framework:

Int((3 * Rnd()) + 1)

This formula produces a random number in the range 1 to 3. Here we have another function called Int, which
returns the number generated by the formula. With these constructs, we can program a game of chance using
the Choose function. The following code demonstrates the preceding calls in action emulating a "loose" slot
machine named "Pull":

Public Sub Pull()
 Dim key As Integer 'variable scoped to the method
 While (key <= 2)
 Randomize()
 num = Int((3 * Rnd()) + 1)
 Console.Write(Choose(num, "red", "white", "blue") & " | ")
 End While
 Console.WriteLine(" ")
End Sub

If you keep putting in the money, you'll eventually hit the jackpot, as demonstrated in the following output in
line six:

red | white | white
white | red | red
blue | blue | red
blue | blue | white
red | red | red |
red | white | blue

Choose looks very much like a case routine, and can be very useful for quick conditional routines that return
values for display. If you pass zero or a number greater than the total elements in the list, Choose throws an
exception, which can be safely dealt with to provide a graceful resetting of the function. (See also Chapter 6
for information on Choose and similar control−flow constructs.)

When you call functions, you can access the return value by assigning a variable to the entire function call.
However, it's the actual return value that is the predicate of the assignment. Look back at the Pull method.

 Function or Sub Methods

197

The following calls are assigned to variables (emphasized):

num = Int((3 * Rnd()) + 1)
Console.Write(Choose(num, "red", "white", "blue") & " | ")

The variable num is assigned to the return value of the Int function, while the entire argument in the method
call to Console.Write is assigned to the return value of the call to Choose. In the latter case, part of the
argument is itself a method call (under the hood, however, the return value from Choose represents the
argument to the Write method). Table 7−3 lists the legacy functions available to us in the
Microsoft.VisualBasic .VbMath class.

If it is not clear to you by now, programming against the .NET Framework consists of calling or invoking the
thousands of methods that have been provided in the Framework classes. For the record you can also access
additional classic VB "funcs" in the following classes:

Collection Collection Object utilities such as Add and Count•
Conversion Simple conversion utilities such as Int and Str•
DateAndTime Functions for working with date and time values•
ErrObject Functions for programming against the legacy Err object•
FileSystem File system utilities (see also the section "FSO" in Chapter 15)•
Financial Functions for computing financial data•
Globals Functions that return data related to the classic VB runtime•
Information Useful utility functions (such as UBound, LBound, IsDBNull, and so on)•
Interaction See Table 7−2 in this chapter for the full list•
Strings String manipulation functions (see the full list in Chapter 15)•
VbMath See Table 7−3 in this chapter for the full list•

Table 7−3: Legacy Functions in the Microsoft.VisualBasic.VbMath Class

Function Purpose

Randomize Initializes the random number generator (Rdm). See also the System.Random
class.

Rnd (Random) Returns a random number of type Single.
IF you have experience with these classic VB functions they can help you get up to speed with Visual Basic
.NET very quickly. If you don't, the .NET Framework reference material will point you to the new .NET
methods.

Method Access Characteristics

The characteristics listed in Table 7−4 describe the level of access (visibility) permitted on methods. The level
of access to members and data and the implementation of members can be controlled on several levels in the
.NET Framework. For a conceptual discussion of information hiding and access control, see the section
"Modularity" in Chapter 13. Also refer to the UML notation for "visibility" in Chapter 13.

Table 7−4: Access Modifiers and the Purpose for Each

Visual Basic C# Framework Purpose

Public
[*]

Public Public

 Method Access Characteristics

198

Provides unrestricted access from any
class in any assembly (application)

Protected Protected Family To restrict access to members of the
class in which the method is declared,
to composite or nested classes,
aggregate objects, and derived classes

Friend Internal Assembly To restrict access to members within
the same assembly program). Friend
functions cannot be seen outside the
assembly containing their class

Protected Friend Protected Internal Family and Assembly The union of Protected and
Friendmeaning one or the other

Private Private Private To restrict access only to members of
the class in which the method is
declared, or a composite class

[*] Public methods are the only methods that can be accessed from a class in another assembly, program,or
remote process.
Table 7−5 provides chart five visibility levels and the level of access sender methods have on receivers.

Table 7−5: Access Modifiers and How They Restrict Access

Caller to Sender Public Protected Friend Protected Friend Private

Base to base Yes Yes Yes Yes Yes

Base to nested Yes No Yes Yes No

Base to derived Yes No Yes Yes No

Assembly class to assembly classYes No Yes Yes No

Nested to base Yes Yes Yes Yes Yes

Nested to instance
[*]

Yes Yes Yes Yes Yes

External to assembly Yes No No No No
[*] The above rules are valid for static methods only, which are declared with the Shared modifier (see next
section). When you declare instance methods you only have access to the public methods of the instance class
with which the caller is collaborating (unless you are making the call from a composite class and the method
on the receiving end of the call belongs to the container).
Public is the most "permissive" level of access you can obtain on a method. Public methods can be called
from anywhere. The access, however, stops at the method signature. You still do not gain access to any other
information about a method, and there is no way of accessing the implementation or the internal data that is
local to the method. The strictest level of access is Private; all other access levels are more permissive than
Private.

The level of access (visibility or accessibility) to members and data and the implementation of members can
be controlled on several levels in the .NET Framework.

Public Methods

A public method can be accessed from anywhere, and no restrictions are in place to prevent access to a public
method. The following code declares a public method:

Public Methods

199

Public Sub StartInjector()
End Sub

It is critical to qualify or confirm the method that you specify as public, because it means that any function or
procedure in an application can see and access the method. It is considered acceptable in some quarters, at the
early stages of design and code, to declare methods as publicfor the benefit of implementation teams and to
make the development environment less rigid. Don't fall into this trap because you can't easily go back and
hide your data and methods later without breaking code everywhere.

The use of Public is implicit in the following example:

Sub StartInjector()
End Sub

Public methods can thus be accessed from remote processes or method calls across process boundariesthrough
.NET "remoting" technology and the likeif the class so provides the required interface to access the method.
Public access applies equally to static methods and instance methods. See Chapter 2 on application domains
and security.

Protected Methods

Methods that are declared as Protected can be accessed only from other members of the class in which they
are declared, and from composite, aggregated, and derived classes. However, a protected method can only be
accessed from a derived class if the method is static (shared) or if the reference is to an instance method. If the
method is not static both parent class containing the protected method and the child class must be
collaborating as instances (a call to an object). Protected methods cannot be accessed from any other classes in
the program. The following code declares a protected method:

Protected Sub StartInjector()
End Sub

As you can see, Protected modification affords a level of public access to classes that are directly related
through composition and inheritance with the class in which the method is declared. No other classes in the
application or outside of it can access a protected method.

Friend

The Friend modifier restricts access to the method to members of classes in the same assembly or application
(DLL or EXE) in which the method is declared, nested classes, and derived classes. The members of a Friend
class are not visible to classes outside the assembly in which it is contained. The following code declares a
Friend method:

Friend Sub StartInjector()
End Sub

Friend essentially permits a level of public access to the members of classes that are essentially part of the
same assembly (a .NET DLL or application).

Protected Friend

The Protected Friend modifier is the union of both Protected and Friend modifiers. In other words, it

Protected Methods

200

restricts access to the method to members of classes in the same application in which the method is declared,
nested classes, and derived classes and applies the Protected access. The following code declares a Protected
Friend method:

Protected Friend Sub StartInjector()
End Sub

Private Methods

The highest level of protection you can bestow on a method is achieved using the Private keyword. Private,
as listed in Table 7−5, denotes that the method can only be accessed from within the class in which it is
declared. However, Private methods can also be accessed from nested classes, because a nested class is part
of the same declaration context or declaration scope of the Private method.

Composite or nested classes, which are discussed in Chapter 9, Chapter 13, and Chapter 14 are classes that are
contained within classescompositionand thus they also have access to the private members of a containing
class. The reverse, however, is not true. Members declared Private in nested classes are not accessible to
members of the containing class, because the scope or declaration context does not include the container class
itself.

Private methods, for example, can be accessor methods that compute data, or modification methods that set
internal class data that may be required elsewhere in the class, possibly to be accessed by the consumer of the
class as a static method call.

The following code declares a Private method:

Private Sub StartInjector()
End Sub

The Private modifier is similar to the Protected modifier in that a composite class can see a Private method
if the method is shared. If the method is not shared the composite must collaborate with the outer class via an
object reference in order to see the Private method.

Controlling Polymorphism Characteristics of Methods

The implementation characteristics of methods define their polymorphic characteristics, because they are
declared as nonvirtual by default. There is a good reason for this: Nonvirtual methods cannot be overridden,
so the compiler does not need to look ahead and figure out all the variations of calls that may be invoked,
which methods they apply to, and so on. Static methods stay nonvirtual, which means the compiler can bind to
the call at compile time, a process known as a method inline. Polymorphism (which means many forms) is
discussed in more detail in Chapters 9, 10, 13, and 14.

However, polymorphism is a central tenet of object−based programming (see Chapter 10), and the .NET
Framework allows methods to be declared as virtual, which means they can be overloaded and overridden.
Overriding, for example, achieves polymorphism by defining a different implementation of a method (and a
property) with the same invocation procedure. Table 7−6 lists the polymorphism modifiers, followed by the
alphabetical explanation of each modifier (note that C# modifiers are lowercase).

Private Methods

201

Final Methods (NotOverridable)

Final methods are methods that were virtual when they were first declared, which means they either were
declared in classes using the virtual method modifiers or were simply overloaded or overridden in later
implementations. However, prefixing the modifier NotOverridable to the method declaration specifies that
the method is now final.

This modifier specifies that further implementation is stopped and the method is no longer virtual. In other
words, it cannot be overridden or changed in a derived class. It is important to note that this has nothing to do
with visibility or accessibility. A final method can be private or public, as demonstrated in the following code:

Protected NotOverridable Overrides Sub Finalize()
End Sub

Table 7−6: The Access and Implementation Characteristics of Class Members

Visual Basic C# Framework Purpose

NotOverridable (used
with overrides)

sealed Final You cannot override this
member in a derived class; it is
final

Overrides override A method that overridesThe method overrides the
derived implementation from
the base class

Overridable virtual with
implementation

A virtual method The method can be overridden
in the derived class

MustOverride with no
implementation

abstract with no
implementation

An abstract method A method that is yet to be
implemented in a subclass; the
opposite of a final method

Overloads No keyword necessaryNonvirtual method that
can be overloaded

Overloading allows you to
implement methods of the same
name but with different
parameter lists

Shadows Redeclared Redeclared Shadowing redeclares an
inherited method in the derived
class

Shared static Static method The members retain their values
no matter how referenced

You will receive an error if you use this modifier on the first declaration or version of a virtual method in a
base class, because you cannot seal the method when it is first declared. The method cannot be declared
NotOverridable until it is actually implemented in a child class (see Chapter 9). You must first override the
method in the child class and then prefix the NotOverridable modifier to the method.

Overriding Methods (Overrides)

Overriding is a means of allowing you to reimplement or implement from scratchif the base method is
abstracta virtual method derived from a base or parent class. The overridden method must have the same
signature (essentially the parameter list) as the method in the parent class (otherwise it becomes a method
overload). You cannot override a final or static (nonvirtual) method.

Controlling Polymorphism Characteristics of Methods

202

Note The base method does not have to be abstract to be overridden. Overriding the method implies replacing
the implementation, if any, in the parent or superclass.

Overriding is an implementation characteristic and does notand cannotchange the accessibility of the
overridden member. In other words, when you override the member in the derived class, you must use the
same access level modifiers for both base and derived classes.

Overriding in Visual Basic is specified using the Overrides keyword in both Function and Sub methods (and
properties). In other words, where Overrides is used in a method statement, it means that you are overriding
the method of the same signature in the parent class. The following code demonstrates the declaration of a
method that overrides:

Protected Overrides Sub VirtualMethod(ByVal Param As Integer)
End Sub

Also, you cannot override a method in a base class that has not been explicitly declared "overridable" with the
Overridable modifier. This is discussed in the next section.

Virtual Methods (Overridable)

As discussed in Chapter 9, a virtual member is not necessarily in its final form and it may be further
implemented in derived classes, even overloaded and changed to a static state. A virtual member is declared
virtual using the Overridable keyword.

Note According to the CLS, for every virtual method declared in or inherited by a class, there exists a "most
derived implementation" of the method with respect to that class.

The following code demonstrates the declaration of a virtual method that can be overridden:

Protected Overridable Sub VirtualMethod(ByVal Param As Integer)
End Sub

It does not make sense to modify an Overridable method with the Private keyword. See Chapter 8 which
demonstrates overriding in more detail.

Abstract Methods (MustOverride)

Abstract methodslike abstract classesare intended to be implemented in subclasses that derive from a base
class, and the abstract modifierMustOverrideis used to signal that no implementation in the method or
provision of data exists. For all intents and purposes, the abstract members are nothing more than placeholders
provided for conformance. The abstract method in a base class is merely declared and is devoid of any
implementation; therefore, the method terminator (End Sub or End Function) is invalid. (See the sections
covering abstract classes in Chapter 9.)

The following code declares an abstract method:

Protected MustOverride Sub VirtualMethod(ByVal arg As Integer)

A method or property that is declared as abstract is overridden in the subclass, because that is where the
implementation of the method or property is handled. Abstract methods are thus implicitly virtual, because
they can only be implemented in subclasses. Abstract members are thus the antithesis of final members.

Controlling Polymorphism Characteristics of Methods

203

Note Declaration of abstract methods requires you to declare the base class with the MustInherit modifier.
See Chapter 9.

Overloading Methods (Overloads)

Overloading is a feature of many OOP languages. .NET provides support for overloading of methods and
properties. Overloading means that you can have multiple methods of the same name (identifier) but different
signaturesthe name, type, order, and number of parameters in the parameter listand implementation.

Here's an example:

Function Traject(ByRef obj1 As Object,_
ByRef obj2 As Object) As Boolean
Function Traject(ByRef Obj As Object) As Boolean

From the point of view of the caller the method can be called and provided either one or two arguments.

Visual Studio automatically enumerates the overloaded methods of a class and makes them available to you
when you code the calling routines (so the caller sees what amounts to a single method with the option to
choose different parameter lists). This is demonstrated in the illustration, which shows that a call to the
Console class's WriteLine method has 18 overloaded variations. The following example shows you how to
call an alternate variation of an overloaded method.

The following call comes from the earlier example that calculates the area of a circle:

Console.WriteLine("The area in km is: {0:N3}", Area(inPut))

When you construct this method, you can choose which overloaded variation of WriteLine you need. Notice
that some of the versions of WriteLine appear identical except for the value type of the argument you are to
send. In many cases, you do not need to iterate through the list of methods looking for the exact method that
corresponds to the value type being passed. Visual Basic will implicitly choose the correct overloaded
method.

Shadow Methods (Shadows)

Shadowing is a blocking facility used in derived or child class implementations that allows you to prevent
base class methods (and other elements for that matter) from subsequently conflicting with methods being
implemented in the child class.

The problem is inevitable: You derive from a class that represents the bulk of what you need to implement in
a certain case. However, the newly derived class is not complete, and thus you may need to both "override"
and declare new methods in the child class. So, you implement a new method in the derived class and then
discover later that the base class provider has created a new method of the same name that now conflicts with
yours by virtue of your inheriting the provider's class.

This is something that is rather common when sucking down all kinds of classes from the Internet or from
third−party providers. And it is also useful for working with nested classes. Shadowing is achieved in one of
two ways: through overloading, as explained earlier, and by explicitly declaring a single version of a method

Controlling Polymorphism Characteristics of Methods

204

as shadowed, using the Shadows modifier.

Shadowing will become clearer in the following chapters when we get down to inheritance. However, the
following code demonstrates how to shadow a method (see also "Working with Variables and Constants" in
Chapter 4):

Public Class Accessible
 Public Sub ShadowMethod(ByVal Arg As Integer)
 'base implementation
 End Sub
End Class

Public Class Additional : Inherits Accessible
 Public Shadows Sub ShadowMethod(ByVal Arg As String)
 'new implementation
 End Sub
End Class

Static Methods (Shared)

Methods declared Shared are static and are not associated with any instance. While you can declare static
methods in a class that is instantiated or referenced as an object, or a structure, you will not be able to access
the shared method. (See also "Working with Variables and Constants" in Chapter 4 and the section "Improved
Performance with Shared Classes and Modules" in Chapter 9.)

Static methods are declared as follows:

Shared Sub Inject(ByVal Arg As Integer)
End Sub

However, they are called by referencing the fully qualified class name, as demonstrated in the following line
of code:

InjectorClass.Inject(FuelGradeEnum.Refined)

Static methods are the antithesis of dynamic methods, which manifest when you create an object. Shared
methods are considered thread safe, because multiple copies of them are not floating around an application
(see Chapter 17 for an introduction on multithreading).

Mining the Framework's Methods

One of the secrets of object−oriented programming is to know which classes to reference and thus which
methods to use in your applications. This knowledge is not something that you can gain overnight, nor can
any book printed on paper impart information about every class and method. What you currently see in the
.NET Framework is not the end of it, either. Over the years, the .NET Framework is bound to grow to
thousands more classes, which will be compounded as well by myriad third−party classes that will be created,
available for free or under a paid−for license. Worse for Visual Basic programmers is the fact that you also
have methods you can access from the older run−time libraries, as demonstrated earlier. And, of course, there
is all the COM stuff floating around out there.

Fortunately, an author can point programmers in the direction of various namespaces and their individual
classes, and provide as many examples of the most important methods as possibleas has been done so far in
this book. Some of the classes will be the focus of many articles, white papers, and so on. These include

Controlling Polymorphism Characteristics of Methods

205

classes in System.Data (the ADO .NET technology), System.Net (TCP/IP stuff), and System.Threading (the
multithreading namespace). These are the collateral libraries that expand your application− building horizons
and save you the trouble and time of having to build the stuff yourself.

It is also important to know where and how to look for what you need. Throughout this book, I have made it a
point to reference namespaces and classes pertinent to the subject at hand.

The Methods of System.Math

To kick off the discussion of how to work with methods belonging to the base class library (BCL) and the rest
of the Frameworkor simply to call methods you may or may not have writtenlet's investigate one of the most
important classes in the System namespace: Math.

Every programmer for just about every task requiring some form of advanced calculation will likely use the
Math class methods and the arithmetic operators discussed in Chapter 4. If you need the absolute value of a
number, you'll find the function in Math. Need to work with PI? You can "call" on it here. Need the
trigonometric tangent of x? Math is the place. Table 7−7 provides the complete list of public fields, and Table
7−8 provides the list of math methods that can be used in your applications.

Table 7−7: Constants of System.Math

Field Description U sage

E The constant, e, specifies the natural
logarithmic base.

Provides the field that holds the value
2.7182818284590452354.

Pi Pi is a constant (3.17), represented by the
symbol π, that specifies the ratio of the
circumference of a circle to its diameter.

The value of this field is
3.14159265358979323846 C = π*D

Table 7−8: Methods (static) of System.Math

Method Description

Abs Provides the absolute value of a number.

Acos Provides the angle whose cosine is the specified number.

Asin Provides the angle whose sine is the specified number.

Atan Provides the angle whose tangent is the specified number.

Atan2 Provides the angle whose tangent is the quotient of two specified numbers.

Ceiling Provides the smallest whole number greater than or equal to the specified
number.

Cos Provides the cosine of the specified angle.

Cosh Provides the hyperbolic cosine of the specified angle.

Exp Provides e raised to the specified power.

Floor Provides the largest whole number less than or equal to the specified number.

IEEERemainder Provides the remainder resulting from the division of a specified number by
another specified number.

Log Provides the logarithm of a specified number.

Log10 Provides the base 10 logarithm of a specified number.

 The Methods of System.Math

206

Max Provides the larger of two specified numbers.

Min Provides the smaller of two specified numbers.

Pow Provides a specified number raised to the specified power.

Round Provides the number nearest the specified value.

Sign Provides a value indicating the sign of a number.

Sin Provides the sine of the specified angle.

Sinh Provides the hyperbolic sine of the specified angle.

Sqrt Provides the square root of a specified number.

Tan Provides the tangent of the specified angle.

Tanh Provides the hyperbolic tangent of the specified angle.
To investigate the constants and methods (and other members) of the Math class, open the Object Browser in
Visual Studio. The easiest way to do this is to use the keyboard shortcut CTRL−ALT−J. The browser can also
be accessed from the menus: Select View, Other Windows, Object Browser.

In the Object Browser, you need to drill down to the System namespace. As mentioned in Chapter 4,
namespaces are preceded by the curly brace icon {}, while assemblies are represented by a small gray
rectangle. Do not confuse the System namespace with the System assembly. System, the namespace, also
lives in the mscorlib assembly, as illustrated in Figure 7−1.

Figure 7−1: The System namespace in the mscorlib assembly
Expand System and you can scroll down until you find Math. Expand the class and the complete list of
members will be loaded in the right pane in the Object Browser. Every method is documented, as illustrated in
Figure 7−2.

 The Methods of System.Math

207

Figure 7−2: Browsing the members of the Math class

Programming with the Math Class

The following two examples, not by any means significant algorithms, demonstrate calling the methods in the
Math class. Before you can use the methods and other members of the class, you need to first reference the
class via its namespace. This can be done using the Imports directive, as demonstrated in Chapter 4, the
Project Imports folder that can be set in a project's Property Pages dialog box, or the following line of code:

X = System.Math.Sin(Y)

First let's have a look at the Pow method (power), which returns the number of the argument (of type Double)
raised to a certain power. In this example, we call Pow twice to calculate the amount of energy that can be
realized from a single gram of mass using the world's most famous equation, Einstein's E = MC2:

Public Function E(ByVal M As Double) As Double
 Dim C As Double = 2.99792458 * (Pow(10, 8))
 E = M * (Pow(C, 2)) 'as joules
 'or E = M * C * C
End Function

By passing 1 to the M parameter in the E function, we are able to return the number 89,875,517,873,681,764
to the calling method. The return value of this method is implicitly returned in the following line of code:

E = M * (Pow(C, 2))

which is the equation in question as well as the name of the method we created. The output as a Double is

8.9875517873681E+16

which, if we harness this energy (other than by ramming molecules up against each other), would get us off
the ground and on our way to the far reaches of our solar system. Rocket science, yes; difficult to calculate,
no.

In the following example, let's build the support we need for determining the circumferences of the planets
and their satellites in our solar system. Quite a few spheres exist out in space, so let's choose one of my
favorite moons around Uranus, Ariel ("Air−ee−el").

Ariel was discovered by the British Astronomer William Lassell in 1851, and we know from later studies that
the diameter of this rock is 1,158 kilometers.

 Programming with the Math Class

208

The equation, using Pi, is C = π*D, where C is the unknown circumference and D is the diameter. Now we
know that π is a constant of 3.14, so the circumference is 3.14 multiplied by 1,158. The circumference is
therefore 3,636.12 kilometers (rounded to two decimal places). Let's write some code to express this:

Public Function Circumference(ByVal Diameter As Double) As Double
 Circumference = PI * Diameter
End Function

Simple enough, and we can glean more information about Ariel by also calculating its surface area. (These
moons appear to have big chunks of ice, so if we ever run out of water on earth, we may need to put these
planetary land surveying applications to work.)

The formula to calculate the area of a sphere such as Ariel is A=4πr2 where A is the area of the planet.

This can be expressed with the following code:

Public Function Area(ByVal Diameter As Double) As Double
 Dim rad As Double = Diameter / 2
 Area = 4 * PI * Pow(rad, 2)
End Function

At approximately 1,053,191 kilometers, Ariel would be suitable for the next indoor Winter Olympics.

Here is the full listing of the Math demo:

Imports System.Math
Module Math
 Dim inPut As String
 Dim diameter As Double
 Dim Completed As Boolean

 Sub Main()

 While Not Completed
 Console.WriteLine(" ")
 Console.WriteLine("−−−−−−−−−−−−MENU−−−−−−−−−−−−−")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.WriteLine("Please enter the diameter.")
 Console.WriteLine("or press return to end.")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")

 inPut = Console.ReadLine()

 If Not (inPut = "") Then
 Console.WriteLine(" ")
 Completed = ProcessMath(Convert.ToDouble(inPut))
 Else
 Completed = True
 End If
 End While
 End Sub

 'e=mc2 example
 Public Function E(ByVal M As Double) As Double
 Dim C As Double = 2.99792458 * (Pow(10, 8))
 E = M * (Pow(C, 2)) 'joules
 'same thing as E = M * C * C
 End Function

 Programming with the Math Class

209

 Public Function ProcessMath(ByVal inPut As Double) As Boolean
 Console.WriteLine("The circumference in km is: {0:N3}", _
 Circumference(inPut))
 Console.WriteLine("The area in km is: {0:N3}", Area(inPut))
 Return False
 End Function

 Public Function Circumference(ByVal Diameter As Double) As Double
 Circumference = PI * Diameter
 End Function

 Public Function Area(ByVal Diameter As Double) As Double
 Dim rad As Double = Diameter / 2
 Area = PI * Pow(rad, 2)

 Area = 4 * PI * Pow(rad, 2)
 End Function

End Module

After entering 1158, the console displays the following:

The circumference in km is: 3,637.964
The area in km is: 4,212,762.651

The formatting is made possible with the {0:N3} specification in the WriteLine method (in ProcessMath).
See Chapter 15 for information on formatting strings.

Math−Related Exceptions

Table 7−9 provides a list of the important exceptions that need to be handled when working with the Math
class methods.

Table 7−9: Exceptions for System.Math

Exception Purpose

ApplicationException Thrown when a nonfatal application error occurs.

ArgumentException Thrown when one of the arguments provided to a method is not valid.

ArgumentNullException Thrown when a null reference (Nothing in Visual Basic) is passed to
a method that does not accept it as a valid argument.

ArithmeticException Thrown for errors in an arithmetic, casting, or conversion operation.

FormatException Thrown when the format of an argument does not meet the parameter
specifications of the invoked method.

InvalidCastException Thrown for invalid casting or explicit conversion.

NotFiniteNumberException Thrown when a floating−point value is positive infinity, negative
infinity, or Not−a−Number (NaN).

DivideByZeroException Thrown when there is an attempt to divide an integral or decimal
value by zero.

OutOfMemoryException Thrown when there is not enough memory to continue the execution
of a program.

 Math−Related Exceptions

210

OverflowException Thrown when an arithmetic, casting, or conversion operation in a
checked context results in an overflow.

StackOverflowException Thrown when the execution stack overflows by having too many
pending method calls.

Properties

A property is a construct that provides a well−defined interface for value retrieval. From the implementor's
viewpoint the property works like an accessor method and a modification method combined into a
well−structured package.

From the client or consumer's viewpoint, the property appears to be nothing more than a reference to a value.
This is demonstrated in the following code changing the color of the cell background to yellow:

Cell.BackColor = Yellow

The name of the property is the name referenced by a client that accesses the property using similar semantics
to retrieving a value from a standard public variable or constant. But the client is not referencing any storage.
It is asking the property, BackColor, to set the color on its behalf. Behind the interface the property is free to
implement whatever it needs to change the color. To the client the property appears to be a field or storage but
any storage used by the property is completely off limits to the client. In fact the property may use several
variable and constant fields, local or remote, in the algorithm it uses to return a value to the client, or set the
value on behalf of the client.

Both modification and accessor properties, known as setters and getters, respectively, can and should be
accessed via the public interface, which is the name of the object hosting the property followed by the dot and
the actual property name. There are no white spaces in the property reference.

As class members, properties have the same standing as methods. So, they can be inherited (even as abstract
declarations), overridden, sealed, and so on. Properties are listed in Visual Studio's declaration list for each
class providing easy access. Properties are also parsed into the Properties window where they can be
interactively accessed by the consumer (as opposed to programmatic access).

The property is exposed as a public property of the class or object, masquerading as a field (an intelligent one
at that). They can also be hidden, which is, for security reasons, the default behavior if the property is
inherited. The following is a simple usage for a property called State that does nothing but return the value
held by the oState variable to the caller:

Dim oState As Integer
Public Property State() As Integer
 Get
 Return oState
 End Get
 Set(ByVal Value As Integer)
 oState = Value
 End Set
End Property

However, you have to be careful when you implement the property. Specifically, passing values to the
property takes place via the setter's interface, which is the following statement in the property:

Set(ByVal myVal as Integer)

 Properties

211

You implement a parameter list in the declaration statement of the property as shown here:

Public Property State(ByVal myVal as Integer) As Integer

Also, with Option Explicit set to Off the property will not complain if any variable it is trying to work with
has not been declared, either in the global declaration space of the class, or in the local declaration space of
the property itself (in the Get block). While you can declare in either the Get block or the Set block or both,
anything declared in the Set block is not visible to the Get block.

If the property goes to work a variable that has not been declared or that it cannot see, it will cause a
StackOverflowException to be raised.

You also need to provide the typing specifics for both the return value and the parameters of the property.
This you do with the As syntax on the declaration line of the property as shown here:

Public Property State() As Integer

and in the parameter spaces as shown here:

Set(ByVal Value As Integer)

which only allows a single parameter. Also the return type and the set parameter type must be the same.

A property is declared and used as follows in Visual Basic .NET:

If it does not carry the ReadOnly or WriteOnly modifiers, you must implement both Set and Get
methods in the property.

•

If the property is modified as ReadOnly, you must drop the Set method.•
If the property is modified as WriteOnly, you must drop the Get method.•

The ClearanceLevel property can be written as follows, implementing only the Get method:

Public ReadOnly Property ClearanceLevel() As Integer
 Get
 Return cLevel
 End Get
End Property

The following code shows how a property is used internally in the class and still exposed to a client that may
need to use the property value directly:

Public Class Clearance

 Private passWord As String
 Private cLevel As Integer

 Public Property ClearanceLevel() As Integer
 Get
 Return cLevel
 End Get
 Set(ByVal Value As Integer)
 cLevel = Value
 End Set
 End Property

 Properties

212

 Public Function AuthUser(ByVal UID As String, ByVal PWD As String)_
 As Boolean
 If PWD = passWord Then
 ClearanceLevel = ClearanceLevelEnum.AuthorizedGuest
 Return True
 End If
 ClearanceLevel = ClearanceLevelEnum.AuthorizedDenied
 Return False
 End Function
End Class

Properties vs. Fields

The property also provides a natural and elegant means of hiding instant fields. Information hiding is a subject
I have a fair amount of passion for, and thus any construct that helps break the habit of publishing public
globals gets my vote. Use properties as a rule to expose any value required by a client and keep all instance
variables secret. Here are a few more examples of properties, as seen from the outside:

Cell.Length Sets or gets the length of a cell in a grid (for example, 10 to 40 pixels).•
Sound.Volume Sets or gets the current volume setting (for example, 1 to 9).•
Engine.State Sets or gets the current state of an engine (for example, on or off).•
Background.Color Sets or gets the current color of the background (for example, blue, red, green).•

On the other hand, if you are not looking to expose a property to the public, then a simple accessor method
suffices. I don't really see much point to construct a property for the sake of access from the members of the
same class in which a property is declared. It only tends to clutter the class, and introduces the possibility of
bugs. A simple accessor method is, for all intents and purposes, simple. Using a private property to provide
access only to private instance values is a lot like flying from D.C. to NYC via Moscow (unless you are a
double−agent).

As long as the fields are private to the class, the private members do not need to access properties to work
with that data; they can work with it directly and validate the data in their own implementation space or via a
simple accessor. Besides, loosely coupled classes need to pass method data, and passing a property as an
argument does not make any sense when a simple Function return or an instance field suffices. This is
demonstrated in the following code:

Public Class Clearance
 Private passWord As String

 Sub Test()
 Console.WriteLine(AuthUser(Convert.ToString(PassCode)))
 End Sub

 Property PassCode() As Integer
 Get
 PassCode = 1233 + 1
 Return PassCode
 End Get
 Set(ByVal Value As Integer)
 passWord = Convert.ToString(Value)
 End Set
 End Property

 Public Function AuthUser(ByVal PWD As String) As Boolean
 If PWD = "1234" Then
 Return True

 Properties vs. Fields

213

 End If
 Return False
 End Function

End Class

If you need to access private class fields, you can regulate the access and the modification with any method.
For example, your method might check the value you are attempting to change the variable to and prevent the
modification if it does not meet certain criteria. A private property can do the same thing, so in such a case,
use the construct that makes sense or is easier to implement.

Properties vs. Methods

When would you use properties and when would you use methods? As you can see, there is a lot of overlap
between the purpose of a property and the purpose of a method (especially an accessor method), and
properties can contain just as powerful code as regular methods. In many cases, properties are easier and
quicker to implement than simple methods. However, properties are called "properties" because they refer to a
property characteristic of a class. Methods, on the other hand, are a way of doing something, as discussed at
the beginning of this chapter. These respective definitions should thus guide your choices of the construct to
use.

If you are looking to provide public access to a property characteristic of an object, such as Palette.Color,
then use a property. In this respect, the property becomes a publicly accessible member that returns or sets a
given characteristic in the object to an external party.

Properties are also value−oriented. You cannot pass−by−reference to the Set parameter of a property, nor
would you want to.

The remainder of this chapter deals with the design and construction of methods and calling. We'll first deal
with the easier concepts to grasp and then gradually make our way to some interesting and more complex
topics.

Introduction to Exception Handling

We are starting to see in this chapter (as we will in subsequent chapters) code that is a lot more complex. So,
the time has come to start looking at exception handling in our methods. The subject is extensive and an entire
chapter (Chapter 11) has been devoted to the subject. This chapter, however, includes an introduction to
exception handling because I really do not want to present code in the forthcoming chapters that does not
include at least a hint that we are able to catch and deal with exceptions. Even if you are not new to exception
handling, it is important to evaluate how we cater to error handling in all of our method definitions (where
necessary) from now on.

In structured exception handling, a block of code is placed within a protected section, and each statement is
provided guarded execution. The protection starts with the first line of code after the Try keyword, and ends
at the last line of code before the first Catch keyword. An optional Finally section can be used that always
gets processed after an exception is raised and handled. The TryCatchFinally block looks like this:

Public Sub ATrickyMethod()
 Try

 Protected or guarded code goes here...
 Catch

 Exception handler code goes here...

 Properties vs. Methods

214

 Finally
 End Try
End Sub

As soon as an error is detected within the protected section, between Try and Catch, execution is
immediately halted and transferred to the catch area where the exception is handled. How, you might ask, is
the exception handled? The best way to answer that question is to examine exactly what an exception is.

I'm sure you have lost your tempter on occasion. Remember that last bug that had you up until 4 A.M., that
made you throw your monitor out the window? An exception is the same thing, only not as dangerous to
passersby. It is essentially an object that can be "thrown" from one part of your method to another, or even to
another class, when something goes wrong.

The brilliance of the throw exception, however, is that because an exception is a class that gets instantiated, it
can implement a variety of methods and data structures to handle the error. For example, it might just report
an error number, or it may translate the error number into something more meaningful.

The exception class, however, prevents the exception from doing any damage, and thus prevents the
application from being terminated, or doing something dastardly that will get you into a lot of trouble.

The actual errors that cause your code to explode and throw fits occur for five reasons and they are listed as
follows:

Syntax exceptions These exceptions are raised when something is declared incorrectly and the
compiler does not realize it.

•

Run−time exceptions These exceptions occur when a program is executed. These errors can be
produced by some of the simplest problems that arise during run time, but the errors do not normally
mean the algorithm or application is flawed. An example of when such an error is produced is when
someone tries to open a file that does not exist. If the file existed, normal execution would ensue; the
code is technically correct, however. Other examples of when run−time errors are produced include
when someone tries to connect to a database that does not exist, dial a telephone number with no
modem attached, serialize an object to a full disk, process a lengthy sort with no memory, and so on.
In all of these cases, if the resources existed, there would be no errors to talk about, and thus no
exceptions to throw. Run−time exceptions usually come from the operating system, which detects the
violations. These get passed through to the runtime, which passes them up to the application's
exception handlers.

•

Logic exceptions These exceptions also occur at run time but they cannot be foreseen by any
preprocessor or the compiler. A divide−by−zero error is a classic example. This is not an error until
the program finds itself in a divide−by−zero situation. However, the fact that the logic of the
algorithm led it to a divide−by− zero situation implies that the code is essentially flawed. Other
examples of actions that produce logic errors include trying to access an element in an array that
exceeds its upper boundary, reading beyond the end of a stream, trying to read from a file that has not
yet been opened, or trying to reference an object that has long ago been dereferenced. Logic
exceptions usually come from the operating system, which detects the violations. You may also
provide custom exception classes to deal with your own logic errors.

•

Conditional exceptions These exceptions are really there for custom exceptions you create, by
extending the base exception class. You can raise exceptions on these "errors" if a certain
precondition or postcondition exists in your code. For example, if a value is not 0 at the start of an
algorithm, you could raise a custom, ArgumentNotZeroException exception to trap the condition. A
postcondition exception would be raised if a condition you specify in the exception handler does not
exist after the algorithm is processed. For example, if your code is supposed to leave the application

•

 Properties vs. Methods

215

in a certain condition before continuing, you could provide an exception right there and thenin a
postcondition exception handler.
Custom exceptions These are exceptions you can create to cater to anything you believe should be
considered an error, such as something that requires an alternate course of execution, or requires the
application to be shut down. You might find such an exception handler in your average treadmill
softwareif the device is not able to read a heart rate at regular intervals, it raises something like an
ExerciserIsDeadException and shuts off. I guess that's its built−in fail−safe at work.

•

Why place exception handlers in Visual Basic .NET programs?

Applications need a facility to catch a method's inability to complete a task for some reason.•
To process errors caused by a process accessing any functionality in methods where those elements
are unable to directly handle any error that arises as a result of the access and the ensuing
computation.

•

To deal with errors caused by the methods in components that are not able to handle any particular
error in their own processing space.

•

To ensure that a large and complex program (actually any VB.NET program) can consistently and
holistically provide a program−wide error−handling facility.

•

An exception handler is used to trap the error and handle the ensuing events. Handling the exception sustains
the application and makes sure the data and the application are in a consistent state. Some handlers can simply
roll back an error and continue silently, such as an array bounds exception, while others require you to advise
the user what just happened (such as informing the user that the file he or she just tried to open no longer
exists, and redirecting execution flow or resetting values.

Now that you know what an exception is, how does your code catch one after it is thrown, and what does it do
with it once it's caught?

The Exception Handler

First you should know that if an exception is not handled, the standard course of action is to close down the
application. This action is taken to prevent the application from risking damage to other applications and data.
Allowing a half−dead application to continue trashing its environment has been shown to be troublesome.
Closing down the application on any exception also forces developers to handle their less−than−perfect code.
If an exception is ignored or not adequately dealt with, it may leave the application standing, but not in a very
stable state.

The exception handler is your entire catch block, which contains a single exception "filter" that might apply to
the error at hand. If the first catch block does not apply to the error, the code moves to the next one, if you
provided it, and so on until the correct Catch block, or exception handler, is found. This is demonstrated in
the following code, in which the so−called filters are represented in bold:

Try
 Protected code goes here...
Catch Except As EndOfStreamException
 'handle this exception here
Catch Except As PasswordException When passWord = ""
 'handle this exception here
Catch When passWord = ""
 'handle this exception here
Catch Except As ArgumentException
 'handle this exception here

 The Exception Handler

216

End Try

The exception−handling filter mechanism is flexible. In the preceding code, Except is used repeatedly as an
instantiation reference variable for the exception class. In other words, in the first catch block, Except is
instantiated as an EndOfStreamException object if the code indeed blew up upon the unexpected encounter
of the end of a stream.

It is also possible to catch an exception when something is True. Here's an example from the preceding code:

Catch Except As ArgumentException When passWord = ""
'handle this exception here

Here an exception is raised when something becomes True; in the preceding example, the parameter
expected a password and got nothing instead.

The use of When in the catch block also allows you to test for an error number. This is demonstrated as
follows:

Catch When ErrNum = Err_EndOfStreamException
'handle this exception here

If no handler is found for the exception, it is referred to the previous caller to look for the correct exception
handler to deal with the exception. The exceptions will continue to be passed up the call stack until an
exception class is found, or the generic exception code is used to process the exception. If no exception class
is found, the program will terminate with an "unhandled exception" message.

Usually, the caller of a method handles the exception. It might also be necessary for the caller of the caller to
handle the exception, and you might have to go quite far back on the call stack to handle an exception. You
can also catch all exceptions in the method that caused them with a default handler called Exception. This is a
useful technique; just remember to station it as the last exception handler in your list, because it will catch and
dispose of the thrown exceptions before any intended handlers are reached.

Try Catch Blocks

If you're new to writing code inside TryCatch blocks, it may take some time to get into the habit of doing so.
While you can easily compile Visual Basic .NET code without a TryCatch (and Finally) block, good code
technique means writing TryCatch blocks as if the language absolutely depended on them.

When you write code without a TryCatch block, you are relying on the run−time system to serve up the
default exception handler. But that's like flying on autopilot eventually you have to take control to land the
plane.

When you have been writing VB.NET code long enough, you begin to think in terms of TryCatch Finally in
the same way you think in terms of objects and classes, or methods and their membersthe inherent makeup of
an object−oriented program. It just becomes natural to build blocks of functionality with the Try keyword, at
least if there is the slightest chance that the algorithm might take exception to something you are trying to do
in the code. See Chapter 11 for more information and advanced exception−handling techniques.

 Try Catch Blocks

217

Design and Construction of Methods

Understanding data structures and studying both the basic and complex algorithms is a critical part of any
programming or software development effort. This section thus deals with some of the key foundation
concepts with respect to method design and construction. I will touch on some theory, but you will also get to
cover some pretty sophisticated stuff that can actually be quite fun, in later chapters.

Data structures are especially important in graphics applications, games, financial and statistical analysis,
expert systems, databases, simulation, and so on. Even Web−based applications rely on data structures.

Data structures are collections of data organized or arranged in a specific way. Algorithms are the recipes or
step−by−step instructions used for solving problems; and methods are essentially the steps of those recipes.
The algorithms you create or use employ data structures as utilities to complete the instructions. Algorithms
can be single methods in an application, or the entire application, thus comprising many methods and other
data elements. Before we look at data structures in Chapter 12, we first need to study methods.

A valuablenay essentialtechnique for designing algorithms (no matter what the language) is to break down the
problem into its constituent components. The components should be divided along task boundaries.

Think of your algorithm as a complete project that can be divided into separate tasks. The tasks should be
compiled into a list, and the elements of the list should be arranged in order of priority and dependence. In
other words, a task that is dependent on an earlier task or several tasks should be placed later in the list.
(Decomposing the problem and task arranging is a design technique used also for use case creation and class
diagrams.)

As soon as you have a list, you need to look at each task and determine if it can be further decomposed into
tasks (task within tasks). This "atomization" is critical because you need to arrive at a level where the subtasks
become easy to implement.

If a task can or should be broken down into subtasks, number them accordingly. For example, if Task 2 can be
broken down further into two tasks, then list the subtasks of 2 as 2a and 2b.

Each small task should be simple enough to list as pseudocode. In fact, you can test whether the task has been
sufficiently decomposed by determining whether you can write it as a single statement. If the task can be
easily understood by a single line of code, then that will obviously suffice.

Consider the following list of tasks for an algorithm to calculate sales tax on a list of items:

Create a collection of x elements.1.
For each element in the collection, store a number.2.
Iterate through the elements and add 6 percent to each number.3.
Replace the value in the element with the new result.4.

Look at the task list and determine whether the collection of tasks can be implemented in a single method or
would be better implemented as a collection of methods.

The pseudocode you write has another important role: documentation for your code, which is the critical
element of any software project or effort.

When you list the tasks of your algorithms in the fashion describedand then determine whether the collection

 Design and Construction of Methods

218

of tasks can be implemented in a single method or would be better implemented as a collection of methodsyou
are essentially self−documenting in the same step. The pseudocode forms the basis of the higher−level
documentation, at the algorithm and method−implementation levels.

When a task is broken down into a subtask, it becomes much easier to document. In fact, all the
documentation you have to do at such an atomic level for methods is to write one line of intelligent
commentary. Here's an example:

'now adds the current tax
Public Sub AddSalesTax(ByVal Tax As Double)
'...
End Sub

For the most part, a method should perform the work required by a single task or subtask. When documenting
your classes, you list the specification for each method by describing the task as a series of statements. This is
known as functional or procedural abstraction. An abstract for the sales tax method might look like this:

Method objective: To add sales tax to each value in an array element•
Task: Add a sales tax of 6 percent to the value•
Data type: Double•
Method signature: Public Function ApplySalesTax(ByVal tax As Double) As Double•
Expected (a preexisting condition): A value in the element•
Parameters: There is one parameter, tax as the percent of sales tax•
Exceptions: BadTaxValueException•
Returns with: The new value of the element with the applied sales tax•

This form of task description is documentation. It is often referred to as a method abstraction or a method
specification. Many programmers eschew such work. If you have key programmers on your team who feel
this way, you need to employ a writer− cum−analyst to work on such specifications or come up with
incentives to produce such documentation (like being grounded for the weekend).

Before you start writing a method, even a very simple one, you should write a method specification or
abstraction. The following list recaps the sections you provide in the functional or procedural abstraction of a
method:

Preface/intro•
Expected/preconditions•
Exceptions•
Parameters•
Return values and postconditions•

You can change the order of the section list if you prefer, but I prefer this order. The first section of the
method "spec" is the Preface or Introduction. Using a few lines, simply describe the purpose of the method:
why and how it came to be. (Remember, the method is the task or a subtask of your algorithm, so you should
not need to write more than two or three lines. If you find yourself writing more, then the method needs to be
analyzed for further decomposition.)

The next section of the abstract is the expected condition or precondition. The Expected section lists the
preconditions that need to exist for the method to do its work. In the sales tax example, a precondition of the
ApplySalesTax method is that the parameter variables are initialized.

 Design and Construction of Methods

219

Next you need to document the exceptions. Reference the exception you will throw on the wrong or bad
precondition. Here you can simply describe what the code checks for and why the throw occurs. You could
throw on the Boolean result returned from an If statement. Here's an example of a throw that checks for the
correct precondition:

If (tax <= TaxScaleEnum.SecondLevel) Then
 Throw New IllegalValueException()
End If

Another possible exception to throw (depending on the method) is if the array even exists. If you discover that
you have more than one exception to throw (more than one precondition), then take that as an indication that
the method might be too complex and a candidate for further decomposition. In other words, strive to break
the method down further so that you need to only check for one precondition (it does not cost you anything to
add another method).

The Parameters section of the method spec lists the parameters and some information on how and why they
are important to the method. In the ApplySalesTax method, the parameter tax is the percentage value to
apply to the vector value. Without the parameter, the method is useless.

The final and essential section of the method spec is the documentation of the return values, conditions (also
known as postconditions), return codes, and so on from the method. Future programmers (or concurrent
members of the team) will be able to grasp the purpose of the method by reading the documentation you
provide on the returns, results, and postconditions.

In the sales tax example, the method AddSalesTax goes beyond returning a single value or return code. It
changes the values in every element of the array. What the method needs to do is check every iteration in the
logic of the method for success and then return True if the entire iteration and update value process is
successfulfor every element in the array.

Class and Method Cohesion

While the constructors and instance variables bring an object to life, the methods make it useful. Methods
allow you to organize a class logically. But poorly designed or written methods, or methods that do not clearly
express either implementation or a management routine of a class (which is referred to as the "object policy"),
can reduce the efficiency of your class and lead to poor design and the overcomplicating of the entire process.

A class should not try to do too many different things for the consumer. One school of thought believes that if
you find your classes growing by more than 20 or 30 methods, then it may be time to break up your class. But
I believe the number of methods in a class is not as important as strong method cohesion is.

What do we mean by class cohesion? Simply put, it means that the collection of methods comprises a
cohesive collection. This means that the methods in the class all serve a common purpose. If the class contains
ten methods that provide utilities for managing network operations, then adding another ten array utility
methods to the same class is a bad idea. Rather, create a class for array utilities and another class for network
operations. On the other hand, if a class has 500 methods that represent the best 500 array utilities this side of
the galaxy, they may be better served by being separated into four highly cohesive classes.

Method cohesion, on the other hand, refers to the focus of the method. If a method tries to do more than one
thing (be a Jack−of−all trades), we say it is weakly cohesive. If a method focuses on a single task, which
usually means it does that task well, we say it is highly or strongly cohesive.

 Class and Method Cohesion

220

Highly cohesive methods are much more reliable than weakly cohesive ones. The more tasks you try to
complete in a method, the more chances exist of things going wrong. The problem with methods that lack
cohesion is that if one "subtask" of a method goes wrong, it has the potential of taking out the entire method.
Sure, you can code a stack of TryCatch blocks, but such code becomes hard to manage, document, and
maintain.

The following list presents several levels of acceptable cohesion, from most acceptable to least acceptable (but
still acceptable):

Functional cohesion The most desired form of method cohesion, in which a method does one thing
and one thing only. The following code demonstrates a cohesive constructor whose sole purpose is to
instantiate an object. It transfers control to another method that has its own tasks to perform.

Public Sub New()
 MyBase.New
 InitializeObject()
End Sub

•

Sequential cohesion Allows a single method to perform a series of steps in strict sequence in a single
method. The steps must be performed in the order listed in the method, which together logically make
up the entire process. A good example is a method that opens a file, writes to the file, and then closes
the file. While you can easily transfer control to another method, it makes no sense to not complete
the steps in a single method. On the other hand, if you were to insert a step that reads the data in the
file and launches into some fancy operation with that data, perhaps then sending the data somewhere
or sorting it, the method cohesion would break down. Rather, transfer control to another method to
perform the next task, and then return to close the file.

•

Communication cohesion Allows several tasks to take place in a single method that all need to use
the same facility. A good example is a method that opens a connection to a database for the purpose
of writing some data to a table. It would therefore be acceptable to add a second operation that uses
the same connection to read or write data to another table in the database. Because the steps do not
need to happen in sequence, this level of cohesion can collapse when you start doing too many
unrelated things at the same time. For example, the current method would not be the place to suddenly
launch into a record count that updates a counter in the user interface, just because the door is open.

•

Temporal cohesion Allows a single method to perform a whole bunch of tasks that need to happen
at the same time. The following code suggests temporal cohesion:

Shared Function DDBVal(ByVal choice As Integer, ByVal acq As
Double, _
 ByVal recovery As Double, _
 ByVal life As Integer, ByVal period As Integer, _
 Optional ByVal factor As Decimal = 0) As Double
 Dim book As Double = acq recovery
 Dim deprec As Double
 If choice = 1 Then
 If factor <= 0 Then
 While period > 1
 deprec = book * 2 / life
 book = book deprec
 period −= 1
 End While
 Else
 While period > 1
 deprec = book * factor / life
 book = book deprec
 period −= 1
 End While

•

 Class and Method Cohesion

221

 End If
 Return book
 Else
 If factor <= 0 Then
 While period >= 1
 deprec = book * 2 / life
 book = book deprec
 period −= 1
 End While
 Else
 While period >= 1
 deprec = book * factor / life
 book = book deprec
 period −= 1
 End While
 End If
 Return deprec
 End If
End Function

This example is on the borderline into the unacceptable group. Here you have two closely related tasks. But it
is plain that the author is trying to use a single method to return either of two values, book or deprec. It would
be best to use two methods instead, to channel each task to a pair of functionally cohesive methods. Also of
particular concern is passing a variable to set up the choice between one or the other task, and the resulting
clutter of unnecessary conditional elements.

Any methods that are less cohesive than the preceding example are considered unacceptable by many
developers. A good example of weak cohesion that you often see in a program is a method that takes a control
parameter that is used to decide which task in the method to perform. This is totally unacceptable method
writing. Rather, break that method into submethods and use control flow in a single method that uses a Select
Case conditional to determine which method to call.

Method Coupling

Methods in a class should also be loosely coupled, which means you should strive to make methods stand on
their own and not be dependent on the operations of other methods. Coupling methods to methods in other
classes is also a bad idea, because it is a form of tight coupling, hard coding, that increases complexity and
leaves room for bugs to attack.

As mentioned earlier, when methods access or share global data, they become undesirably coupled to each
other. If a method needs data to perform a certain task, use the facility of passing the data to the method's
formal parameters.

In badly written applications, it is not unusual to find methods that have been delegated the task of writing to
global variables for the benefit of other methods. This is a form of unacceptable data coupling. Rather, send
the data to the method as an argument in the method call. The parameter list of a method is there for this
reason, so use it.

The Length of a Method

How long should your methods be? This depends on the method. Again, I have learned not to impose such
restraints on creativity. If a method has to be 100 lines, then that's what it has to be. Besides, there is ample
research to show that long methods are no more troublesome to manage or debug than short methods.

 Method Coupling

222

On the other hand, like class and method cohesion, the method itself should not do too many things and
should focus on a single purpose. In this regard, I am firmly of the school that says a method should be
decomposed to a single task, returning a single value. This is known as the "divide−and−conquer" rule, which
dictates that a problem should first be decomposed down to its constituent subproblems, at which point a
number of methods can cater to the subproblems.

Recursive Design of Methods

At the method level, recursion solves a problem by invoking itselfeither directly from within its own
implementation or indirectly from some external implementation. At the algorithm level, recursion solves a
problem by solving smaller instances of the same problem.

Recursive method calling is an important subject in computer programming, and the .NET Framework fully
supports the concept of a method calling itself. Understanding recursion is vital for several reasons:

Many problems you will be required to solve will be inherently recursive. In other words, the problem
cannot be easily solved with the iteration constructs (loops) discussed in Chapter 6. The .NET
Framework introduces a number of elements that beg to be expressed recursively. We will deal with
some of them in this book. Toward the end of this section, I include a more specific checklist for
using recursion.

•

Even if you never have to program a recursive method yourself, you will no doubt encounter them
everywhere, even in several places in this book. So, understanding what recursion is will make you a
better programmer. It will certainly help you code tighter loops or consider alternative ways to code
iterative constructs.

•

Recursion often provides an elegant means of solving a problem, specifically because you have the
ability to return with each recursive call and pass in fresh data that continues to erode the problem
until it is solved or can no longer be eroded.

•

Recursive method programming teaches you more about how to write great methods than any linearly
structured methods. As you will see, recursion requires a sense of holistic awareness of software
engineering.

•

Recursion can be fundepending on your outlookbecause a good design that meets its objectives can be
very rewarding. As the old saying goes: "The joy in tradition is in the repetition." Remember those
words the next time your birthday comes around.

•

If an algorithm is a step−by−step "recipe" that arrives at the solution, then you could argue that recursion (and
iteration) is the process that repeats the steps until the problem has been "diluted" to a point at which the final
outcome can be put to some valuable use. Life has a similar process for solving its problems: History keeps
repeating itself until life's problems are solved or mankind wakes up.

Looking at recursion as both a philosopher and an engineer or scientist, you might say that this ability to
recursively erode a problem away is true only if everything in life is constant: that there are cases where
continuous repeating of the steps does not distill the problem down to its logical conclusion; that there are
bound to be times when the recursions ends before the desired result. In such cases, the problem might need to
be solved by "brute force" or the definition of what the problem is needs to be changed. Of course, you could
argue that brute force is the result of some other recursive design.

On the other hand, there are also possibilities that recursion could continue indefinitely until a stopping
mechanism or a stopping condition is injected into the "loop" to bring an end to the giddy cycles. This also is
a case of injecting "brute force" into the algorithm.

 Recursive Design of Methods

223

Here is a small example of recursion at work, but before we look at it in code or graphically, I must stress that
these simple routines are not good choices for recursion. In fact, if you were to use recursion for such a
problem at work, you would likely get fired. All languages have iterative constructs, as demonstrated in the
previous chapter. The examples that follow may seem trivial, incurring unnecessary overhead, but they have
been provided to assist you in grasping the concept, assuming you are new to it.

Let's look at some code to illustrate a small problem that can be solved easily by method recursion and
iteration. The scenario is that we have a sequence of numbers in an array or list that is not in any particular
order (like telephone extensions being saved on a caller ID). The sequence is as follows:

2189
2432
4391
3432
8932

The "problem" is that we need to turn the array upside down or swing it around. In other words, 2819 needs to
be at the bottom and 8932 needs to be at the top. The pseudocode for the algorithm would be as follows:

'Interchange the values in the elements of the array.

If (first is less than last)
{Swap the value of first with the value of last
 Increment first by 1, decrement last by 1
 recall (recur) and repeat the process until
 first and last intersect or are of equal value.
}

Incidentally, while curly braces are a habit of mine from coding in C/C++, Java, and now C#, I also find them
useful for delineating pseudocode segments. They will thus play a big part in my love affair with Visual Basic
.NET. Now if you look at this method, you can imagine or sketch the processing that takes place (sketching
works even for much more complex algorithms). Let's turn the array on its side for convenience:

round 1 [2189][2432][4391][3432][8932]
 f l
round 2 [8932][2432][4391][3432][2189]
 f l
round 3 [8932][3432][4391][2432][2189]
 fl

In step one, the values of f and l are swapped and then the index values are incremented and decremented,
respectively. The method can recur because f is still less than l and there are still elements left to swap. In the
preceding case, we have five values, but the algorithm works even if we add another value to make it six, so
that no value is left unswapped.

This brings us to two of the most important conditions of recursive methods or algorithms: base cases and
stopping conditions.

The Base Case

A recursive method knows how to solve its simplest case. This is often referred to as the base case. The base
case in the preceding array−reversal program is the reversal of at least two values. You would not need to
recall the method on a single reversal, but throwing a huge array at the method means the method gets to work
on one large problem and continues to erode it until it arrives at the base or simplest case. In other words, the

 The Base Case

224

problem keeps getting smaller until it no longer exists.

In more complex problems, the algorithm knows how to solve the problem, but because the problem is so big,
the algorithm divides the problem into smaller problems and then calls itself to go to work on the smaller
problems. (Refer to the discussion of "divide and conquer" in the previous section.) This is why you often see
array sort methods using recursion, as you will in Chapter 12, because the method partitions the array into
smaller arrays and then sorts each one recursively.

The Stopping Condition

Every recursive method must have a stopping condition or the recursion will continue until the computer runs
out of memory. In the preceding example, the stopping condition is when first and last become equal or land
on the same index. At that point, the method must return (using the IfThen construct) or the two values will
intersect, reverse the procedure, and run off the bounds of the array, causing the method to explode.

In this example, the stopping condition is placed at the point where we decide we have achieved the desired
result. Running out of memory because the recursion continues on indefinitely is a worst−case scenario you
must protect againstjust as you would with a While loop.

The method signature can thus be constructed as follows:

SwingArray(ByRef swinger() As Integer, ByVal first As Integer, _
 ByVal last As Integer)

We pass the array reference, first (which is 0 or swinger.GetLowerBound(0)) and last (which is
swinger.Length−1 or swinger.GetUpperBound(0)). Inside the method implementation, we can swap the
values as follows:

Module Module1
 Dim swinger() As Integer = {2189, 2432, 4391, 3432, 8932}
 Dim placeHolder As New Stack()
 Sub Main()
 SwingArray(swinger, swinger.GetLowerBound(0), swinger.GetUpperBound(0))
 PrintArray(swinger)
 Console.ReadLine()
 End Sub

 Public Sub SwingArray(ByRef swinger() As Integer, _
 ByVal first As Integer, ByVal last As Integer)
 If (first < last) Then
 placeHolder.Push(swinger(first))
 swinger(first) = swinger(last)
 swinger(last) = placeHolder.Pop
 SwingArray(swinger, first + 1, last − 1) '<−recursive call
 End If
 End Sub

 Public Sub PrintArray(ByVal swing() As Integer)
 Dim intI As Integer
 For intI = 0 To UBound(swing)
 Console.WriteLine(swing(intI))
 Next intI
 End Sub

End Module

 The Stopping Condition

225

The array is now reversed. Calling PrintArray provides the following output:

8932
3432
4391 <−f/l
2432
2189

Notice that we are using an If conditional because we don't need to loop inside the method. The recursive
calls to the methodas markedtake care of the repeated runs through the code.

Of course, such recursion is really unnecessary, because a While loop (iteration) would handle the repeats.
Here's the alternative using iteration:

Public Sub IterArray(ByRef swinger() As Integer, _
 ByVal first As Integer, ByVal last As Integer)
 While (first < last)
 placeHolder.Push(swinger(first))
 swinger(first) = swinger(last)
 swinger(last) = placeHolder.Pop
 first += 1
 last −= 1
 End While
End Sub

So, it should come as no surprise to you that you can write the recursive call with a For or a While loop. So
why would you consider writing code that makes recursive calls? The first answer to this question usually
comes in the form of a statement of surprise from many green programmers: "I did not even know there was
any other way to do thisand I have loops that have completely lost their way."

But the first rule to consider is that if a problem can be solved effectively and quickly using loop constructs,
then that should be your first choice. For most algorithms, loops are easier and quicker to write and are a
natural component of your programming arsenal. Before you start thinking about moving a loop to a recursive
call, explore tightening the loop by making it more efficient, choosing the correct operators, and so on.

Recursive method calls or algorithms, however, often offer us a natural and elegant way of dealing with a
complex problem, and this is one of the reasons I brought the subject up in the first place. In Chapter 12 we
are going to look at some data structures that can be elegantly manipulated with recursive algorithms; in some
cases, recursion is the only way to deal with the problem.

The Impact of Recursion

You will find many algorithms that are inherently recursive and that may be better coded with recursion than
loops. Keeping both the method and the size of the data structure being worked on small is very important,
because recursive calls tend to impact the call stack, especially when the dataset explodes.

One of the worst reasons to use recursion would be to compute factorials or Fibonacci numbers. A good
example (which I would never like to see in production code and thus will attempt to demonstrate) of such a
case is processing the Fibonacci series:

"Start with 0 and 1 and then add the latest two numbers to get the next one
n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
Fibonacci (n): 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 ...

 The Impact of Recursion

226

Processing Fibonacci 20 results in 21,891 method calls, but processing Fibonacci 30 quickly racks up more
than seven million calls. Why is this so dangerous? Clearly, it is very difficult to predict how seven million
calls will impact the call stack. So unless you are certain what resources you will need or have for the
recursive call, or what the worst case scenario of the recursion might be, you could be heading for a massive
explosion (figuratively speaking) inside the computer.

Meanwhile, the following is a checklist to consider when choosing recursive methods:

Make sure you have a stopping scenario. Every recursive algorithm must include an alternative
nonrecursive path that is to be encountered in the path of execution. You thus have to code a routine
that repeatedly tests for a certain condition and then returns the method and ends the recursion when
that condition is encountered.

•

Add a checking parameter to the parameter list. A checking variable can be passed in on every call
and can be used to compute when it's time to bail.

•

Watch that stack. Stack usage varies greatly depending on the algorithm. Test worst−case situations
but build safety checks in the method to protect the target and the user. Get that debugger out and
check the memory usage. Step the code through the paces and estimate how much of the stack the
code chews up. While you should catch out−of−memory exceptions and the like, waiting for that to
happen borders on lunacy.

•

Don't code recursion indirectly. This means that you should not reenter the method as a result of a call
to another method. While I know some programmers have done that, I have not come up with a
scenario in which such a situation is unavoidable, and I doubt I ever will.

•

Use recursion when the solution requires it. As you can see from the preceding tips, coding recursive
routines is a lot of work. They are not exactly run−of−the−mill code. Using recursion for Fibonacci or
to produce prime numbers is not the kind of software engineering you should be proud of. Keep your
code simple.

•

Use recursion with divide−and−conquer logic. We've talked about this several times in the past. A
recursive algorithm should not simply be a loop with an attitude, but rather a worthwhile
step−by−step procedure to solving a problem recursively.

•

Understanding Method Performance

If a method is a task or a subtask of an algorithm, then the time analysis of an algorithm can be achieved by
calculating the time it takes for each method to perform its operations. What do we mean by time analysis of a
method? Think of an exercise you perform at the gym or health club. If you get onto a treadmill and program
in parameters like weight and age and number of calories to burn, the program can determine how many steps
you need to take to burn 500 calories. Similarly, it is possible to figure out how long it takes for a method to
complete a task by counting the number of operations it takes to obtain the result and, more specifically, how
long each operation takes.

Earlier we studied how to break down an algorithm into its constituent tasks and subtasks (methods), but you
also need to break down a method to the number of operations it needs to perform to complete its task.

An array sort, or a tree−walking routine is essentially evaluated by the number of operations it takes to
achieve the end result and for the operations of the method to end. If the operations continue ad−infinitum,
then you have obviously "painted" yourself into a loop that cannot exit.

An operation is nothing more than a single statement in a method. These statements can be as complex as a
multi−argument method call or as simple, yet critical, as the assignment of a variable or some calculation.

 Understanding Method Performance

227

It should make sense, then, that a method that takes the longer list of input arguments is going to take longer
to complete than a method that only has to deal with a short list. Going back to the treadmill example, the
same logic applies: The exercise that results in the highest calorie burn will be the one in which you take the
most steps and continue for the longest time.

In software engineering, we can formulate notation for computing time analysis by computing expressions
where the number of steps is represented by the parameter n. In other words, you can write that to burn
calories, you need to walk n steps at a constant rate. A time−analysis equation might look like this:

Time = timeN

or

Time = 60secs*500,
Time = 8hrs

Let's take the next step and look at the notation, using n as the base parameter, to do time analysis on a
method. To repeat: A method operation can be simplistically defined as a statement in a method. A statement
can be rather complex and involve other method calls. It can also be simple in scope, such as the assignment
of a variable or simple math.

Notice again that I am talking methods here and not algorithms, although arguably a method is as much an
algorithm as an application. It makes more sense, along our theme of decomposing algorithms and data
structures, to be analyzing specific tasks of a program (methods) and not the program itself.

Software engineering experts have for decades pondered over the gauging of algorithm efficiency, and have
provided us with several formulas for evaluating efficiency or performance, which you can use to determine
how to handle a specific task. These apply equally to .NET languages, the Framework, and Visual Basic .NET
as they do to unmanaged code, and you will find frequent reference to performance in the .NET Framework
reference material.

Getting back on the treadmill, for example, you need to walk n steps to burn 500 calories, c, and it will take t
time. If, for the 500−calorie burn, your body employs f function, you could just write the formula as f(n) = c,
which is the function multiplied by the number of steps (n strides) to burn the calories (ignoring how long it
will take).

In software development, the faster the process the better, so time analysis is the objective here. In other
words, you rate the efficiency of your methods by how long it takes them to complete. For obvious reasons,
you would not perform such exercises on simple programs that take a few seconds here or there to complete.

So let's review this by analyzing the operations of a simple Visual Basic .NET method. Consider an
array−searching method simulating the use of a healthy body that can burn 500 calories by taking 6,000
strides in the treadmill's brisk walk program. The calorie−burning work is illustrated as the effort (function) to
search the array until you reach the end. The last element in the array (plus 1 to be precise) must be equal to
the exercise of 6,000 strides for the method to return True.

Public Function BriskWalk(ByRef strides() As Integer, _
 ByVal exercise As Integer) As Integer
 Dim aStride As Integer
 For aStride = 0 To strides.Length 1
 strides(aStride) = exercise
 exercise += 1

 Understanding Method Performance

228

 Next aStride
 Return aStride
End Function

Next we count the operations in this method. When the calorie−burning For loop starts, the first operation is
the assignment of aStride to zero. The second operation is the For test to determine if aStride's value is still
less that the length of the strides array. The third operation is assignment inside the For loop
(strides(aStride) = exercise) and the fourth operation is the increment that takes place after the assignment
(exercise += 1).

The number of operations in the body of the For loop is expressed as f operations (the number of operations
multiplied by the iterations of the loop). The number of operations is thus achieved by f(n), as demonstrated
earlier.

Finally, we have the Return statement after the loop is done, which, along with the first two operations, is
also counted once. So, the formula for determining the total number of operations in this method is f(n) + 3.

Now clock the time to complete each operation, multiplying the operations that are repeated, to perform the
time analysis of the method. To burn more calories, you would need to take more steps and increase the
exercise. And the more steps you take, the longer it takes to complete the method.

Our big problem is that as the number of strides grows, the more time it takes to make each stride (for each
iteration) because the healthy body begins to tire. The same thing happens with our methods and we begin to
inject a new issueorder of magnitude into the equations. Recursion is a good example, as discussed earlier.
The longer the processing, the higher the impact on the stack and the less memory that is available. There are
other variables that we have so far ignored, such as the strength of the compiler and the power of the
processor, and we can think of those as the "friction" that keeps things from being anything but constant.

You can get bogged down pondering the math, and you should avoid that because this is about as far from
Visual Basic .NET as we want to stray in this book. Instead, your sojourn into data structures and method
performance requires you to understand that some algorithms work better than others (complete quicker)
depending on the nature of the problem, the size of the input, and factors like growth rates and so on. Let's
talk about that next.

Algorithms or the method techniques used in processing data structures can be classified for efficiency
comparison using asymptotic analysis. Without getting into master's−level study, this mouthful permits us to
accept that as we increase the size of the input data going into the algorithm, the efficiency of the algorithm is
going be affected. In other words, an efficient algorithm for 10n may not be so efficient if the input size is
increased to 100n, depending on the algorithm.

This type of information can be expressed by a "yard stick" called O−notation (or to be precise, big−O
notation). The O stands for order and the character used is a big O; hence the term big−O notation.

Big−O notation is useful because it lets us classify our methods or algorithms for efficiency comparison, but it
does not prescribe how to write the algorithm. Rather, it classifies the algorithm, no matter what language it is
written in, according to the time it takes, in theory, to complete the problem, and how the time increases or
decreases as the algorithm works through the input data.

There are a number of such time analysis yardsticks, and if you stroll through the collection classes in the
.NET Framework, you will find frequent references to the "O−ness" of a particular method used for sorting or
searching data structures. Let's first talk about the three yardsticks you will encounter with everyday sort and

 Understanding Method Performance

229

search algorithms:

Linear time Your algorithm is said to be linear if by doubling the input size the number of
operations can increase twofold. In other words, by doubling the input size, the time taken to
complete the sort of a list of variables, such as an array, increases by approximately twofold. The
notation for a linear algorithm is O(n).

•

Quadratic time Your algorithm is said to be quadratic if by doubling the input size the number of
operations increases by up to four times. In other words, if you double the list of variables in a sorting
structure, the time taken to sort the list can take up to four times longer. The notation for a quadratic
algorithm is O(n2).

•

Logarithmic time Your algorithm is said to be logarithmic if by doubling the input size the number
of operations only increases by a fixed number of operations. For example, depending on the input
size, the number of operations may only increase by one or two operations. A logarithmic algorithm
can thus work very efficiently on large sets of data, because the time taken to complete the
computation of a larger input hardly increases. The notation for a logarithmic algorithm is O(log n).
Several sort methods provided in the System.Array class use a logarithmic sort algorithm.

•

When you evaluate or design algorithms and methods for processing data structures, it is also important to
understand the difference between worst−case results and expected results.

Expected results are hard to define when you do not have proven patterns or a scale on which to make
comparisons. However, it can help you to make worst−case predictions based on the size of the data set and
what you have to do with it, and fix your expectations from there.

In other words, when designing methods to search, sort, or otherwise process data structures, concentrate on
the likely worst−case scenario. This is known as worst−case analysis. For example, let's say you have to sort a
simple array of ten items. Instead of basing the performance of the array sort on 100 items, rather base it on
the likelihood of the array being 10,000 items. (There may be a strong possibility that the input size will one
day be as high as 10,000, and you need to decide how best to cater to that. Of course, you also have to balance
this line of thinking against how the algorithm will work if the data set is small.)

I learned the hard way back in 1994 when I wrote an e−mail program that parsed e−mail addresses in a
structure to extract malformed domain names and so on. The algorithm was sufficient when the size of the list
was around 1,000 items, but became unusable at above 10,000 items because, unbeknownst to me, the number
of operations had increased fourfold (a quadratic algorithm) and I was not sure why (memory constraints and
ill−conceived code aside).

This was eventually fixed by changing the order of certain operations, tightening loops, making better use of
bitwise operations, and so on. In 1999, I had to write a program that read data feed containing hundreds of
thousand of check deposit records from about eight banks for one of the largest food distribution companies in
the USA. The data needed to be streamed to the file, then sorted, and formatted into a common format before
being transferred to the financial systems. So everything I learned about method performance over the years
paid off here.

So, if you know that time in a sequential search will be linear, while in a binary search it will be logarithmic,
why would you write a method that performs a sequential search of a large data set? Because it's easier.

The following additional key classes of efficiency are also described by big−O notation:

O(1) Constant time, typical of an Array index sort•
O(nlogn) nlogn time, typical of the quicksort algorithm (see "Quicksort" in Chapter 12)•

 Understanding Method Performance

230

O(n3) Cubic time, typical of matrix multiplication•
O(2n) Exponential time, typical of set part partitioning•

How do you know if the methods you are writing are up to standard? Do you just write a method and if it
achieves what it sets out to achieveit completes with the desired resultyou are satisfied?

Being able to gauge the performance of a method is an important asset as a Visual Basic programmer (as any
type of programmer, for that matter). Usually, you would not overly concern yourself with performance
issuesthat is, worry whether your application does X in Y milliseconds. But when you need to code real−time
applications or create a process that requires optimum performance considerations, knowing how long it takes
for a method to do its work is important. Remember, a method is a task or subtask of an algorithm, and all
methods thus should be coded for optimum performance or one method may hold up the entire process.

To sum up this section: The time analysis of an entire algorithm can be achieved by calculating the time it
takes for each method to perform its operations. You are obviously thinking that there are other factors to
consider, and you are right. But for the most part, you should not try to inject factors like kernels, processor
bandwidth, hard disks, and so forth into the equations, because these factors hardly remain constant and most
of the time you have no control over them. The quality of your code does remain constant, and it matters how
you code a method to ensure that it completes in the quickest time. The quality of your code and how you
code a method is something you have very fine control over.

You have studied how to break down an algorithm into its constituent tasks and subtasks (methods), but you
also need to break down a method to the number of operations it needs to perform to complete its task. In the
study of data structures, it becomes clear that there are many ways to achieve a result. But only one way
completes in the fastest time. We will return to sorting and searching in Chapter 12.

Observations

There is a lot to methods besides the implementation aspects. We have to worry about access to methods, the
polymorphic behavior of methods, method attributes, class cohesion and method coupling, and so much more.
As important as methods are to an OO application, becoming too fanatical about them doesn't help either,
because that has the potential of distracting you from the bigger picture of OO design and architecture. We
will focus on methods again in Chapter 12, with respect to sorting and searching.

 Observations

231

Part III: Classes and Objects

Chapter List

Chapter 8: Types, Structures, and Enumerations
Chapter 9: Classes
Chapter 10: Interfaces
Chapter 11: Exceptions: Handling and Classes
Chapter 12: Collections, Arrays, and Other Data Structures
Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships
Chapter 14: Advanced Interface Patterns: Adapters, Delegates, and Events
Chapter 15: Data Processing and I/O

232

Chapter 8: Types, Structures, and Enumerations

Overview

In Chapter 2 we looked at the .NET Type System and learned a little about the hierarchy that descends from
the root type, which is called Object (see Figure 2−1). We also investigated the two branches of the type
model: value types and reference types. This chapter will expound upon these two strands.

By now it's clear that the type system underpinning .NET is one hundred percent object−oriented. This means
that even the fundamental, simple types like Integer and Boolean are first class objects. This is not the case
with Java whose primitive type architecture is modeled on C.

Value types derive from the root object and include built−in fundamental−data types as well as user−defined
types cradled in structure and enumeration "garb." The built−in value types are the so−called primitive or
elementary types that derive from classes like System.Int16, System.Int32, System.Int64, and
System.Double. From a purist's viewpoint, primitive is a misleading descriptor for .NET's built−in value
types, because primitive types herald from the procedural age of software engineering and are not
objectsvalue types are objects. (See the comments comparing Java primitives to .NET value types at the end
of this chapter.)

Most types you program with or against are processed on the heap, the allocation of random access memory
(RAM) on your computer. We call heap objects reference types because of the semantics used to reference
them. What value types do have in common with reference types is inheritance. They derive from their base
type ValueType, which itself derives from the root metatype, Object. Thus, you can create your own
"custom" value types, known as structures. From our perspective, this is where the similarity between value
types and reference types ends.

There are a number of differences between value types and reference types. The most important difference is
that value types are "value oriented"representing a single value or collections of values. They also live in the
CLR−managed stack, a highly efficient memory for such lightweight classes. The CLR stack is not
garbage−collected. Reference types, on the other hand, are more function− and algorithm−oriented (rather
than being value−oriented) and define methods that operate on or work with the values of value types.

Semantics for the two types are also dissimilar. Furthermore, the compilers and the CLR treat the two very
differently, especially in regard to keeping value types lightweight and efficient while allowing them to be
referenced as objects when the need arises. The division of the object model into two type models keeps the
.NET Framework purely object−oriented, while still allowing values to be processed efficiently.

Note See the discussion of fundamental types in Chapter 4.

We'll now begin our investigation into these two models: starting at the beginning will help us better
understand the differences between thema critical requirement for avoiding subtle and unnecessary bugs and
performance hogs in your code.

The Value−Type Model

Custom value types are efficient constructs and perform similarly to the built−in, simple data types. However,
the term "built−in" indicates that the base−class library already provides the simple types; thus, compilers

233

"know" about them and can manage them more efficiently than your custom types.

You can even build your own version of Integer and override some of the base methods that value types
inherit from both the ValueType and root−Object classes. Yet, the value−type class is not meant to replace
the built−in fundamental types. That would be redundant for a type like Integer. Double might be a different
story, as we'll see later. The base ValueType class allows you to create specialized, efficient value types that
can provide utility that exceeds the utility of the built−in ones.

The ValueType class, for example, lets you develop complex numeric types for use in scientific, numerical,
and statistical problems. You can create value types that represent collections of the fundamental types (like
enumeration constants) and present them in forms and with values resulting from mathematical
operationseven functions for linear algebra and statistical operations requiring double−precision operations.

Note Since Visual Basic .NET has the support for custom value types, which provide the necessary
foundation for the advancement of numerical computing on the Windows platform, I expect the
next version to include support for operator overloading. It may possibly even come in a
service pack.

Some important facts about values types:

They have value semantics. When you assign an existing value type, the operator performs a deep
copy of the object bit−for−bit and doesn't work on the pointer to some other "place," as described later
for reference types. A deep comparison also examines the objects bit−for−bit and doesn't evaluate
whether the left and right sides of the Is operator refer to the same object on the heap.

•

Their variables always have a value. If none is assigned at declaration, the value type's field defaults
to zero, or you can specify a value in the default constructor (which must have parameters). Those
that store strings default to an empty String. Value types are always final, which lets the compiler
perform important type processing economics at compile time.

•

A value type does not incur dispatch overhead or require a dispatch pointer, because the class is
always final (in other words the compiler knows what it is and what it does at compile time).
Subsequently, only one version exists in the stack and you don't need the New keyword to create it
(although it is not a sin if you use New).

•

They do not require finalization. When the variable's life ends, the CLRnot the garbage
collectorimmediately removes it from stack memory. When the value type goes out of scope, such as
an Integer declared in a method, it's done, there and then.

•

Value types can implement interfaces. This is considered a big bonus from Microsoft, because it can't
hurt the specification of a custom value type, and it provides a powerful facility. To some, however,
this feature detracts from its lightweight virtue. To use the famous words of Muhammed Ali, a value
type should "float like a butterfly, sting like a bee."

•

Value types cannot have virtual methods, nor can they or their members be abstract.•
They are implicitly sealed; thus, they cannot be used as a base for deriving new types. You cannot, for
example, inherit from System.Int32. Value types are implicitly declared NotInheritable.

•

Value types are shared, which means there is only one copy of the type's value in the system. For this
reason they default to private access.

Note See also the Flyweight pattern (Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object−Oriented Software. Addison−Wesley,
1995).

•

Referencing value types is done implicitly via their identifiers, their names. If you name an Integer "voila,"
then voila it is, and the following code is perfectly legitimate.

 Chapter 8: Types, Structures, and Enumerations

234

voila = voila + voila

However, this name is not carried down to IL; the compiler assigns it a less elegant one.

How Value Types Work

Value types are small, lightweight, and efficient. Some people call the simple built−in types "the hard
currency" with which all software is created. I would then add that the value type model itself is the means
that the .NET architects give you to add more currency to the type systemto extend it so you can build any
software for any problem.

The best way to understand the value type is to declare one and then compare it to the other base types and
standard classes in order to see how it lives in the computer. Before we do that, we need to understand what a
value type is and why its model and architecture in .NET are so significant.

When you work with a simple type, such as the Double (which represents double floating−point precision),
you will notice the abundance of methods, properties, and other members "attached" to this object. In case you
have not investigated what lies "beneath" a value type like System.Double, try the following experiment:
Declare a variable of type Double. Reference the variable in a method and insert a dot after the variable as
follows.

Public Sub TestDouble()
 Dim dbl As Double = 5.5
 dbl.
End Sub

When you hit the period key, you discover a whole world of methods and things you never thought existed. If
you don't have the IDE open in front of you, the illustration demonstrates this (there's even a field for
Epsilon).

There are three ways to declare a variable of a value type:

Dim dbl1 As Double = 5.5
Dim dbl2 As New Double()
Dim dbl3 As New System.Double(5.5) Initialization produces a compiler error

The first is the short cut used by the compiler to deal with the type in value type semantics. It knows to create
the object without the New keyword because, as you will learn in the next chapter, New creates a reference to
a heap−based object. The second uses the New keyword, which is also valid but, for value types, this style
does nothing different from the first style. In the third example, using the New keyword and trying to initialize
the variable will not work because Double cannot be initialized in this fashion. Value types do not have a
default constructor. The syntax you choose is not important here, because the compiler will produce the same

 How Value Types Work

235

IL code.

To investigate how value types behave let's look at some simple value assigning. The following code first
writes the value of dbl1 (first with defaults) to the Output, Debug window (Step 1). Then it writes the value
(still 0) of dbl2 to the output window (Step 2). Next it initializes dbl1 to the value of 5.5 and displays the
values of both variables again (Steps 3 and 4). At this point, only dbl1 is 5.5. Next it copies the value of dbl1
to dbl2 and then displays both values (Steps 5 and 6). At this juncture, both values are identical because the
copy is "deep." The code then finally raises the value of dbl2 to the power of itself. The final output to the
output window confirms that dbl1 is not affected by the process that changes the value of dbl2 (Steps 7 and
8).

Dim dbl1 As Double
Dim dbl2 As Double
 Sub Main()
 Debug.WriteLine("Step 1: " & dbl1)
 Debug.WriteLine("Step 2: " & dbl2)
 dbl1 = 5.5
 Debug.WriteLine("Step 3: " & dbl1)
 Debug.WriteLine("Step 4: " & dbl2)
 dbl2 = dbl1
 Debug.WriteLine("Step 5: " & dbl1)
 Debug.WriteLine("Step 6: " & dbl2)
 dbl2 = System.Math.Pow(dbl2, dbl2)
 Debug.WriteLine("Step 7: " & dbl1)
 Debug.WriteLine("Step 8: " & dbl2)

 Console.WriteLine("Normal exit: Press 'q' to quit the sample.")
 While Chr(Console.Read()) <> "q"c
 End While
 End Sub

The output to the Debug window is as follows:

Step 1: 0
Step 2: 0
Step 3: 5.5
Step 4: 0
Step 5: 5.5
Step 6: 5.5
Step 7: 5.5
Step 8: 11803.0648208644

As you can see, the two value types are referencing their own values. If they both referenced an object on the
heap then both dbl1 and dbl2 would return the value in Step 8. But what would happen if we were to box one
of the types? The next section will explain this concept in case you are unfamiliar with it. This is not essential
knowledge for most applications; however, your algorithms will benefit from your understanding the
boxing/unboxing process, especially if they are complex or scientific.

Boxing

A quick summary is in order before we proceed. We know that the value type lives in stack memory where it
can be efficiently accessed. We also know that the value types are themselves objects, part of the type
system's "family tree," of which Object is the root type (see Chapter 2).

 Boxing

236

We also see that each variable of a type has its own underlying methods, fields, and properties that act on the
variable. So what happens to dbl1, for example, when we ask it to tell us more than its valuelike giving up its
Epsilon valueor if we ask it to compare itself to another value? What happens to the type when we need to
talk to it more as an object and less as a value?

In order to work with the value type using object semantics, it first has to be boxed. This technique creates a
new object in heap memory, where reference objects live, and copies the value of the value type to that
location. The new version of the value type moves into the object spotlight as the old version on the stack
recedes. Have a look at the following two methods; only one of them results in a box operation:

Module TestBox1
 'to box or not to box
 Sub Main()
 Dim dbl1, dbl2 As Double
 dbl1 = 5.5
 dbl2 = 5.6
 Console.WriteLine(dbl1.CompareTo(dbl2))
 End Sub
End Module

Module TestBox2
 'to box or not to box
 Sub Main()
 Dim dbl1, dbl2 As Double
 dbl1 = 5.5
 dbl2 = 5.6
 Console.WriteLine(dbl1.ToString.CompareTo(dbl2.ToString))
 End Sub
End Module

The methods are nearly identical and return identical results. There is one tiny difference. The first method,
TestBox1, requires a boxing operation to compare dbl1 to dbl2 with the CompareTo method because
CompareTo takes an object as an argument. The boxing operation extracts the value of both variables to
make the comparison. The second method TestBox2 does not require a boxing of the types because we extract
the values in the type's ToString fields beforehand and compare the values returned from the ToString calls.

We can confirm this using the .NET Framework IL Disassembler (ILDASM) tool described in Chapter 2 to
inspect the MSIL code. The first example is from TestBox1 and indicates a box operation (in bold). The
second method is the code from TestBox2 and does not indicate a box. Have a look:

.method public static void Main() cil managed
{
 .entrypoint
 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 52 (0x34)
 .maxstack 2
 .locals init ([0] float64 dbl1,
 [1] float64 dbl2,
 [2] float64 dbl3)
 IL_0000: nop
 IL_0001: ldc.r8 5.5
 IL_000a: stloc.0
 IL_000b: ldc.r8 5.5999999999999996
 IL_0014: stloc.1
 IL_0015: ldc.r8 5.7000000000000002
 IL_001e: stloc.2
 IL_001f: ldloca.s dbl3

 Boxing

237

 IL_0021: ldloc.1
 IL_0022: box [mscorlib]System.Double

 IL_0027: call instance int32 [mscorlib]System.Double::CompareTo(object)
 IL_002c: call void [mscorlib]System.Console::WriteLine(int32)
 IL_0031: nop
 IL_0032: nop
 IL_0033: ret
} // end of method TestComplex::Main

TestBox2 does not indicate a box operation.

.method public static void Main() cil managed
{
 .entrypoint
 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 58 (0x3a)
 .maxstack 2
 .locals init ([0] float64 dbl1,
 [1] float64 dbl2,
 [2] float64 dbl3)
 IL_0000: nop
 IL_0001: ldc.r8 5.5
 IL_000a: stloc.0
 IL_000b: ldc.r8 5.5999999999999996
 IL_0014: stloc.1
 IL_0015: ldc.r8 5.7000000000000002
 IL_001e: stloc.2
 IL_001f: ldloca.s dbl3
 IL_0021: call instance string [mscorlib]System.Double::ToString()
 IL_0026: ldloca.s dbl2
 IL_0028: call instance string [mscorlib]System.Double::ToString()
 IL_002d: callvirt instance int32 [mscorlib]System.String::CompareTo(string)
 IL_0032: call void [mscorlib]System.Console::WriteLine(int32)
 IL_0037: nop
 IL_0038: nop
 IL_0039: ret
} // end of method TestComplex::Main

You may be wondering why this is relevant since the CLR manages the code. Consider this in response:
Boxing is a resource−intensive process that slows down your code. This may seem negligible when you're
working with a small segment of code, as in the above example. However, for a complex algorithm, writing
code that boxes heavily will negatively impact performance.

It's not difficult to inspect your code and evaluate it for boxing overhead. Using the ILDASM tool referred to
previously, open the assembly and double−click the method you want to inspect. Instructions to box value
types are embedded in the MSIL code. Using the ILDASM tool in this way, you can quickly evaluate the
assembly for boxing bottleneck.

Why are Value Types Objects?

This is an important question that can be asked in another meaningful way: why aren't value types primitive?
The most crucial of many reasons we'll examine concerns mixing object semantics and primitive semantics
within an object−oriented language; this causes problems at the source level for the architects of a software
language and for its intended audience. Primitive or native types are fundamentally incompatible with objects.
There will be problems if they coexist in the same type system, especially within a framework that boasts
strongly typed and secure software.

 Why are Value Types Objects?

238

To understand the architecture, let's look at the roots of the issue. Objects are reference types that live in heap
memory. When you create an object with the New keyword, it is placed in a heap−based memory location and
you are given a reference to work with, rather than the object itself. This reference is a variable that holds a
memory address where the bits of the object can be looked up.

Hence, the statement obvar1 = obvar2 denotes that you are making obvar1 and obvar2 point to the same
object. It does not means obvar1 and obvar2 are equal. We'll discuss the object−reference model later in this
chapter.

Many software gurus, including Java's architects, believe object management is too cumbersome for essential
software types, such as the elemental−data types. When you declare an int in Java, you are creating a variable
that holds the data assigned to it and is stored on the stack, where it is processed more efficiently than your
average object is. Java's primitives are not objects, and you cannot "talk" to them in reference type semantics.

Java's native types are powerful, slender, and fitalways there when you need them. Reference types are fat and
lazy living on the heap, waiting for the garbage truck to collect them. But the .NET reference type object
model is far from inefficient. Although heap memory is not as fast as the stack, which has a direct connection
to the CPU, many object−oriented purists believe that Java's inventors erred greatly in NOT making the native
types objects.

For starters, mixing primitive types with objects quashes polymorphism, because you can't place a primitive
type in a field asking for an object. You first have to convert it into an object.

Also, primitive types cannot be easily deployed in an object model that provides runtime type information
(RTTI) or reflection ability (see Chapter 2). In order to work with pure objects, we would have to first wrap
the values manually in cumbersome wrapper classes, creating problems and setbacks in performance gains.

Currently, Java programmers must explicitly wrap an int every time it is needed in an object realm. A
powerful contingent within Java is lobbying its creators to implement lightweight classes and convert
primitives into objectsthus rendering Java 100 percent object−oriented.

The .NET architects benefited from this debate and adopted the lightweight class architecturealthough they
are not divulging exactly why the CLR works so well. Was it possible to have it any other way? After all, the
Common Language Specification (CLS) makes .NET the framework for all languagesexcept of course for
C++, which, with its primitive type model and hybrid semantics, is far from being a pure object−oriented
language.

This value−type model seems to provide the best of both worlds. It allows us to work with true objects on the
stack and copy them to the heap when needed. We have the freedom to create new value types, which is a
major benefit compared to the Java model, which even struggles with enumerations. The downside is the
overhead of boxing, and only time will tell if the .NET inventors upped the ante on Java.

Structs and Enums Ahoy: Creating New Value Types

Let's now create our own value types, which are categorized in two groups deriving from the ValueType class
specified by the Common Type System. They are called structures (or structs) and enumerations (which
actually issue from System.Enum). The illustration shows the ValueType hierarchy and its two derivatives,
which we'll discuss in this chapter.

 Structs and Enums Ahoy: Creating New Value Types

239

Note While Structures (and Enums) ultimately derive from System.ValueType, you cannot
explicitly inherit from either base class (using the Inherits keyword). Instead, special
classes called Structure and Enum implicitly derive the value type and all its respective
members for you.

Structures

Structures, or "structs" as they are called in C# (a name inherited from C), are used to build simple or
efficient types in which their variables directly represent their data, rather than pointing to locations on the
heap. Thus, the variables of structure types include both the referencein this case the variable's nameand the
value or data of the type. When you reference structures in an application, you are working on the actual data,
not a reference to the data.

Note The Visual Basic 6 Type . . . End Type statement is not supported in Visual Basic .NET.

The syntax for the structure is as follows:

[<attrlist>] [{ Public | Protected | Friend | Protected Friend | Private }] [
Shadows]
Structure name
[Implements interfacenames]
variabledeclarations
[proceduredeclarations]
End Structure

It would be redundant to try to create a structure that replaces one of the built−in simple types. But there is
one fundamental type that lends itself to some creative adaptationthe Double.

When you referenced a variable of the Double object previously, the first thing you noticed was a plethora of
methods that can operate on the value. If you look at the members of the Integer class, you'll see that Integer
pales in comparison, because Double is used for complex math.

For example, you can compare the Double to another Double, or you can check if it evaluates to negative
infinity, positive infinity, and other fancy conditions for complex numerical values as provided by the IEEE
754 specifications (see Chapters 4 and 5). But to do any sophisticated numerical computing we would need a
new value type that can compute and return complex values to a client.

The following Structure class provides such a data type. It defines the structure as the object Complex and
takes two Doubles, one for the real part of the complex number and one for the imaginary (unreal) part of the
complex number. It defines several functions and properties for computing the complex numbers, such as
multiply and divide. I also included standard Double math operations in the same class. Complex math
functions typically run into the hundreds, so you can imagine you would need several value types to represent
or encapsulate these operations, and then make the types available to scientific applications, like digital signal
processing (DSP), encryption, and plotting.

Public Structure Complex

 Structures

240

'floats for real and imaginary parts of complex numbers
'or use both for simple float math
 Public real, unreal As Double
 Public Sub New(ByVal re As Double, ByVal unre As Double)
 real = re
 unreal = unre
 End Sub

 Public ReadOnly Property BasicProduct()
 Get
 BasicProduct = real * unreal
 End Get
 End Property

 Public ReadOnly Property BasicDivide()
 Get
 BasicDivide = real / unreal
 End Get
 End Property

 Public ReadOnly Property Reciprocal() As Complex
 Get
 If real = 0.0 And unreal = 0.0 Then
 Throw New DivideByZeroException()
 End If
 Dim div As Double = real * real + unreal * unreal
 Return New Complex(real / div, −unreal / div)
 End Get
 End Property

 Public Shared Function ComplexToDouble(ByVal aReal As Complex) _
 As Double
 Return aReal.real
 End Function

 Public Shared Function RealToComplex(ByVal dble As Double) _
 As Complex
 Return New Complex(dble, 0.0)
 End Function

 Public Shared Function ToPositive(ByVal aReal As Complex) _
 As Complex
 Return aReal
 End Function

 Public Shared Function ComplexToNegative(ByVal areal As Complex) _
 As Complex
 Return New Complex(−areal.real, −areal.unreal)
 End Function

 Public Shared Function AddComplex(ByVal areal As Complex, _
 ByVal breal As Complex) As Complex
 Return New Complex(areal.real + breal.real, areal.unreal + _
 breal.unreal)
 End Function

 Public Shared Function SubtractComplex(ByVal areal As Complex, _
 ByVal breal As Complex) As Complex
 Return New Complex(areal.real − breal.real, areal.unreal − _
 breal.unreal)
 End Function

 Structures

241

 Public Shared Function MultiplyComplex(ByVal areal As Complex, _
 ByVal breal As Complex) As Complex
 Return New Complex(areal.real * breal.real − areal.unreal * _
 breal.unreal, real.real * breal.unreal + areal.unreal * breal.real)
 End Function

 Public Shared Function DivideComplex(ByVal areal As Complex, _
 ByVal breal As Complex) As Complex
 Return MultiplyComplex(areal, breal.Reciprocal)
 End Function

 Public Overrides Function ToString() As String
 Return String.Format("({0}+{1}i)", real, unreal)
 End Function

End Structure

The following console−based code tests the Complex value type:

Public Class TestComplexed

 Public Shared Sub Main()
 Dim acomplex As New Complex(2.7, 1.5)
 Dim bcomplex As New Complex(7.5, −2) Console.WriteLine("")
 Console.WriteLine("The acomplex is " & acomplex.ToString)
 Console.WriteLine("The bcomplex is " & bcomplex.ToString)
 Console.WriteLine("Here's the idea...")
 Console.WriteLine("Multiply two doubles = " & acomplex.BasicProduct)
 Console.WriteLine("Divide two doubles = " & acomplex.BasicDivide)
 Console.WriteLine("ConvertToDouble = " & _
 Complex.ComplexToDouble(acomplex).ToString)
 Console.WriteLine("ConvertToComplex = " & _
 Complex.RealToComplex(5.5).ToString)
 Console.WriteLine("Here's the complex idea...")
 Console.WriteLine("acomplex + bcomplex = " & _
 Complex.AddComplex(acomplex, bcomplex).ToString)
 Console.WriteLine("acomplex − bcomplex = " & _
 Complex.SubtractComplex(acomplex, bcomplex).ToString)
 Console.WriteLine("acomplex * bcomplex = " & _
 Complex.MultiplyComplex(acomplex, bcomplex).ToString)
 Console.WriteLine("acomplex / bcomplex = " & _
 Complex.DivideComplex(acomplex, bcomplex).ToString)
 End Sub
End Class

The above code prints the following to the console:

The acomplex is (2.7+1.5i)
The bcomplex is (7.5+−2i)
Here's the idea...
Multiply two doubles = 4.05
Divide two doubles = 1.8
ConvertToDouble = 2.7
ConvertToComplex = (5.5+0i)
Here's the complex idea...
acomplex + bcomplex = (10.2+−0.5i)
acomplex − bcomplex = (−4.8+3.5i)
acomplex * bcomplex = (23.25+5.85i)
acomplex / bcomplex = (0.286307053941909+0.276348547717842i)

 Structures

242

Note The code for the above Complex structure is the ComplexTypes project in the Vb7cr solution.
Here's another illustration of a financial structure encapsulating a financial function found in numerous
function libraries, like those in Microsoft Excel®. The following structure implements methods for computing
financial information. I have just shown an attempt at the straight−line Double−Declining Balance formula
(book−value * 2/useful life), which computes depreciation on an asset for a number of years.

The DDB function is computed iteratively. In the following code the book value starts out at a value minus
the current salvage value (what the item can be sold for on Ebay today). The methods respectively return the
amount the book value decreased in the specified period in its useful life and the amount of depreciation to
report.

Imports System
Public Structure Accounting
 Dim cost, salvage As Double
 Dim life, period As Integer
 Dim factor As Decimal

 Public Sub New(ByVal rcost As Double, ByVal rsalvage As Double, _
 ByVal rlife As Integer, ByVal rperiod As Integer, _
 Optional ByVal rfactor As Decimal = 2)
 cost = rcost
 salvage = rsalvage
 life = rlife
 period = rperiod
 factor = rfactor
 End Sub

 ReadOnly Property DDBValue()
 Get
 Dim book As Double = cost salvage
 Dim deprec As Double
 Dim year As Integer = period
 While year > 1
 deprec = book * factor / life
 book = book deprec
 year −= 1
 End While
 Return book
 End Get
 End Property

 ReadOnly Property DDBDepreciation()
 Get
 Dim book As Double = cost salvage
 Dim deprec As Double
 Dim year As Integer = period
 While year >= 1
 deprec = book * factor / life
 book = book deprec
 year −= 1
 End While
 Return deprec
 End Get
 End Property
End Structure

The Accounting value type can be used as demonstrated here. The following code:

 Structures

243

Public Sub PrintDepByYear(ByVal intI As Integer, ByVal life As Integer)
 For intI = 0 To DepreciationPeriodEnum.SeventhYear
 Dim deprec As New Financial(53000, 3000, 10, life,)
 Console.WriteLine("Year " & life & ": " & String.Format("{0:c}", _
 deprec.DDBValue) & ", " & String.Format("{0:c}", _
 deprec.DDBDepreciation))
 life += 1
 Next intI
 Console.ReadLine()
End Sub

produces this output

Year 0: $50,000.00, $0.00
Year 1: $50,000.00, $10,000.00
Year 2: $40,000.00, $8,000.00
Year 3: $32,000.00, $6,400.00
Year 4: $25,600.00, $5,120.00
Year 5: $20,480.00, $4,096.00
Year 6: $16,384.00, $3,276.80

Note The code for the Financial structure is the FinancialStructure project in the Vb7cr
solution.

Structures serve other purposes beyond number crunching or simple value use. The following example shows
a structure encapsulating a collection of color properties for a given component. The properties call the
Color.FromArgb method found in the System.Drawing class, which takes three arguments representing
parameters for Red, Green, and Blue (RGB) color combinations. The structure allows the user to choose
custom RGB colors (which can be used as a palette you provide in an application). In the GridColors
structure the colors are returned as objects of System.Drawing.Color, which lets you use the colors anywhere
a parameter requires you to pass a System.Drawing.Color object:

Imports System.Drawing
Public Structure GridColors
 Private colorDefault As Color

 Public Sub New(ByVal red As Integer, ByVal green As Integer, _
 ByVal blue As Integer) As Color
 colorDefault = Color.FromArgb(red, green, blue)
 End Sub

 ReadOnly Property grWhite() As Color
 Get
 grWhite = Color.FromArgb(255, 255, 255)
 End Get
 End Property

 ReadOnly Property grLightGray() As Color
 Get
 grLightGray = Color.FromArgb(192, 192, 192)
 End Get
 End Property

 ReadOnly Property grGray() As Color
 Get
 grGray = Color.FromArgb(128, 128, 128)
 End Get
 End Property

 Structures

244

 ReadOnly Property grDarkGray() As Color
 Get
 grDarkGray = Color.FromArgb(64, 64, 64)
 End Get
 End Property

 ReadOnly Property grBlack() As Color
 Get
 grBlack = Color.FromArgb(0, 0, 0)
 End Get
 End Property

 ReadOnly Property grRed() As Color
 Get
 grRed = Color.FromArgb(255, 0, 0)
 End Get
 End Property

 ReadOnly Property grPink() As Color
 Get
 grPink = Color.FromArgb(255, 175, 175)
 End Get
 End Property

 ReadOnly Property grOrange() As Color
 Get
 grOrange = Color.FromArgb(255, 200, 0)
 End Get
 End Property

 ReadOnly Property grYellow() As Color
 Get
 grYellow = Color.FromArgb(255, 255, 0)
 End Get
 End Property

 ReadOnly Property grGreen() As Color
 Get
 grGreen = Color.FromArgb(0, 255, 0)
 End Get
 End Property

 ReadOnly Property grMagenta() As Color
 Get
 grMagenta = Color.FromArgb(255, 0, 255)
 End Get
 End Property

 ReadOnly Property grCyan()As Color
 Get
 grCyan = Color.FromArgb(0, 255, 255)
 End Get
 End Property

 ReadOnly Property grBlue() As Color
 Get
 grBlue = Color.FromArgb(0, 0, 255)
 End Get
 End Property

 Public ReadOnly Property UserDefined() As Color

 Structures

245

 Get
 Return colorDefault
 End Get
 End Property

 Public WriteOnly Property SetUserDefined(ByVal red As Integer, _
 ByVal green As Integer, ByVal blue As Integer) As Color
 Set(ByVal Value As Color)
 Value = Color.FromArgb(red, green, blue)
 End Set
 End Property
End Structure

You could then use the Color structure as follows:

Dim Col As New GridColors()
CommCon.BackColor = Col.UserDefined()

or

Dim Col As New GridColors(200,255,30)
CommCon.BackColor = Col.UserDefined()

or

Dim Col As New GridColors()
CommCon.BackColor = Col.grLightGray

As shown in the above code, structures are useful for returning related pieces of information about a data type.
Instead of declaring a new variable for each color in the example, we simple declare a structure and change
the color it represents by changing one of its member properties. Once you declare the structure it becomes a
standard value type that can be referenced like any of the built−in data types.

Note The code for the GridColors structure is the Palette project in the Vb7cr solution.

Structure Behavior

The structure is an extremely efficient and flexible construct. The following behaviors of structures provide
the flexibility to use them in a variety of applications and algorithms.

Nested Structures

In nested structures, you can declare and implement one or more structures inside another one as shown in the
following code:

Public Structure GridColors '
 Private colorDefault As Color
 '. . .

 Private Structure Hue
 Dim defaultHue As Integer
 '...
 End Structure
End Structure

 Structure Behavior

246

You can also reference other structuresany one of the fundamental value types, for startersin yours. Let's
examine how the method ClRed in the following code:

Private colorDefault As Color
Public Sub ClRed()
 colorDefault = System.Drawing.Color.Red
End Sub

sets the default color to System.Drawing.Color.Red, which is itself a structure provided by the
System.Drawing namespaces.

Passing Structures to and from Methods

You can pass structures as arguments to method parameters ByValue and ByReference, just as you can with
any value type. This is critical, especially for returning arguments from methods. While you can pass several
arguments to the formal parameter list of a method, you cannot return more than one value type or built−in
data type.

There are many situations in which you can return a value type that sends more than a single value as a single
valuenotwithstanding the oft−cited rule and condition that you can and should only return a single value from
a method.

Structures Can Reference Objects

Structures can reference objects, even collection objects like arrays. The upcoming example includes objects
and other structures:

Public Structure Target

 Private targetColor As TGridColors 'target colors
 Private targetPosition As TGridCoordinates 'x,y positions on the grid
 Private targetSpeed As TSpol 'significant percentage of lightspeed
 Private targetType As TCraft 'the type of craft
 Private targetDistance As TDistance 'distance from our ship
 Private targetVector As TVector 'is the target going or coming
 Private targetHistory As History

End Structure

Structure Constructors

You cannot initialize a structure's members in the declaration, but you can initialize its variables in the
constructor. The following code, from the earlier GridColor example, initializes the colorDefault variable of
System.Drawing.Color structure in the New constructor.

Private colorDefault As Color
Public Sub New(ByVal red As Integer, ByVal green As Integer, _
 ByVal blue As Integer)
 colorDefault = Color.FromArgb(red, green, blue)
End Sub

You are not required to provide a constructor for a struct, as you would be to create an object instance. Even if
you provide the New method, you do not need to call New in the declaration. Please note: if you neither
provide nor call a constructor, zero will be the default for the struct's fields. This also explains why you cannot

Structure Behavior

247

provide a parameterless constructor.

Note It is also worth noting that structures cannot take destructors, because they are not collected by the
garbage collector. When they are no longer needed the CLR knows to get rid of them.

Enumerations

In Chapter 4 we talked a little about magic numbers, the constant ordinals that represent array bounds,
character positions, coordinates, subscripts, indexes, flags, and other literal number values in your algorithms.
Whenever you need to refer to these values in your software, you must name the magic numbers before you
use them; otherwise, your code becomes extremely hard to read and maintainespecially when these numbers
appear suddenly and without explanations.

As a rule, any number other than 0 or 1 will likely be magical and should be given an identifier, its name. All
modern software−development languages support named constants and global variables, so there is no excuse
for leaving magic numbers in your code.

When you need to work with a list of constants that represent magic numbers, organize them in a group for
uniform reference and ease of management. Standard classes and structures would be the first "containers"
that come to mind for encapsulating named constants. Classes, however, are too cumbersome and would
always place your collection of constants in heap space. Accessing the members of the class requires
object−reference semantics, which is clumsy for something so basic. Access and visibility are also
considerations for constants encapsulated at the standard−class level.

A structure would be a better container because it's efficient, although it's not ideal. Fortunately, the .NET
Framework is equipped with an enumeration or enumerated typethe Enumthat provides that facility for you.

Note Do not confuse the term enumeration with the term enumerator, which is an object that iterates
over a collection, or counts a collection of values (see Chapter 12).

The Enum is a value type, like a structure; however, it does not have a structure's facilities for methods and
properties, which represent baggage in this context. It's only a place for naming your constants, a place for
hiding magic numbers. Enum types are thus ideal to represent collections of symbols that correspond to
ordinal values.

Within these enumerations, you can manage the symbols in familiar terms as your named constants. And you
don't need to explicitly initialize them with values. In addition to having a formal type for symbolic names,
enumerations provide a strong type utility. In other words, you cannot pass the value
TemparatureEnum.Hot to a method that requires an argument of type BouquetEnum.Roses. It is also more
helpful in debugging and documentation to be shown meaningful symbols rather than meaningless numbers.
You can easily see what enumerations cater to in the following code:

'good
If TemparatureEnum.Hot Then
 Cooler.Start
End If
'bad
If temp > 120 Then
 Cooler.Start
End If

 Enumerations

248

The user−defined Enum inherits from System.Enum, which in turn inherits from System.ValueType. It is
processed in stack memory.

In addition to being an efficiently managed type, the Enum offers exceptional reference semantics. It is an
elegantly implemented type, infused with a very useful collection of methods that render the Enum one of the
most pleasurable constructs to work with in the .NET Framework. Enumerated types, like interfaces, are part
of the fabric that makes up the web and woof of the framework.

Here's an example of using the enumeration: Let's say we need to set up a grid on a monitor for
renderingplotting the flight path of a space ship across a sector in space, which the grid must refer to and
represent. The grid would function as a "window" to the sector in space.

We need some frame of reference for the grid and a collection of methods that manage it in relation to the
inbound data it's rendering. For starters, the grid would be referenced on its left bound at pixel 0 and on the
right bound at pixel 480 (for argument's sake). These values might represent the length of a monitor's viewing
areas, but they could also represent the grid within a user interface (probably surrounded by instrumentation).

As the space ship travels, the grid represents its path, but remains unchanged. The monitor would have to pan
in order to track the object as it approaches the edge of the grid's field of view. A method for this would
regularly test the ship's location; if it were near or on one of the edges, the grid would move to keep it in view.
The grid could remain fixed until the object approached the bounds, or it could fix the space ship onto
coordinates and continuously pan as the ship moves, and stop as the ship rests.

Using magic numbers to compute the trajectory of the object would make the code hard to read. For example,
with a magic number the code would read as follows:

If (ObjectPosition >= 75) Then
'. . . do something
End If

Better to use a named constant as follows:

If (ObjectPosition >= GridVectorsEnum.MaxRight) Then
'. . . do something
End If

If the numeric value of MaxRight changes from 75 to 65, we need to change the constant in only one place in
our software. Using the magic number, we would be forced to change the value from 75 to 65 wherever it was
referenced. Manually replacing the unnamed constants would be laborious and impractical. The resulting code
would be both hard to read and prone to bugs, especially in a large program.

If we needed to maintain a large set of coordinates for our grid, we could list a collection of them in an
enumeration and assign them the constants of their respective grid values. The following example uses the
Enum to represent such a collection of grid constants:

Public Enum GridVectorsEnum
 MaxRight = 480
 MaxLeft = 0
 MaxHeight = 300
 MinHeight = 40
 PixelDistance = 12 'the number of pixels to move left
 'for right for each Kilometer traveled
End Enum

 Enumerations

249

To work with the GridVectorsEnum enumeration in our code, reference it with the Imports statement or
directly in the class and declare the type as follows:

Dim Grid As New GridVectorsEnum

Using it in the code couldn't be easier:

If (ObjectPosition >= Grid.MaxRight) Then
'. . . do something
End If

Working with System.Enum

While enumerated types are familiar to many programmers of languages like Delphi and C++, they are much
more useful in the .NET Framework. They are typically processed in the stack area, but can also be boxed
onto the heap as objects.

Every Enum must have an underlying type that represents one of the ordinal built−in types: Byte, Integer,
Long, and Short. If you do not initialize the enumeration constants with values, they default to Integer. The
following example specifies constants of the default Integer type:

Public Enum DaysEnum As Integer
 Sunday
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
 Noday
End Enum

When you create and reference enumerated types, they are essentially compiled to constant fields. So the
following Enum called EnumDays,

Public Enum DaysEnum
 Sunday = 1
 Monday = 2
 Tuesday = 3
 Wednesday = 4
 Thursday = 5
 Friday = 6
 Saturday = 7
 Noday = −1
End Enum

is handled by the compiler as if you had written this:

Class MyDays
 Public Const Sunday = 1
 Public Const Monday = 2
 Public Const Tuesday = 3
 Public Const Wednesday = 4
 Public Const Thursday = 5
 Public Const Friday = 6
 Public Const Saturday = 7

 Working with System.Enum

250

 Public Const Noday = −1
End Class

The same goes for the DepreciationPeriodEnum enumeration we used earlier with Accounting structure, as
shown here:

Public Enum DepreciationPeriodEnum
 FirstYear = 0
 SecondYear = 1
 ThirdYear = 2
 FourthYear = 3
 FifthYear = 4
 SixthYear = 5
 SeventhYear = 6
 EighthYear = 7
 NinthYear = 8
 TenthYear = 0
End Enum

If you look under the covers of these constant fields, you will not find much. However, with Enum it's
another story. Apart from the inherited members, you also have the marvelous collection of mostly static
utility methods, listed in Table 8−1, at your disposal.

Table 8−1: Member of System.Enum

Enum Members (abridged list)Utility

CompareTo (i) Compares this object to the object passed by value to a single parameter.
The function returns an indication of their relative values.

Format Converts the specified value of an enumerated type to its equivalent String
representation according to the specified format.

GetName Returns the name of the constant passed with the specified enumeration.

GetNames Returns an array of the names in the enumeration passed to the method.

GetTypeCode Returns the TypeCode for the object.

GetUnderlyingType Returns the underlying type for the enumeration.

GetValues Returns an array of the values of the enumeration.

IsDefined Returns a Boolean whether a specified constant exists in the enumeration.

Parse Converts the string representation of the name or value of an enumerated
constant to an equivalent enumerated object.

To return the underlying type of an enumerated type, you can use the GetUnderlyingType method as
follows:

Public Sub EnumUncovered()
 Debug.WriteLine(E.GetUnderlyingType(E.Saturday))
End Sub

We can also easily declare the enumerated type in this way:

Dim dayoweek As DayEnum.Saturday
Debug.WriteLine(dayoweek.ToString)

 Working with System.Enum

251

This will print "Saturday" to the output window. Enum's ToString internally calls the Format method for
various output options, as described in Table 8−1. To return the ordinal value of DayEnum.Saturday, you
can specify the "D" format argument, which returns a Decimal value for Saturday. This is shown here:

Debug.WriteLine(dayoweek.ToString("D"))

You can also work directly with the Format method, which obviates the need to create an instance of the
type. Here's an example:

Console.WriteLine(DaysEnum.Friday.Format(E, 4, "G")

Table 8−2 provides an abridged explanation of the Format method's parameter− value options.

Table 8−2: Options for the Format Method's Parameter Value

Format option Utility (abridged)

"G" or "g" If value, passed to the second argument, is equal to a named enumerated constant,
then the name of that constant is returned; otherwise, the decimal equivalent of
value is returned. (See also the discussion on flags later in this section.)

"D" or "d" The value is returned as a decimal value.

"X" or "x" The value is returned as a hexadecimal, sans the 0x notation.

"F" or "f" The value is treated as a bit field.
If you need to look at the Enum's collection of constants, you can retrieve an array of values using the
GetValues method. GetNames also returns an array, but instead of values you get the collection of names.
This code exemplifies both of the aforementioned methods:

Console.WriteLine(DaysEnum.GetNames.Format(GetValues(E)))

If you just need to pass a value and recover its name, the GetName method will do the trick. Interestingly,
Microsoft did not implement an equivalent single value of the GetValues method. As you realize, returning
an array doesn't help much when you simply need to recover a single value for the symbol passed to the
method. An array also consumes more memory than a single value, especially if your type is an enumeration
of more than a handful of values.

I thought about implementing a method to capture the single value, but realized I could not derive from
System.Enum, so there is no way to override one of the above "Get" methods. However, we can make use of
the Parse method to solve our dilemma.

Parse lets us convert a symbol in an instance of Enum. We can then retrieve the value from the process that
represents the enumeration. This is shown in the following code:

Dim periodVal As Integer
periodVal = [Enum].Parse(GetType(DepreciationPeriodEnum), "FifthYear")

and thus periodVal is initialized to 4. And in the following code

Console.WriteLine([Enum].Parse(GetType(DepreciationPeriodEnum), "7"))

the output to the console is EighthYear.

 Working with System.Enum

252

Note Parse is a very useful method for converting the String representation of a numeric type into
a numeric type.

The last method to look at is one you will use frequentlyIsDefined. As mentioned in Table 8−1, this method
verifies that the argument specified as a particular constant actually exists in the enumeration. You get True
or False depending on whether the type is defined or not. Here is an example:

Public Sub GetDay(ByVal day As DaysEnum)
 If Not (Enum.IsDefined (Friday)) Then
 Return Enum.NoDay
 End If
End Sub

The following code declares an enumeration for warp speeds (so there can be no errors when choosing):

Public Enum WarpFactorEnum
 Impulse = 0
 ImpulsePlusOne = 1
 ImpulsePlusTwo = 2
 ImpulsePlusThree = 3
 ImpulsePlusFour = 4
 ImpulsePlusFive = 5
 ImpulsePlusSix = 6
 ImpulsePlusSeven = 7
 ImpulsePlusEight = 8
 ImpulsePlusInfinity = 9
End Enum

We can then test if the helmsperson has entered the right values, as shown here, so that we do not rocket away
to infinity:

If [Enum].IsDefined(GetType(WarpFactorEnum), _
 "ImpulsePlusTen") Then
 Throw New ArgumentOutOfRangeException()
End If

Flags

We typically use enumerations for lists of named constants, such as days of the week, spectrum of colors, and
stars in a solar system; on the other hand, we generally rely on bit fields to combine qualities or quantities of
these constants. Here's an example in code:

If (isAccessed AND isArchived)
'. . . do something
End If

In Chapter 5 we discussed bit flags and bit maps in the context of operators, and now we'll examine them in
the context of enumerations. The framework employs the Enum type for various purposes, and one of them is
to represent collections of bit flags. You'll see a lot of these in the System.Forms namespace, as discussed in
Chapter 16.

Using the WinCV tool, you can browse for many enumerations that encapsulate collections of bit states.
These include enumerations for visual states, appearances, the state of controls, forms, tables, databases, file
attributes, and button shapes. Figure 8−1 illustrates the framework's enumeration for database table columns
(they are all in C#).

 Flags

253

Figure 8−1: Using WinCV to look at the built−in enumerations
Using the Enum type, we can similarly represent a collection of bit flags for any application. Looking at the
enumeration shown in Figure 8−1, one can conclude the following: an expression that checks for IsUnique
and IsKey seems perfectly feasible, as does one that verifies whether a file IsCompressed | IsEncrypted or
IsHidden AND IsReadOnly with the FileAttributes enumeration.

We can do the same for the message flag constants demonstrated in the GetMessages example listed in
Chapter 5. Remember the following collection of flags:

Dim messageFlag As Integer = 2
Dim isAccessed As Integer = 4
Dim isArchived As Integer = 8
Dim isDeleted As Integer = 16
Dim newMessage As Integer = 32

This collection would be better represented inside an enumeration. We can call the enumeration
MessageFlagEnum, as depicted in this code:

Public Enum MessageFlagEnum
 MessageFlag = 0x0001
 IsAccessed = 0x0002
 IsArchived = 0x0004
 IsDeleted = 0x0008
 NewMessage = 0x0016
End Enum

We don't have to initialize the symbols with hex values, although it doesn't hurt, and the symbol values can
still be easily stored in the database. We also don't necessarily need to represent the bit flags in any special
sequencinghere I have raised each bit flag to the power of two.

However, as you have seen, the Enum semantics don't typically lend themselves to bit−flag semantics, in
which it's normal to write an expression evaluating the combined state of more than one symbol. So, when
you execute the following code,

Dim MsgState As MessageFlagEnum.IsAccessed | MessageFlagEnum.IsArchived
Debug.WriteLine(MsgState.ToString())

you are going to get the value 0x0006 to the console instead of the combination of the two symbols. Thus, if
the intention is to write "IsAccessed, IsArchived" to the Debug window, it will not happen. To force the
enumeration to return the latter, you can pass the "F" argument listed in Table 8−2 to the Format method or

 Flags

254

to the ToString method as shown in the forthcoming code:

Dim MsgState As MessageFlagEnum.IsAccessed | MessageFlagEnum.IsArchived
Debug.WriteLine(MsgState.ToString("F"))

This is a little cumbersome; however, Microsoft has developed a cleaner approach to making the enumeration
think it's a collection of bit flags. We can use the Flags attribute to denote bit−field or bit−flag semantics.
While the runtime itself does not distinguish between traditional enumerations and bit fields, you can make
this distinction in your code via the Flags attribute, allowing you to use bitwise operators transparently on all
bit fields. At runtime, therefore, you get what you ask for. This amended Enum portrays the use of the flags
attribute seen here decorating MessageFlagEnum:

<Flags>
Public Enum MessageFlagEnum
 MessageFlag = 0x0001
 IsAccessed = 0x0002
 IsArchived = 0x0004
 IsDeleted = 0x0008
 NewMessage = 0x0016
End Enum

Final Words on Enums

Here are some final considerations before you implement the Enum type in your applications:

Enumerations can represent any of the ordinal built−in data types (except Char). Remember, the
"magic words" are "magic numbers," not "magic Booleans" or "magic characters."

•

You can assign a value of the underlying type to an enumeration and vice versa (no cast is required by
the runtime).

•

You can create an instance of an enumeration and call the methods of System.Enum, as well as any
methods defined on the enumeration's underlying type. However, some languages might not allow
you to pass an enumeration as a parameter when an instance of the underlying type is required (or
vice versa).

•

Enums cannot define their own methods.•
Enums cannot implement interfaces.•
Enums cannot define properties and events.•
Reduce operations with Enums that create a lot of boxing/unboxing code as demonstrated earlier in
this chapter. Since some of the methods entail casting symbol values to objects, moving values to the
heap may detract from performance requirements. Try re−writing your code to use minimal boxing
overhead.

•

Finally, if only one class or object is using the Enum, don't nest or encapsulate it in the class. It won't
be long before other classes in the application will need the Enum, and you'll be forced to define it at
the level of those classes as well. This may not seem problematic for a small Enum, but imagine the
difficulties if dozens of methods were depending on that Enum. Nesting also detracts from the
elegant Enum semantics you have at your disposal, because Friend classes still have to access the
encapsulating object's interface before they can reference the Enum. As you have seen, all Enums
defined for the framework are identified at the same level as all standard classes.

•

Other than noting the few items in the above list, the enumeration is an especially powerful and fun construct
to work with.

Note The code for the above enumerations is the Enumerations project in the Vb7cr solution.

 Final Words on Enums

255

The Object−Reference Model

It is important that you obtain an unshakable understanding of the object−reference model and how it differs
from the value−type reference model before you progress to programming with classes and objects in the
chapters to follow.

The object−reference model specifically ensures that objects are accessed only via a reference variable that
points to a location in memory where the object is stored. To best illustrate how this model works, let's
evaluate an example that shows various ways of accessing and working with objects.

Imagine that we are asked to design an object representing the fuel injector of a space ship. The injector's
main purpose is to increase the sub−warp (significant percentage of light speed) velocity of the space ship.
We can design a class to represent an Injector object containing a number of methods that manipulate the
injector and interact with the many other space ship components and services. Assume we already have this
classits methods control the velocity of a space shipsince designing and implementing it is not the subject of
this section.

The Injector class we are discussing follows a pattern written expressly for your creating multiple instances
of Injector objects that are completely reentrant. This means you can use them in your application and be sure
that the data fields in each object remain completely isolated and protected from any calls to methods in other
Injector objects. The data in each Injector object is also completely isolated from the data in other objects
that have been created in the same application space.

Once you create an Injector object, you access it by referencing its name, as we see in this code:

Dim Sim1 As New Injector
Sim1.StartInjector()

The first part of the expression, Dim Sim1, declares a new variable called Sim1. The second part, New
Injector, creates a new Injector object by calling the type's instance constructorthe New method. We create
the new Injector object and initialize Sim1 to reference it on the heap. Sim1 is thus a variable reference and a
reference variable to an instance of the Injector class.

In the early days of OO software development, the object−reference variable and the object were one and the
same, like value types; the reference did not function as a "pointer" to the object's data in memory. When you
declare the reference variable, you do not necessarily have to create the object and connect the dots. The
following code is an example of late binding (see the illustration):

Dim Sim1

Note Switching Option Strict to On forces you to declare the variable with the As clause and to thus
assign a type at the same time. See Chapter 4, which explains the Option directives, and Chapters

 The Object−Reference Model

256

7 and 9, which talk about late binding.
To create the reference variable and associate it with just the root object, you can use the following code:

Dim Sim1 As New Object

Here we are referring to nothing more than an instance of Object, which for this purpose is inconsequential.
Nevertheless, we have created an object with the specific use of the As keyword and New (albeit New is what
breaths life into the object As a Type). The reference variable is tied to the object and can perform certain
actions on it. For example, we can create an instance of the Injector class with the following code:

Dim Sim1 As New Injector()

Now you have an Injector object loaded in memory and you can access it through the name Sim1 as
illustrated here.

The Injector object is loaded in memory and you can access it through Sim1 using this procedure:

Start with Sim1, which is the reference used to manipulate and access data in the object. The
reference is then followed by a period thus:

Sim1.

1.

Visual Studio now automatically gives you a drop−down list of the public members that are available
to you. Choose a method you want to call, such as the accessor method or property IsWarpdriveOn,
which is shown here:

Dim checkIsOn As Boolean
checkIsOn = Sim1.IsWarpdriveOn()

2.

If the method call requires you to supply arguments, they will go between the braces and each will be
separated by commas. This corresponds to the method's parameter list, as you saw in Chapter 7. In the
above case, we are calling a method that will return a Boolean value, telling us if the warp drive is on
or off. If the return value is True, the drive is on; if it's False We can also use the method call as
follows:

If Not Sim1.IsWarpdriveOn() Then
'. . .
End If

3.

The above code takes the flow−of−execution into the If. . . Then structure and processes the code inside. The
call to IsWarpDriveOn returned False (the default at start up), so you first need to turn the drive on. This is
achieved with the following modification method call:

 The Object−Reference Model

257

Sim1.StartInjector()

The method StartInjector is a Sub procedure and does not return a value. Also it does not need an argument,
because you would want to start warp engines and remain at warp 0. Nevertheless, the call modifies the object
because the method changes the data and the state of the object.

The next step would be to set the warp speed for the simulation. The method call to do that is
Sim1.SetWarpSpeed. This requires an argumentthe constant for the newWarpSpeed parameter, from the
WarpSpeedEnum. The method takes an Integer and can be written as follows:

Sim1.SetWarpSpeed(WarpFactorEnum.Impulse)

The above call passes the enumeration symbol to the parameter, which sets the warp speed to
WarpFactorEnum.Impulse. But this example is "hard−coded." The following example lets you enter the
value at the command line. Using the console class' method to read input from the command line, you can
send various arguments for warp speed to the Injector object as follows:

Sim1.SetWarpSpeed(CInt(Console.ReadLine()))

To get feedback from the object, you can access the warpSpeed field (remember this is one of the instance
variables that gets initialized in the instance constructor). But these variables are privately encapsulated in the
class and are thus off limits to the consumer. So when you type Sim1 in the IDE, warpSpeed will not be
among the publicly accessible members. To access the warp, use the accessor method GetWarpSpeed as
shown here:

Sim1.GetWarpSpeed()

The final example of calling the custom methods in Injector is the call to the accessor method GetMPS. This
method multiplies the warp factor passed to the parameter by the speed of light in miles−per−second (MPS)
and then returns the value to you. Write it as follows:

Sim1.GetMPS(WarpFactorEnum.Impulse)

You do not want to hard code the parameter, so pass the return value of the method call to
Sim1.GetWarpSpeed as follows:

Sim1.GetMPS(Sim1.GetWarpSpeed())

You can then write the return value to the console using the console object's WriteLine method as shown:

Console.WriteLine("Light speed is " _
+ CStr(Sim1.GetMPS(sim1.GetWarpSpeed())) & " miles−per−second.")

What happens if you specify a parameter for warp that is greater than
WarpFactorEnum.ImpulsePlusSeven? The class' method SetWarpSpeed evaluates the value as it passes
into the method with an If . . . Then statement as follows:

If WarpSpeed > WarpFactorEnum.Infinity Then
 Throw IllegalWarpParamException
End If

The exception handler "throws" the execution flow into the catch section of the Try . . . Catch structure,
which turns off the injector as seen here:

 The Object−Reference Model

258

warpDrive = False

This works because the variable or field named warpDrive is visible to the members of the class. With
warpDrive set to False, your code can take the natural course of action to immediately stop the injector.

The entire implementation of the console−based simulation is presented in this module:

Module WarpSim
 Sub Main()
 Dim Sim1 As New Injector()
 Console.WriteLine("Testing injector simulation...")
 Try
 If Not Sim1.IsWarpdriveOn() Then
 Console.WriteLine("The injector is off. _
 Enter to start or any key plus enter to abort test.")
 If Console.ReadLine() = "" Then
 Try
 Console.WriteLine("Starting injector...")
 Sim1.StartInjector()
 Console.WriteLine("The injector is on... _
 ready to engage warp drive....")
 While Sim1.IsWarpdriveOn
 Console.WriteLine("Enter warp speed....")
 Sim1.SetWarpSpeed(CInt(Console.ReadLine()))
 Console.WriteLine("Warp speed is set to: " & _
 CStr(Sim1.GetWarpSpeed()))
 Console.WriteLine("Light speed is " & _
 CStr(Sim1.GetMPS(Sim1.GetWarpSpeed())) & _
 " miles−per−second.")
 If Sim1.GetWarpSpeed() = 0 Then
 Sim1.StopInjector()
 End If
 End While
 Catch
 Console.WriteLine(oState.ToString)
 End Try
 End If
 End If
 Catch
 Console.WriteLine(oState.ToString)
 End Try
 End Sub
End Module

As you can see, the object's reference variable is a versatile feature. In the unmanaged world, we would also
have used it to destroy the object or remove it from the memory it occupies on the heap (such as Sim1.Free or
Sim1.Destroy). But in the managed world of .NET, the garbage collector takes care of that (see Chapter 2 for
an introduction to the garbage collector).

When we are finished with an object, we can cut the connection between it and the reference variablelike
cutting a lifeline between a soul and its body. This prompts the garbage collector to clean up.

 The Object−Reference Model

259

You are essentially placing the object out of scope, which can be noted thus:

Sim1 = Nothing

Another means of cutting the "lifeline" is to assign the variable reference to another object. You'll need to
create this object if you don't have it. Look at how we achieve this:

Dim Sim1 As New Injector
Dim Sim2 As Object

We now have two object variables called Sim1 and Sim2; they refer to different objects. Sim2 refers to
Object, which will do nothing for it, while Sim1 refers to an instance of Injector. The objects and their
reference variables are demonstrated here.

To render Sim2 more useful, we can make it refer to the same object as Sim1 as demonstrated:

Sim2 = Sim1

In the illustration, Sim1 and Sim2 now refer to the same Injector object, at the same location in memory.

Declaring and using more than one object of the same type is not uncommon. If the class allows this, you can
add as many Injector objects as you need to the application. You will often be working with patterns that

 The Object−Reference Model

260

require you to create more than one instance of the same object.

Note You can program a class to allow only one instance of itself to be created. This is called a singleton
class; its pattern is demonstrated in Chapter 13.

Creating more than one object of the same type requires only another call to the Injector class' constructor.
All you need is a new name, as shown here:

Dim Sim1 As New Injector()
Dim Sim2 As New Injector()

You can now reference each object through the variables Sim1 and Sim2 independently, as illustrated.

The data in each object is encapsulated in its own field, so modifying data through Sim1.SetWarpSpeed does
not affect the warpSpeed field of Sim2. Remember, you have created two distinct variables: Sim1 and Sim2.
But you have also explicitly created two Injector objects, and each variable references its own object.

For Sim1 and Sim2 to refer to the same object, you will need the following code:

Sim1 = Sim2

In other words, if you set the warp speed by calling
Sim1.SetWarpSpeed(WarpFactorEnum.ImpulsePlusSeven) and then call Sim2.GetWarpSpeed, the
return value will be WarpFactorEnum.ImpulsePlusSeven because Sim1 and Sim2 now refer to the same
object (see the discussion on enumerated types). As a further example:

Sim1.GetMPS(Sim2.GetWarpSpeed())

This call returns the value for MPS even though you never explicitly made the call to
Sim2.StartInjector().The difference between standard types and reference types should now be crystallizing
(isn't OO wonderful?).

Null Reference

We can explicitly cut the reference variable's lifeline to an object by telling it to reference "nada." Using the
so−called Null reference (represented by the keyword Nothing in Visual Basic) makes the variable assign to
nothing, as show here:

Sim2 = Nothing

This does not necessarily hasten the work of the garbage collector; nonetheless, it is a good idea to set the

Null Reference

261

reference to Nothing when the object becomes orphaned.

Does this mean you can still use the reference variable Sim2? Yes it does. It was declared, so re−setting Sim2
= Sim1 is valid because all you are doing is telling Sim2 to get a life, like Sim1. But setting Sim1 = Sim2 will
cause catastrophic failure. Why? Sim1 cannot refer to the Null reference, and the code will throw off the
NullReferenceException. Make a note somewhere about this Null reference error, because it is easy to cause
this bug in your code (see Chapter 11, which covers exception handling).

Also, make a note that setting a reference variable to Null does not nullify the actual object, only the reference
to it. If there is only one reference to the object, it is orphaned and earmarked for collection. But if more than
one variable references the object and just one variable is set to Null, then only that reference is unaffected.

Note See Finalization in Chapter 9 and Chapter 17.

What the Reference Refers To

Experts as well as programmers new to Object−Oriented software development often refer to the reference
variablesuch as Sim1as the actual object. This is incorrect. Sim1 and Sim2 are not themselves the objects of
class Injector; they are just the reference variables. Thus, it is fallacious to say "the injector Sim1 has been
set to " It is accurate to say "the injector that Sim1 refers to has been set to. . .".

Naturally when you are sitting around a table talking code with one of your buddies, it's fine to say things like
"Sim1 just blew up the space ship; it must be the code in your class." But when you need to prepare formal
documentation, use the longer expression. It will help keep your documentation clear and easier to understand.

The Object−Reference Model and Equality, Comparison, and Assignment

You may also encounter confusion when you test equality and make assignments or comparisons between and
among objects. Are you performing these functions with regard to the references or their objects? Actually,
you can do both. The Equals method compares objects for assignment or reference data. Equals is inherited
from System.Object.

To test if one reference compares to another you can use the Is operator. The Is operator is not the same thing
as the = operator (see Chapter 5, "Visual Basic .NET Operators" and Chapter 9, "Classes"). This code tests
whether Sim1 equals Sim2:

If (Sim1 Is Sim2) Then
 . . .
End If

If Sim1 and Sim2 reference the same object, then the Is comparison returns True . . . and False if they do not.
For example:

Dim Sim1 As New Injector()
Dim Sim2 As New Injector()
Sim1 = Sim2
If (Sim1 Is Sim2) Then
 Debug.WriteLine("Sim1 is Sim2")
End If

This might be more easily understood through an illustration. The illustration shows Sim1 and Sim2
referencing the same object; therefore, Is returns True.

What the Reference Refers To

262

Let's see what happens when we introduce a third Injector:

...
Dim Sim3 As New Injector()
Sim2 = Sim3
If (Sim1 Is Sim2) Then
 Debug.WriteLine("Sim1 is Sim2")
End If

Is does not return True anymore, because Sim1 and Sim2 no longer reference the same object. However,
Sim2 Is Sim3 returns True. There is a quirk: as long as two or more variable references refer to the same
object, they are considered equal. Also, Null references (Sim1 = Nothing) also return True when compared
with the Is operator.

To compare the objects, you should implement the CompareTo method defined by the IComparable
interface or bridge to a comparator (see Chapter 12). You will be able to write code here that compares the
bits of objects rather than the reference variables. Chapter 10 provides an in−depth discussion of this subject.

What Me Refers To

When you have a class that can be instantiated multiple times, you'll find that the Me keywordan internal
reference variableconveniently references the object from within its own instance space. From this viewpoint,
everything is visible, yet still protected from the outside world. Here we model the Injector object calling its
own GetType method:

Public Function WhatAmI() As String
 Return Me.GetType().ToString
End Function

Note Me is the same as the keyword This in C#. It is also not legal to use it in a class module.
As you will learn in the next chapter, there are limits to using Me. For instance, it is not valid in shared classes
that cannot be instantiated.

Observations

Microsoft is not alone in implementing primitives as first−class lightweight objectsseveral other languages
have taken the same approach, including ADA and Smalltalk.

I scrutinized Java's primitives earlier in this chapter and concluded that they are primitive, or native, types and
not first−class objects like .NET's value types. You can place Java primitives on the heap using wrapper

The Object−Reference Model and Equality, Comparison, and Assignment

263

classes that ship with the Java SDK. In this process, manual boxing/unboxing, you have to couch your
primitives in object semantics, adapt them. So in these respects the type models are very similar. In one case
the boxing is manual (Java) and in the other case it is done automatically (.NET).

I am not privy to enough information to criticize the makers of Javanor do I want to detract from the subject
of .NET Value Typesfor adopting an approach that makes Java not really as pure an object−oriented language
as is believed. They have claimed a number of acceptable reasons. Yet, others have criticized Sun for this.
Their detractors include both object−oriented technology purists and a small percentage of engineers with
highly sophisticated programming needs.

Some of you may say, "who cares, this is not a book about Java." But I think it is worth your while to fully
grasp how the automatic boxing process in .NET affects your code's performance. You'll also develop better
code by knowing what Microsoft is doing under the covers. This knowledge will endow you with critical
mastery of the workings of NET types.

There is talk at Microsoft about possibly including generic types in the next major release of the .NET
Framework. Whether they make it into the CLS, or are just made available to C# and not to Visual Basic
.NET and other languages remains to be seen.

The Object−Reference Model and Equality, Comparison, and Assignment

264

Chapter 9: Classes

Overview

I firmly believe that you cannot be a good .NET programmer without continuously thinking about your
applications in terms of classes and objects. Thinking in terms of classes and objects (in other words, thinking
in terms of object−oriented programming) means thinking about the bigger picture and not only about code.
This is not an easy thing to do and takes many years of experience. It means thinking about how you can
organize your objects as a cohesive systemin much the same way as your body is organized as a cohesive
system.

Thinking in terms of OOP need not detract from cohesion at the method level, nor how brilliant you might be
at writing method code. Being able to design and implement good OO design and still write tight methods is
what makes a brilliant programmer. In fact, I have an obsession with objects, and yet that does not stop me
from doing my best to optimize methods to as few lines of code as possible. After more than a decade in this
business, I still struggle to come up with clean, stable OO design. You'll find that as you master smaller
systems, the bigger ones take you back to square one.

Why do I feel so strongly about this? Why the detail presented in this chapter, in a book that is clearly a
reference to core Visual Basic .NET, and not one about OOP? The main reason is that Visual Basic is a pure
object−oriented language. It's not a hybrid per se language in the sense that it has to be absolutely
backward−compatible with VB 6 and earlier code. From start to finish, Visual Basic .NET is about designing
and implementing classes and objects.

Note When Microsoft embarked on the making of Visual Basic .NET, it decided that the only way
forward was to provide a pure object−oriented language and forgo backward compatibility
with classic VB code. While you can migrate some VB 6 code to "VB 7," it is not the same
migration level you had moving VB 5 code to VB 6.

If you don't have an unshakable understanding of object−oriented programming (OOP), you will never be an
effective or efficient .NET programmer. Everything you do in .NET is OOP, no matter the languageand
requires an understanding of the workings of classes, class relationships, objects and their roles,
polymorphism, encapsulation, abstraction, delegation, interfaces and so on, the subject of the next couple of
chapters. Sure, there are a lot of buzzwords, but it eventually all "clicks" into place.

I would go as far as to say that unless your understanding of OO development is as solid as concrete, your
abilities will be severely limited. If you have already experimented with Visual Studio .NET and created a
form, then you will soon discover that what you have done is inherited a new Form class from one of the
framework's base classes. Thinking in terms of objects also liberates your creativity and widens the field of
opportunity for your code because objects have "legs" and can travel, beyond proprietary platforms and
technologies. By writing Common Language Specification (CLS)−compliant classes, other programmers will
be able to use your classes with any other CLS−compliant language. That's how Java has become as
successful as it has. It caters to the consumer "plug−in" paradigm perfectly. Java programmers all around the
world share classes. Some classes are freely contributed, for the greater good of the language; others can be
purchased from programmers who make a living selling their code. Such opportunities have not been readily
available to VB 6 programmers. After this chapter and the others to follow there will be an added bonus to
being good at OO; besides Visual Basic you'll also be able to easily tackle any designfor any language
including J#, C#, Java, or otherwise.

Note

265

If you are an experienced OO programmer, you can skim over this chapter, focusing just on the stuff you
need to understand .NET classes, the Visual Basic .NET idioms, and how Visual Basic .NET differs
from what you might know using classic Visual Basic, Java, Delphi, or whatever. But don't skim too
lightly, because this chapter covers important concepts, and aspects of .NET class construction, not
covered elsewhere in this book. Also, if you are new to object−oriented technology and have no idea
what a class is, I recommend reading one of the best books on the market, Grady Booch's
Object−Oriented Design with Applications (The Benjamin/Cummings Publishing Company, Inc., 1991).

Forms−oriented programming has been around for more than a decade. The forms− based model of
programming is what made Visual Basic the most popular language in the world, because Visual Basic got so
much of the world's so−called "old economy" applications done far quicker than anything else did. But now,
especially with highly distributed, concurrent, asynchronous applications, you need to kick the habit, thinking
primarily about "forms" when you think about writing applications and think classes and "objects" instead.

It also seems tough to ask many Visual Basic programmers to think in terms of programming classes and
objects rather than programming forms, and that is one of the challenges of this book. A key objective of this
chapter is to understand that the bases for forms are also classes. But so much programming today is
distributed, which is important. Invoking methods on remote servers, for example, has nothing to do with
forms.

This chapter thus begins a mammoth expedition into the world of classes and objects, object−based
programming, and object−oriented software development using Visual Basic .NET. If by the end of Part III
you have started to think in terms of objects, then I will have succeeded in my objective.

Getting the Semantics Correct

Before we get cracking, you should be clear on the difference between classes and objects and types, because
we all have the habit of using the terms loosely to mean the same thing. Both classes and objects may be
thought of as types, which is correct; however, classes and objects have very different roles in your
application design and construction. We touched a little on this in the last chapter.

A class is a blueprint, a template, a specification, a pattern, or any other founding definition of an object.
Objects absolutely depend on classes; without classes, you don't have objects. This should be clear from
Figure 9−1, which shows that a class must exist before you have an object, just as the egg must come before
you can have a chicken.

Figure 9−1: Classes are the blueprints of objects
In this regard, most of this chapter is about classes rather than objects. Later in the chapter, however, we'll
investigate what it takes to "lay" an object. Classes are almost always a design−time construct, whereas
objects can only exist at run time. A process called instantiation, as indicated in Figure 9−1, manifests objects.
In other words, when you need an object during the course of a running application, you must create an
instance of the class, which is an object.

You can typically create many instances of a class, but you can also program a class in such a way that only
one instance of it can be created. This class is called a singleton. The singleton class is discussed in more
depth in Chapter 13.

 Getting the Semantics Correct

266

Calling class constructors creates objects. The ultimate constructor of a class is the New method, as you will
discover later when constructors are discussed in some depth in the pages to follow.

While objects are a run−time phenomenon, you can also design and implement classes that can be accessed
for functionality only at run time. Just like calling a function in a typical function library in a
procedure−oriented language like C, these classes never need to be instantiated. They are not given
constructors because you do not need to instantiate them. The members of these classes are shared and we
typically refer to them as operations classes. The File class is one good example of an operations class. When
you need file system objects you can instantiate FileInfo, which provides identical instance methods to File.

Of Classes and Types

Type and class mean the same thing to many people, and in many respects, I use these terms interchangeably
in this booknot a problem. However, if you really want to excel at this, it will pay dividends to realize the
subtle difference between the word "class" and the word "type."

I am always on the lookout for a good explanation of the difference. Perhaps the best one can be found in the
following quote from Grady Booch's book Object Oriented Design with Applications: "Typing is the
enforcement of the class of an object, such that the objects of different types may not be interchanged, or at
the most, they may be interchanged only in very restricted ways."

Most modern languages in use today are strongly typed. This means that there are specific rules and
safeguards that protect against unfettered type conversion and casting. Visual Basic and all the .NET
languages have specific rules that govern how types are converted from one type to another. This was
discussed at length in Chapter 4, which demonstrated how Visual Studio is configured to enforce strongly
typed semantics.

Semantics and Notation

Before we can design classes (or types), it is vital that we all talk the same language. Trying to describe
classes and objects in code is not impossible but it is as cumbersome as taking a dip in a tide pool with a
windbreaker and gumboots.

Many modeling languages and notations have thus been introduced down the ages of OO engineering. The
most popular ones are Booch notation, Object Model Technique (OMT), and Unified Modeling Language
(UML).

UML has emerged as the principal class design and object modeling language in use today; much of its
constructs and elements really derive from several earlier modeling languages and notation that have survived
the past few decades.

You don't need to be fluent in UML, but you do need to know UML notation to define and model classes and
applications. This is what we are going to tackle in the next section. A full−blown discussion of UML and, for
that matter, object−oriented analysis and design using UML is beyond the scope of this "little" book.

Modeling

What is a model? This may seem like a dumb question in the middle of a book, but millions of developers
have absolutely no clue how to answer it. A model is essentially a representation or an abstraction of some
"thing" before it is actually builtno more, and no less.

 Of Classes and Types

267

Step outside of our profession for a few minutes. Architects build models, in the form of miniature
constructions of the actual buildings, houses, or complexes they are going to construct. Landscapers build
models, in the form of miniature gardens that represent, almost identically, the land they intend to sculpt. Boat
builders build miniature boats, complete with engines, tiny plastic crew members, bunk beds, and so on.

A model can be an almost identical representation of the actual thing to be built. A model omits all the
nonessential details, although some model builders can get carried away. Some architects will build models of
shopping centers and malls, and add real miniature lakes and waterfalls.

It is a natural human behavior to model. Modeling permits us to deal with complexity. It permits us to test and
evaluate before building something. Mankind has been modeling for thousands of years, not long after Adam
started wearing a fig leaf. One of the world's most famous model builders was Leonardo da Vinci. His pencil
sketches of aircraft and other mechanical contraptions far exceeded what was possible for him to actually
build. He built models of contraptions that were hundreds of years ahead of their time.

Modeling is a fundamental requirement for any hardware and software system. Before building a complex
application, the software engineer must model the systemabstract different views of the system. If you don't
model, the odds are very much in favor of disasteronly the smallest systems can escape the modeling stage.
However, once a system begins to grow, the risk of leaving out or wrongly implementing key components is
very great. You don't hear of architects leaving out the parking garages, or the lobby, or elevators, or the
sprinkler systems of their office buildings.

A software engineer should use precise notation and the appropriate illustration to confirm that the software
satisfies the requirements of the system. After the modeling is complete and indeed does satisfy the proposed
uses or requirements, the engineer can begin to transform the model into actual code and, finally,
implementation.

Software Modeling

There are several good reasons to model software applications (and no excuse not to). Consider the following
benefits of a model.

Testing

No engineer worth his or her pizza and can of Jolt cola would consider building something in its entirety
before testing it. Engineers place models of airplanes and cars in wind tunnels to test their aerodynamics.
Bridge builders build miniature bridges to test the arches and to confirm stability.

Computer simulations allow us to test almost any software−rendered model. You just input the data variables
and constants into the systems, and the software will calculate the precise dynamics and the result expected in
the real world.

In the movie "Hollow Man," there is an excellent example of genetic modeling being performed by scientists,
simulating how gene manipulation might make someone become invisible and then visible again. All cartoons
start as storyboards, and their characters start life as sketches, or computer−rendered wire−frame drawings.

Visualization and Communication

A model allows you to visualize the end result. With a model, you can envisage how your ideas will look after
they are built, and how they flow and interoperate. A software model lets you demonstrate the critical
components of a system, to communicate what it will be to developers, project managers, and ultimately users

 Software Modeling

268

and customers.

Reduction of Complexity

Reduction of complexity is probably the most important benefit of modeling. Software engineering is an
extremely complex science. It is also an art form at the same time. All systems are far too complex to
understand directly. No matter how well you can read code, the human brain is not advanced enough to "see"
what is being envisaged or achieved as quickly as possible. An application of even 10,000 lines of code may
take several days to understand, possibly longer if no documentation exists.

Even the smallest applications, if not properly modeled, can explode beyond the original specifications and
become completely unmanageable. Software models allow you to divide and then conquer the software
development process. Software development is far less complex and risky if you take the time to model your
application.

The software modeling process begins at a very high level of abstraction above your code. I call this the
"mile−high" view of your application. The mile−high view allows you to suppress the aspects of the software
that are unimportant during the design phase, so that you can easily isolate your design and functional and
developmental requirements.

Viewpoints

A good model is one that captures the critical aspects of the applicationthe essential elements that identify the
goals and objectives of the application. Even the seemingly simple Web site or e−commerce application needs
to be properly modeled. But how do you model? And exactly how "high" is your mile−high view of your
application. We will answer the "how to model" issues in a bit. First, let's investigate the viewpoints of a
software model.

To capture all the important requirements and functional aspects of an object−oriented system, you can work
within the bounds of three fundamental and distinct models of the software that represent the viewpoints of
the model. These viewpoints are really your means of looking into the future to see something as close to the
final product as possible. The three models are defined in the Object Modeling Technique (OMT) as follows:

The object model•
The dynamic model•
The functional model•

These three core models, illustrated here, are not mutually exclusive and, in fact, are interdependent upon each
other to provide a complete model of a system.

However, each model can be separated from the trio and examined exclusively. The best model builders
create interconnections between the three models but avoid designing them in such a way that they become
inseparable to the extent that the objectives of the models in the first instance are lost. A good model is one
that incorporates the three views into the system yet still isolates the different aspects of the system while
limiting the associations between them.

Software Modeling

269

Before embarking on the modeling process, it is important to accept that the three models will evolve during
the development cycle. The modeling process should not be one that limits or prevents flexibility in the design
of a system. Actually, the fundamental reason to model is to allow the software development process to
provide input to the models during the development of the system, to provide the necessary assurances for all
parties that have high expectations.We should also enforce the idea that the three stages of software
constructionanalysis, design, and implementationrespectively sit adjacent to the three models (object,
dynamic, and functional). The three stages and their collaboration with the models makes up the software
development life−cycle.

The Object Model

The object model is the most abstract of the models because it describes the structure of the objects in your
software. An object model (and you could call the entire .NET Framework one huge object model) identifies
the objects and the relationships between them. It also defines their attributes and what they do. The object
model is very much the focus of this chapter. Even though we will be talking about classes, the net result is a
system of objects.

When we talk about an object model framework, we mean the framework into which both the dynamic and
functional models can be placed. Life can be considered one huge object model. As discussed earlier in this
chapter, the natural object models in nature, in us, comprise the cohesive objects that make up our
existencefrom the highest level going all the way down to the molecules and subatomic matter.

Object models are the most abstract of the three models. Object models provide that so−called mile−high view
of the system. No matter the problems we are trying to solve or the applications we are trying to build, the
object model should be easy to understand and its concepts should be easy to grasp. If you are modeling a
business problem, your models should reflect concepts that business people can understand. The terms and
visuals of the business−problem model should be familiar to business people. The same strategy applies to
engineering problems, scientific problems, and so on.

Object models for software systems are built using graphical notation languages that render object diagrams
that will ultimately represent class libraries and their elements. Later in this chapter, we will explore class and
object diagrams in more depth.

The Dynamic Model

The dynamic model represents the aspects of a software system that represent time, sequencing, and changes
in state. A dynamic model will also represent control. It will not necessarily describe actual operations, but
rather the operations that take place in the system, what they operate on, and how they are implemented.

A dynamic model is represented with state and sequence diagrams. It shows the state and event sequences that
are permitted in the system for a particular class of objects. Another way to look at the dynamic model with its
sequence diagrams is that the state diagrams represent or correspond to functions in the function model (to be
discussed next) and also represent operations on objects in the object model.

The Functional Model

The functional model captures what a system does, not necessarily how it does it, when it does it, or with what
it does it. Another way to understand the functional model is that it represents the aspects of a software
system's control over the transformation of values.

Viewpoints

270

Functional models are represented with data−flow diagrams that show the dependencies between values that
are computed, as output values, from input values. A functional model does not necessarily represent how the
values are computed. It is not concerned with the inner workings of classes and methods or how the methods
are executed.

Model Relationships

While each model alone describes various aspects of a software system, the combination of all of them, with
references to each other, fully describe the software system. For example, the operations in the object model
relate to events in the dynamic model and the functionality in the functional model. The dynamic model, on
the other hand, describes the control structures of the objects in the object model. And the functional model
represents the functionality that is achieved by the operations in the object model and the actions in the
dynamic model.

It is important to understand that the models you create can never be exact representations of the actual
software system. There is an accepted deficiency level because no model or abstraction can capture everything
about the actual system or thing being modeled. Remember that the goal is to simplify the construction
process and not burden it with overly detailed models.

Unified Modeling Language

Strange as it may seem, if you stop John or Jane developer in the lunchroom and ask him or her what
modeling language they use, chances are they will think you are nuts, because modeling is still not something
a programmer considers important. This is especially the case with Visual Basic programmers, because classic
Visual Basic as a language has never really lent itself to requiring such discipline in engineering. This is
beginning to change in a hurry, because Visual Basic programmers now have full membership to the
object−oriented club and are expected to have the correct disciplines. This is one of the reasons I decided to
introduce this chapter with a backgrounder on modeling and modeling languages.

The visual modeling techniques we just covered are supported by an underlying modeling languagesupported
by standardsthat a number of modeling tools support. When modeling software systems, if you cannot convey
the model to interested parties the model will not mean much or be very useful. A visual model of a software
project is not like a wooden model of a boat that is easily interpreted by physical look and feel. So, the
software−engineering world came up with several notations over the past few decades, the most popular being
the Unified Modeling Language (UML).

Visual modeling tools like Visio and Rational Rose support the three aforementioned notational or modeling
languages. UML, however, is now by far the standard that has become the most popular. It is supported by
austere governing boards such as ANSI and by the Object Management Group (OMG).

Over the years, object−oriented analysis, design, and modeling have relied on the collaborative efforts of a
gang of wizards from several technology havens, especially Rational Software Corporation. The wizards
include Grady Booch (Chief Scientist at Rational), Dr. James Rumbaugh, Ivar Jacobson, Rebecca
Wirfs−Brock, Peter Yourdon, and several others. In particular, Booch, Rumbaugh, and Jacobson, the
so−called "three amigos" that work at Rational, can be considered the caretakers of UML, and continue to
work on the refinement of the language.

UML comprises a system of symbols that you use to build your software models. The symbols are similar to
the Booch and OMT notations. UML has borrowed the notation elements from other notation languages, as
well.

Viewpoints

271

UML has thus been in the works for more than a decade; however, it officially became known as UML in
1996. The first version, UML 1.0, was handed over to the Object Technology Group in 1997. On November
14, 1997, OMG released UML 1.1 as the official industry−standard release.

Many software companies now adopt UML, including Microsoft. In fact, Microsoft has more than
standardized its technology on UML; it has fully implemented it. The Enterprise Architect's edition of Visual
Studio .NET is tightly connected with Visio for Enterprise Architects. It allows models to export Visual Basic
or C# source code, and you can use Visual Studio to reverse−engineer IL code or source code to UML
models. Rational Software Corporation's Rational Rosethe premier modeling suite to support UMLis also now
tightly coupled to the .NET Framework. UML modeling is also taught in the Microsoft certified Solutions
Developer courses.

UML allows you to develop a number of different diagrams. These diagrams are combined to represent the
object, dynamic, and functional aspects and requirements of your system as originally specified by the Object
Modeling Technique (the object, dynamic, and functional models discussed earlier).

The visual elements of the UML models enable you to encapsulate relationships between entities, and
concepts such as inheritance, aggregation, association, and so on. So powerful is UML that many technology
companies now require all engineers to be fully disciplined in the use of UML tools. It has become a
prerequisite for many new hires.

UML Diagrams

UML defines a host of diagram types that can represent the object model, the functional model, the dynamic
model, and so forth, of your application. When designing a Visual Basic .NET application, or an application
in any language for that matter, it behooves you to properly design your applications using model diagrams
like the ones offered in UML.

UML lets you design with various graphical elements to represent real−world scenarios interacting and
interfacing with your software. UML enables you to design with several different types of visual diagrams
that represent the various views of a software application or system. A Web application, for example, allows
you to design the baseline requirements of a system and represent it with several types of diagrams that you
can create in UML. These include process diagrams, use−case diagrams, and sequence diagrams.

Process diagrams are developed to identify high−level system functionality within the application owner's
business domain. The use−case diagrams are developed to describe each process within the process diagrams,
in terms of detailed functional steps required to accomplish the high−level system functionality desired by the
business owners. The domain model is developed to illustrate the functionality described in the use−case
diagrams in terms of business entities specific to the business domain.

Most UML tools support the development of these models using the following notations and diagrams:

Use−case diagrams•
Sequence diagrams•
State charts•
Collaboration diagrams•
Class diagrams•
State−transition diagrams•
Component diagrams•
Deployment diagrams•

 UML Diagrams

272

The diagrams you will become familiar with in this book mainly include class diagrams.

Note While the class diagrams show you the interactions between classes in a system, to fully benefit
from the modeling objects, take the time to become conversant with UML. There are many
books available that specialize in the subject, and you should invest in a good tool like Visio or
Rational Rose.

UML Notation for Class Diagrams

A class diagram is a diagram that comprises classes, class interfaces, and the relationships between the
classes. The classes themselves are quadrangles that you divide into several compartments. A typical class
component in UML contains three specific compartments, as illustrated in Figure 9−2.

Figure 9−2: The basic class represented in UML
The top compartment represents the class name. The middle compartment represents the class attributes or
variablesthe data of the class. The bottom compartment represents the class methods. Figure 9−3 illustrates a
simple class that will shut down the application.

Figure 9−3: The ShutAppDown class
Notice that you can assign an initial value to your variables. In the preceding example, we have provided a
Boolean named Down and have assigned it an initial value of False. Now let's look at the variables or
attributes a little closer. Find the difference between the class represented in Figure 9−4 and the earlier ones.
(Tip: We are looking for three key differences.)

Figure 9−4: The ShutAppDown class with additional variables
If you only spotted the new data item Counter, you have found only one of the key differences. If you noticed
that the instance variable, Counter, is also underscored, you have scored two out of three.

Before we discuss the third difference, let's talk about the underscored part. If a variable in a UML class
object is underscored, it means that the variable is static. Methods, which can also be static (shared) are
similarly underlined.

 UML Notation for Class Diagrams

273

Note Rational Rose provides a purer form of UML in its modeling tools than Visio 2002 provides.

UML Notation for Class Relationships

Classes in an object−oriented system are not completely isolated from each other. While some classes are
more independent than others, all classes relate to each other in a formal way. Over the years, OO technology
has identified five key relationships that classes can have with each other. These relationships are inheritance,
implementation, association or collaboration, nonexclusive aggregation, and composition.

Figure 9−5 illustrates the UML graphical notations used to denote the five key relationships among classes
and interfaces. We will employ this notation in various places in this book.

Figure 9−5: The UML graphical notation for expressing the relationships among
Now that we have a basis for modeling applications and representing classes, we can embark on an exciting
journey of designing classes for our applications. We have a lot of ground to cover between this point and the
end of the chapter, because we are going to look at all of the various roles and responsibilities our classes can
play, as well as the patterns that dictate their construction.

However, before we can look at OO specifics, we need to discuss a critical concept that actually has its roots
in structured designmodularity.

Modularity

Many software development experts jump at the chance to point out that modularity is a critical component of
structure design and was inherited by the OO rage. They are one hundred percent correct. However, while
modularity is not per se a founding OO principal, it is critical to understand modularity in terms of the
object−oriented software development.

What is modularity? We discussed modularity to some extent in Chapter 1, but let's dig a little deeper here. To
repeat, the module is the unit of encapsulation. It is the tool we use to divide up a system or an application
into a collection of individual components or compartments. Modularity follows the principal of divide and
conquer; it allows us to reduce complexity and size to a degree that the individual modules can become
manageable by the programmer or a team of programmers.

OO programs are not organized as collections of modules, however; they are organized as collections of
classes. Classes, nevertheless, serve a similar function as modules. The difference between modularization in
structured− or procedure−oriented technology and classification in object−oriented technology is that modules
are concerned with the meaningful grouping of routines and procedures that forms a cohesive collection.
Classes, on the other hand, are concerned with how objects and their contents are grouped and connected to
form the structure of the application.

Note Interestingly, Visual Basic .NET implements the concept of a class module, which is not found
in any other .NET language. At the IL code level, class modules are simply static classes that

 UML Notation for Class Relationships

274

contain static methods and static fields, which means that all the members are shared. Modules
cannot be instantiated (so there is only one copy of each field) and all data is global.

Programming for modularity in OOP is, however, just as important as it is in the procedure−oriented world.
Encapsulation, one the founding principals of OOP, depends on modularity. In OOP, however, encapsulation
is concerned with both information− hidingthe maintenance of secretsas well as the hiding of methods behind
public interfaces.

Modularity Metrics: Coupling and Cohesion

So, if programming for modularity is so desirable, even for OO software design, how do we know that our
classes are inherently modular? It's simple really. We just have to follow the two most important metrics of
modularitycoupling and cohesion. The coupling and cohesion metrics were discussed in some depth in
Chapter 1, and if you missed the boat back then, you may want to return for a refresher.

Coupling

It is worthwhile repeating here that strong coupling detracts from the benefits of OO design because it makes
the overall system harder to understand and maintain. When classes depend on each other for data and
functionality, they become tightly coupled and this should be avoided. This is especially important when
designing a system of objects, because tightly coupled objects detract from concurrency, reentrance,
persistence of objects, and other such desirable traits (and benefits) of object−oriented systems. It becomes
harder to maintain and understand classes the more dependent they become on other classes.

You should know that the coupling metric has a vital contraindication in OOP inheritance. The concept of
inheritance denotes a hierarchy of classes, where children depend on parents for their inheritances, data, and
implementation.

Inheritance classes are thus tightly coupled; however, the loose coupling metric is elevated to the class
hierarchy or the family. We will talk more about this in the "Inheritance" section later in this chapter.

Cohesion

The cohesion metric also came to life in structured design and is a critical principal of procedure−oriented
software development. While coupling covers the relationship between classes, cohesion covers the degree of
connectivity between the members of classes and their data.

Cohesion, discussed in Chapter 7, applies equally to all members of classes as well as the collection of
methods within them. Strong cohesion among the elements of classes is what we strive to achieve.

The best−constructed classes are the ones that avoid coincidental cohesion, in which you just toss unrelated
elements into a class. As discussed in Chapter 7, our aim is to construct classes that are strongly cohesive
(functional cohesion), in which methods and data are exactly all the class needs to fulfill its role and duties
and no more.

The Classes Are the System

When you think about your application as a system and not as a huge collection of "function points," it
become possible to see the bigger picture and not be mired down in the minute details that can be so
debilitating. For example, I have been working on a spacecraft simulator and can vouch for how quickly you

 Modularity Metrics: Coupling and Cohesion

275

can get buried in the specifics of designing classes, such as deciding which classes play what roles, what their
duties and responsibilities are, and how they interrelate. Nevertheless, imagine looking at a spacecraft from
the deck of a space station. The image you see in your mind is a magnificent machine, an abstraction for your
imagination provided by the likes of movie series such as "Star Trek," "Star Wars," and "Babylon 5."

Behind the hull, however, it's a different storyone that you seldom see. Thousands of highly complex systems
make up the spacecraft. The models for a spacecraft's systems are many and massive, so they need to be
decomposed to comprehensible andat the same timelogical units. You have systems for weapons, systems for
environmental control, systems for flight, systems for navigation and trajectory, systems for life support, and
so on. The list is endless. You would have to design many models on various levels, perhaps starting with a
small collection of the most abstract parts that partition the architecture of the entire craft.

If we see ourselves as engineers focusing on getting a spacecraft moving through space, we do not need to
care about life support (at least not in the early stages or for the building of the software systems that cater to
space flight). So, it makes sense for us to work on a model that caters to all the systems the spacecraft depends
on for movement and velocity.

The illustration depicts a model that indicates, at the conceptual model level, the collection of systems that
make up our "engineering systems." We have systems for controlling temperature, systems for controlling
velocity, systems for controlling the environment around the "coils," systems for controlling the
matter−antimatter collision process, systems that generate electricity, systems that monitor, systems that
diagnose, and so on. At this point, we do not need to see the other systems of the ship in our model, because
until we get moving, we aren't going to need them.

Even just focusing on engineering is still daunting, and in an actual project like this, many large teams work
on the various systems within these systems. By decomposing the model further (in the same fashion we
decomposed methods in Chapter 7), we can arrive at a system that a specialized and cohesive collection of
engineers can work onthe antimatter (fuel) injector. This is illustrated here. (It would in fact detract from the
objectives to make the team working on the fuel injector systems work on, say, the environment control
systems. The job of the project manager is to determine when it is time to move an "injector" engineer to help
the environment control team.)

 Modularity Metrics: Coupling and Cohesion

276

Each system, algorithm, or application thus comprises a collection of classes that relate to each other for the
benefit of the greater system. The following list identifies these key relationships and roles and the chapters in
which we will primarily explore that relationship:

Abstract classes The roots of our class hierarchies. (Abstract classes are covered next.)•
Inheriting classes Extending classes and building class hierarchies. (Inheritance is covered in this
chapter.)

•

Composite classes Reuse of code and association through exclusive composition or containment of
one class in another (composition is covered in this chapter, and in Chapters 12 through 14).

•

Aggregate classes A form of non−exclusive composition whereby the classes are embedded in the
container class but not defined (aggregate classes are discussed later in this chapter and are also
discussed in Chapters 13 through 16).

•

Associate classes These are classes that associate or collaborate directly with other classes. They
typically gain access to implementation in other classes by instantiating and then collaborating with
the object (associate classes and collaboration are discussed in all chapters).

•

Delegate classes Classes that act as intermediaries between a sender or client class and a receiver or
server class. This is a form of association or collaboration, but through indirect method calls where
the call is made via a delegate or proxy object. (Formal Delegates, which encapsulate a pointer to a
method in a receiver class, are covered extensively in Chapter 14.)

•

Final classes Classes that are sealed, which finalizes the inheritance hierarchy (final classes is
discussed in this chapter).

•

Singleton classes Classes for which only one object can exist (the Singleton pattern is discussed in
Chapter 13).

•

Shared classes Static or operations classes that are not instantiated (shared classes are discussed in
this chapter and throughout the book).

•

Bridge classes Classes that allow two or more separate classes to collaborate (the Bridge and
Strategy patterns are discussed in Chapter 13).

•

Interfaces A class that provides a formal definition of an interface that concrete classes can
implement (interfaces are discussed in Chapter 10).

•

Wrappers and adapter classes These are classes that adapt the interface of other classes, thereby
providing an interface for clients that would not normally be able to use the original interface.
(Wrappers and adapter classes are discussed in Chapter 14.)

•

Figure 9−6 shows a system of classes, and the UML notation indicates the relationships between them.

 Modularity Metrics: Coupling and Cohesion

277

Figure 9−6: A system of classes and their relationships, roles, and responsibilities

Class Characteristics

While this book is dedicated to Visual Basic, the .NET Framework provides both a design−time and run−time
environment that is common to many compliant languages. The remainder of this chapter thus applies equally
to Visual Basic B .NET, C# .NET, JScript .NET, and all the other languages that have been "retrofitted" or
"resurrected" to work on the .NET Framework (such as Pascal, COBOL, and Smalltalk). However, every
language has its own compiler, and each compiler supports different things in different ways, but the
differences are very small and are mainly along idiomatic lines.

What you can do with the language of your choice is dependent on its compiler, and how it works with the
BCL and your custom classes. For example, the C# compiler understands how to deal with overloaded
operators, but this is not yet available to the Visual Basic programmer, even though operator overloading is
well within the realm of possibilities of the Visual Basic compiler.

You should not see this as a limitation at all, because these "differences" are actually there for a reason, and
some of them make Visual Basic .NET even more powerful than any other software development tool
available on this planet. Take Java, for example. Based on C++, its architects started building it only after
deciding to ditch everything that gives programmers such a hard timemultiple inheritance, pointers, operator
overloading, and so on.

Classes come in two flavors, user classes (or custom classes) and the Framework or API classes (aka the base
classes). The user classes are the ones you will build from scratch. Actually, as you have seen, you first derive
theminheritancefrom the base classes (at the least you will derive from Object) and other custom classes.

User or custom classes need to conform to CLS; otherwise, at best, they will introduce bugs, and, at worst,
they will not compile. The framework classes are the ones that ship with the .NET SDK. They also conform to
the CLS (which ultimately supports the Common Language Runtime, or CLR, discussed in the first two
chapters).

Table 9−1 provides a list of CLS−documented class characteristics, which apply to both API classes and any
user classes you create.

Table 9−1: The Characteristics of .NET Classes

CLS Characteristic Purpose VB .NET Usage

Sealed (final) This class does not permit subclasses. NotInheritable

Implements (interfaces) This class provides implementation access required or
specified by one or more interfaces.

Implements

Abstract (virtual) You cannot instantiate this class. If you want to use it, you
must create a child class and provide an instantiation
constructor for the child class.

MustInherit

Inherits Inherits

 Class Characteristics

278

This means that a child class inherits from a parent class,
which is either a base class or a parent in a class hierarchy.

Public The class itself is visible to all other classes. Public (optional;
if omitted, it is
public by default)

Exported/Not Exported This class cannot be exposed or accessed from outside its
assembly.

Friend

In the Beginning Abstract Classes

I have often drawn a parallel between classes and cells, in which respect I am not being original at all. Many
OOP experts have shown how OO systems are modeled on nature, and I am merely drawing on a logically
sound concept. In fact, the earliest object−oriented thought processes were directly modeled on cellular
biology. And since then it has become a controversial topicespecially in light of the late 2001 announcements
about the success of stem cell and human embryo cloning.

Organisms comprise many different types of cells, and each type is a cohesive object in its own right. But all
cells start out as stem cells, which are the ultimate cells from which all elements in the organism derive. Many
scientists consider stem cells "life−less." What they say is that before DNA is added to a cell, all stem cells are
considered identical and completely abstract. Only after a "child" cell, which derives from a stem cell, is given
meaningful or life−indicating attributes can it be considered a life form.

The controversy that currently rages in our time is whether or not the stem cell itself is considered a living
thing. What's more perplexing is the process or phenomenon that decides what a stem cell will becomeits
purpose in life, and thus when life itself happens.

The illustration shows a new type of cell deriving from a stem cell. All living things generate stems cells. In
humans, a single cell is created at the moment a sperm fertilizes an egg. The cell is known as a totipotent cell,
which means that it has total potential to divide and continue a process that will result in the development of a
human being. When placed into a woman's uterus, these cells have the potential to develop into a fetus.

When two such cells make it into the uterus and develop as separate entities, the process gives rise to twins.
More time passes and the original cells begin to divide into new cells that give rise to the process that will
lead to the creation of organs, tissue, and skin.

For example, blood stem cells give rise to various types of blood cells, while skin stem cells give rise to
various types of skin cells. All cells have a particular function. They are highly cohesive entities that know
exactly what they have to do to perpetuate life. Blood stem cells, for example, live in the bone marrow of
every person. Their function is to continually replenish the organism's blood system.

The analog of stem cells in OO software is the abstract class. The root class, Object, in the .NET Framework
is the ultimate abstract class. It is the single "totipotent" class that has the potential to create additional "stem

 In the Beginning Abstract Classes

279

classes" from which we will produce our class hierarchies and give our applications life.

An abstract class is simply a class that cannot be instantiated because, on its own, it is not complete and
cannot serve the function of an accessible object. It requires further implementation in deriving classes (called
concrete classes). In other words, an abstract class is simply a class that is intended to be derived from, and
either all or part of the class implementation has been postponed for construction in the child class.

Factoring Out Commonality

It would be clumsy to pack all the functionality of an injector into one class and then seal it. We would
certainly want other developers to take the class, derive base and generic services from it, and use it as they
see fit, or extend it or adopt (and adapt) it for use in other spacecraft. After all, all spacecraft require fuel
injection systems, no matter whether they are full−blown battleships or little shuttles that zip down to planets
and back.

The injector engineers thus work on the base specifications for fuel injector software programs that are
required by all spacecraft. This is then the point at which we would create our ultimate abstract class as the
base class from which further classes are derived, classes that would be concrete or that might extend the class
hierarchy even further (perhaps to go where no developer has gone before). But we have to start somewhere.

The base injector class, BaseInjector, thus provides the abstract members that all injector classes will have,
the most important ones being StartInjector and StopInjector. These members also include methods that
signal to other systems that increase or reduction in velocity is required, information that the injector is on or
off, and properties that provide other critical information back to the injector, such as the state of the coils,
core temperatures, and fuel levels.

In addition to overriding or overloading the base functionality, we would also want class consumers to
improve the classes with their own methodsusing our abstract class, or at least the next generation of it, as a
starting point. We are thus creating a "blueprint" or a template, so to speak. All injector objects derived from
this base class will have common characteristics when they are bornjust like humans at the embryo stage. The
illustration demonstrates the BaseInjector object with its initial abstract methods.

Note Remember, the BaseInjector class also implicitly inherits from Object, so there are additional
members in this abstract class that are not shown. You will not normally see the inherited
members in your class. However, the process of reflection (which provides type information)
lets you look at a class and see the inherited members. See "Reflecting Classes" in Chapter 13.

All software systems have to start somewhere. It's not imperative that you start with an abstract class. Some of
you might start with a form (so that you can see results early) and make that the "center" of your application.
Some of you will start with a single abstract class, which becomes the root class for the entire system. This
class might be an abstract class that serves a particular function or purpose expressed during the design of a
system. You might also create several abstract classes and create a system that's not unlike the human body

 Factoring Out Commonality

280

described earlier, which produces stem cells as the basis for all of its elements.

I design applications using the latter approach, starting with the design of a single abstract class and
extrapolating the entire system from it. Even forms, which are complex hierarchies of many classes,
ultimately derive from Object, the .NET stem cell. Many years ago (in the days of Borland's Object Vision
language and then moving on to Delphi), I would start with a form, and everything would herald from there.
But as analysis and design tools (especially UML) matured, it became less important to get cracking on the
user interface and easier to identify the place or places in your model as starting points.Your models point out
where to start with an application; a team of developers can often start in a number of places at the same time,
independent of each other. If you can delegate like this, then you are on the right track.

You declare an abstract class in Visual Basic .NET as follows:

Public MustInherit Class BaseInjector
 'on its own it cannot be instantiated
End Class

Caution Be sure not to forget the Public access modifier or the class will default to Friend which cannot be
exported, and you will not be able to inherit from it as the base class.

There are two ways to generate the source for our abstract class. The first and most convenient way is to
export the class to Visual Studio from Visio or another tool you have used to create the UML diagrams. The
second approach is to simply construct the class manually. The code for the entire abstract BaseInjector class
is as follows:

Public MustInherit Class BaseInjector
 Public MustOverride Sub StartInjector()
 'must be overridden in child class
 Public MustOverride Sub StopInjector()
 Public MustOverride Sub SetWarpSpeed(ByVal newWarpSpeed As Integer)
 Public MustOverride ReadOnly Property MPS() As Integer
 Public MustOverride ReadOnly Property GetSpeed() As Integer
 Public MustOverride ReadOnly Property DriveState() As Boolean
 Public MustOverride Property InjectorState() As String
End Class

The Members of Abstract Classes

Abstract methods are intended to be implemented in subclasses that derive from a base class, and the abstract
modifier, MustOverride, specifies that the child class is required to implement the methods. For all intents
and purposes, the abstract members are nothing more than a definition of the member signatures the
implementor must adhere to. The abstract method in a base class is thus merely a definition and is devoid of
any implementation.

A method or property that is declared as abstract is overridden in the subclass, because that is where the
implementation of the method or property is handled. Abstract members are thus implicitly virtual, because
they can be implemented in subclasses. Abstract members are thus the opposite of final members.

An abstract class cannot be sealed, which would in any event defeat its purpose. Sealing a class prevents it
from being further extended.

The members of an abstract class do not necessarily themselves need to be abstract. In other words, you can
derive complete functionality from an abstract class (which you cannot do with an interface). In this regard,
you can declare variable and constant fields in the abstract class. This allows the fields to be inherited by the

 The Members of Abstract Classes

281

descendant classes (this is not possible with an interface; see Chapter 10).

Since you cannot instantiate an abstract class, using the New operator as an attempt to create a new instance of
the object would result in an exception. The code for the abstract class, BaseInjector, previously shown, does
not define a constructor. However, there is nothing stopping you from defining collateral constructors. The
New constructor merely passes through to the child from the parent of BaseInjector (in this case Object) on
which it depends for the constructor implementation. Classes that derive from BaseInjector can thus call New
for instantiation.

When you derive an abstract class, you must override all abstract methods in your implementation, even if
you just declare the methods and leave out the meat. Let's now get down to inheriting from the base class.

Inheritance

Inheritance is pervasive across the .NET Framework and in all of your custom classes. First, you implicitly
inherit from Object every time you create a class. Second, when you are ready to create a new class, your first
consideration is to decide whether it is appropriate to extend a base classcreate a subtype. But first we must
ask, what exactly is inheritance?

Inheritance, as described in the previous section on abstract classes, is nothing more than a mechanism in
which the data, attributes, properties, and behavior of classes propagate from parents to children. Again,
inheritance in software is modeled on inheritance in nature. Mother Nature uses inheritance as a mechanism
for perpetuating her species, and to maintain collections of species that share common specialized attributes.

Like our ability to inherit brown eyes or acting ability, which may be debatable, from our parents, the
inheritance relationship between two classes implies that code implemented in the parent class is derived to
the child class where it can be used. Figure 9−7 shows the inheritance of the definitions and any
implementation from BaseInjector to ShuttleInjector.

Figure 9−7: ShuttleInjector inherits from BaseInjector
In this figure, ShuttleInjector inherits several methods from BaseInjector including the implementation of
the GetHashCode method that was originally derived from the ultimate base class, Object. We will return to
the implementation of ShuttleInjector shortly.

It is vital to understand that one major difference exists between inheritance in nature and inheritance in OO
software technology. In nature, organisms inherit the traits, attributes, and behavior of their parents, which
manifest in them. You just have to look at your children (or your parents) to see this at work. But after birth,
there is no longer a connection (at least a physical one). Looking at it another way, just because your dad
decides to eat 100 pancakes today does not mean you will wake up tomorrow weighing 20 pounds more.

Classes that inherit are always tied to their parents, or superclasses. An inherited method is not replicated in
the child or extended class; the implementation remains at the parent, while the functionality can be accessed
from the child as if it were its own method. This is what we refer to as code reuse. It does not mean that we
select code in class A and paste it to class B. This type of inheritance also means that any changes to a method

 Inheritance

282

in a parent class will affect the child. To avoid such behavior, you need to implement a mechanism to block
the inheritance, such as overriding or shadowing in the child class, or sealing the member in the parent class.

How do you know when you should create a class that inherits from a parent. Determining whether or not
inheritance should occur is easy if you follow the cardinal rule of inheritance. If a new class B is−a class A,
then B should inherit from A, or at least there is good reason for B to inherit from A. In other words if A is a
cat and B is also intended to be a cat then the determination is that B is−a A or B is a cat. The is−a rule is
simple to follow. To demonstrate the rule in action, let's now move to another part of the spacecraft, to the
Crew manifest. Classes that represent a hierarchy of crew members may be easier to visualize in an
inheritance structure than Injector objects.

Note I introduced this example, the Crew class, in my book, Visual Basic .NET Developer's
Headstart (McGraw−Hill/Osborne, 2001) and felt that repeating it here in more detail
was worthwhile.

On every spacecraft is a crew. The crew may be human, or it may be a multitude of species, like the crew of
the Enterprise or Voyager on "Star Trek." The crew may also contain a compliment of primates, highly
trained chimpanzees that work with their human associates.

So, our spacecraft's systems require a hierarchy of classes representing crew. The first job of the designers is
to create a base abstract class, called Crew, and encapsulate in it all the attributes and behaviors that will be
common to all crewmembers. Factoring out the commonalties is not a difficult problem. Create a class in
UML and add to it all the elements common to crewmembers.

You should not need to think about this too hard. All crewmembers have names. So, the first fields you might
add to the Crew class would be firstName, middleInitial, lastName. Next on the list of common fields
would be age, sex, and religion. Besides the commonalties of all people, there are also commonalties specific
to crewmembers, such as crewID, rank, and clearanceLevel. With these elements in hand, the base Crew
class should look like the one in Figure 9−8.

Figure 9−8: The Crew class
Creating subclasses, or child classes, of Crew is simply a matter of inheriting from it using the Inherits
keyword. Suppose you need to create classes that represent engineers and security staff. Both types of
crewmembers will now have different attributes and other elements. Engineers, for example, may require
specialized classification of certain skills, whereas security staff will be assigned side−arms that need to be
checked out of the armory at the start of every shift and checked in at the end of every shift.

Note The inheritance rule states that inheritance is represented by is−a relationships between classes.
If ClassB is−a (kind of) ClassA, then ClassB should inherit from ClassA.

 Inheritance

283

Thus, when an application or solution requires the creation of an Engineer class you simply derive from the
base Crew classin other words you extend Crewwhen you declare the new class. On the other hand, even
the Engineer class may be too general for a spacecraft that employs about six different types of engineer. It
may in fact make sense to deepen the hierarchy and derive InjectorEngineer from the Engineer class.
Injector engineers represented by the InjectorEngineer class may need to check in for a medical every 48
hours to ensure that working too close to an antimatter environment has not affected their molecules.

The deeper the hierarchy, the more specialized are the most derived classes. The classes closer to the base or
abstract class are more generalized. InjectorEngineers have certain members that differ from Gunners,
Cooks, Medics, and Captains. But a class at the end of a class hierarchy also inherits from all the previous
classes.

InjectorEngineer is now considered a subclass or a subtype of Engineer, and both are subtypes of Crew
(which is a subtype of Object). This hierarchy is presented for purposes of illustration, but you can see that
inheritance can also be overdone when you create hierarchies that run to double−digit levels. You should have
very strong and valid reasons to create a subtype. We can also override certain methods in our derived classes
and thus change the functionality to suite the subtype. It is better to override a bunch of methods than to
unnecessarily deepen the hierarchy. In other words, further extending a type just to create a new class is
getting carried away.

Inheritance and Polymorphism

Looking back at the discussion of polymorphism in Chapter 1, you can see how perfectly inheritance supports
this key foundation tenet of OO software development. Extended or derived types not only inherit the
interface from parent classes, but the implementation as well.

Where is the polymorphism? It manifests in every inherited class. It is no matter that the class is used as is or
the method is overridden; you can send the same message to all the classes in the hierarchy, and the correct
method behind the interface will respond and be processed.

However, it is also possible to override this functionality, and in the case of abstract classes, the methods,
properties, and events are often defined with the MustOverride modifier, which means that you must
override and implement the methods in the subclasses. So, again, the message is sent, and the interface and the
method signature are the same. The only difference is the class and the implementation.

So, polymorphism is served and the type system extended because a single interface (which is defined in a
base or an abstract class) can be implemented repeatedly in many forms. We will investigate method
overriding in this context later in this chapter (refer also to Chapter 7).

Inheritance and Coupling

A child class is tightly coupled to its parent, because it depends on functionality and data created in the parent
class. This means that you can't simply take your child class and go and reimplement it at will or make it into
something it is not intended to be explicitly overriding methods that should not be overridden or otherwise
violating the is−a rule. Although nothing stops you from creating a class FlightEngineer that derives from
BaseInjector, that would not make sense.

Although class hierarchies represent tightly coupled classes, the tight coupling does not work against the
application or the algorithm in the same way that global data couples classes to each other. Coupling that
results from inheritance is coupling by design. In this respect, you should think of a hierarchy of classes as a

 Inheritance and Polymorphism

284

logical unit, not as a collection of tightly coupled classes, the one depending on the other like two conjoined
individuals. As long as you stick to the information−hiding/encapsulation recommendations and practices
described later in this chapter, you will never see a detrimental result created from the inheritance mechanism.

Inheritance can actually detract from the encapsulation you have taken care to implement in your class. As an
example, imagine that you decide to extend a class and use a method or some data as is from the base class.
Now the class providera neat freak who just keeps improving his or her classesgoes and makes a change and
reissues the assembly you are referencing (of course, that neat freak could be you), and now you have a
problem. Because of the direct inheritance, the change ripples down the class hierarchy like a long line of
dominoes. At the end of the line is your application, which gets knocked over.

Sounds like a big problem, but it's not really if you know what you are doing. In properly and carefully
designed applications, you use the ability to override base functionality wisely. If you extend a class and
absolutely need to depend on a new implementation in the child class, overriding effectively stops the domino
ripple in its tracks. We will see how this works later in this chapter.

You can't override inherited variables and constants derived from on high. But any class designer worth more
than a pound of salt is not simply going to change an Integer you are using to a Double or a Decimal.
Chapters 2 and 4 illustrated just how type safe the .NET Framework can be. With the correct configuration, it
is very difficult to make changes without Visual Studio stopping you dead in your tracks. Despite that, you
should shadow data fields that have the same name in parent classes, or declare new variables and constants in
the child classes.

The coupling effect of inheritance no doubt has to be considered. It is also possible to change implementation
or add override functionality along a deep hierarchy, which can result in some nasty conflicts. A cohesive
development team implementing a framework will be able to manage the process with common sense. In
other words, you still have to be careful.

If you don't intend your derived classes to be further derived or you are getting ready to implement your
derived classes for the greater good of the application, then methods and other implementation can be sealed
or made final, thereby preventing other users of the class from further overriding your methods. We will delve
into this in more detail later in this chapter, after we have reviewed all the various ways of constructing
classes, the roles of classes, and the relationships among classes.

Multiple Inheritance

Mother Nature is much more intelligent than any guru writing software is. She can easily fashion new life
from the genes of more than one parent. For example, Laila Ali might punch like her famous daddy,
Mohammed Ali, but the world knows that she also has her mother's looks.

Multiple inheritance (MI) allows a design and implementation concept known as a mixin in OO parlance. A
mixin would allow us to inherit from more than one class and thus inherit the definition and implementation
from the mixin. This is illustrated in Figure 9−9, where the new subtype of two or more parents contains the
inherited elements of all the mixed−in classes.

 Multiple Inheritance

285

Figure 9−9: Multiple inheritance
MI in software, some believe, is too problematic for us rank−and−file software geeks, so we can't do mixins.
The .NET type system thus only supports inheritance from a single parent. But it turns out there is good
reason. MI adds to the complexity factor, which goes against what we are trying to achieve with inheritance in
the first place.

One of the most common problems encountered with MI deals with identical method signatures that derive
from more than one class. The problem you have to face when you derive from two or more parents with
identical methods is determining which method to implement?

The purest form of MI lets a subclass inherit fields and implementation from different parents at the same
time, and many class providers feel that the added flexibility and power is worth the extra care required during
implementation. C++ changed to MI long after the language was introduced. Eiffel was built from the ground
up using MI. Languages like Java and Delphi have opted for single inheritance only. This is the case with the
.NET languages. (If you try to add a second Inherits statement to your class, the compiler will politely tell
you to get lost.)

But single inheritance does not necessarily mean you only have one super or parent class. It means that
inheritance can only be implemented through a single object hierarchy. While a language like C++ has
multiple object hierarchies, the .NET languages only inherit from one hierarchy. The root Object's members
always manifest in every new class. So, a child class derives not only from your new custom base class, but
also from Object. You can by all means derive from your custom class, and thus you would have a new child
class that contains elements of three superclasses. This is acceptable (if not overdone) as long as there is only
one logical hierarchy.

Order and Control with Inheritance

Classification provides order and control in software development projects, which so often becomes a chaotic
situation. I have been involved in many extensive software development projects over the years, from classic
applications such as highly efficient state machines/schedulers for telephony systems and telephone switches,
to business applications such as accounting systems and CRM applications, to multimillion dollar
e−commerce sites. In all of these projects, I have seen how quickly a team of developers can lose control over
their code.

Classification of classes into hierarchies provides a means of order and control. It is a good idea to assign the
responsibility of base class creation to a single developer or a group of developersclass providersand enforce
the inheritance and extension of subclasses at the class consumer level, with the developers who need to use
the classes.

Figure 9−10 shows how a chain of command is established for the class. Consumers know what they need to

 Order and Control with Inheritance

286

do to use the class in the application, and the providers know what they need to do to maintain the base
classes. When consumers and the architects require new common class members to be added to the base
classes, that responsibility falls back to the developers maintaining the classes.

Figure 9−10: Control and ownership in class hierarchies
As the figure indicates, I propose providing class hierarchies for all classes in a project. The class hierarchies
should thus evolve to become a framework, in the same context and for the same purpose as the .NET
Framework. Some class hierarchies will be deep and lightly extended. Others might be shallow and heavily
extended.

The creation of frameworks using inheritance thus implies a separation of objectives in the software
development process. On the one hand, you are using inheritance to create new classes, polymorphism, and
interfaces to feed the development, and provide new classes. On the other hand, developers use the framework
to build their applications. I stumbled across an excellent analogy in a pottery shop at about the time I wrote
this chapter. In this particular shop, you could buy the vase in its raw state, already shaped and baked, and
simply paint it. So, the pottery shop provides the base and you provide the finishing touches without having to
get your hands fouled up with sticky clay.

Reduction of Complexity

Developing class hierarchies and frameworks substantially reduces complexity. First, the class hierarchy is
properly factored, as discussed earlier. So, documentation, adherence to models and specifications, interface
usage and exposure, guidelines for deployment, and so on all become available to the team. Developing
applications within a framework of classes that is well thought out and well documented is much easier than
developing them within a hodgepodge of code that is just stuffed into classes like leftovers stuffed into
Tupperware boxes.

At the same time, creating the framework provides a benefit that is obtained implicitly and without huge effort
on the part of the project manager. No single person becomes the indispensable keeper of his or her "code"
either through some desire to protect some interest or because a class is created on−the−fly and on−the−quiet.
Often, classes are written as an afterthought, or for some other reason known only to the creator, without
inclusion in the model or the specification, or without any forethought or inclusion or agreement from any
other team members and the project manager.

It thus becomes much more difficult to lose control over documentation and source code when code is
classified and admitted to a framework of class hierarchies. Well−written source code does not have to be
fully documented to the extent that the developer writing the code explains in plain English (or any other
lingo) exactly for what reason every variable, constant, method, or property exists. This is especially true with
OO code. The code is to a very large extent self−documenting, and if you can read Visual Basic .NET source
code, you can comprehend what is going on in the class. (Contrast this to the classic BASIC code, described

 Reduction of Complexity

287

in Chapter 1.)

However, the bigger problem is at the higher level of abstraction, at the class level. When you have a class
that does not exist in a model and the framework, or it is difficult to discern how the objects interoperate with
each other, how they relate, or how they depend or don't depend on one another, you have the ingredients
necessary for disaster. This has been a big problem with many Web sites and e−commerce systems targeting
the likes of Microsoft's old Active Server Page technology. The mixing in of Visual Basic script, Java,
JavaScript (or JScript), HTML, XML, and various other language constructs in a collection of flat, seemingly
boundless modules (ending up with what many call "spaghetti code") has led to many wasted nights trying to
find errors and bugs.

Not having the models and the proper design documents and diagrams (such as use cases, sequence diagrams,
and state charts) has seen many millions of dollars go down the drain in e−commerce systems that become
impossible to decipher once the original developers fade into the twilight. This is very different with
ASP.NET, in which an entire e−commerce application can be assembled from a collection of highly cohesive
classes.

Maintenance

Class hierarchies are easily maintained. The class providers control the base classes and the core functionality
and data required by all subclasses in the hierarchy. Consumers that have extended the classes down the line
become responsible for the maintenance of their own classes. But when commonality among the classes in a
collection is identified, the common constructs can be added to the base class, and all derivatives benefit.

The same process works for maintenance of the common members in the base classes. A developer
maintaining a base class can return to a method and rewrite it or update it. Perhaps the method requires an
optional parameter, perhaps it needs to be souped up, or perhaps it just needs to be reimplemented from
scratch. Definitions can be changed in the abstract classes, and the changes trickle down to the subclasses.

Code Reuse

Code reuse is another concept that does not really have its roots in OO. The idea of code reuse came a lot
earlierin fact, OOP only helped popularize the concept. However, code reuse is now synonymous with
inheritance and is often cited as the most important benefit of inheritance. As you have now seen, by directly
inheriting a method from a base class, you do not need to reimplement the method. This makes sense; why
would you want to rewrite extensive, well−tested code when it already exists?

The skeptics of inheritanceoldies who can't get the hang of OOPwill tell you that you don't need inheritance to
reuse code. They suggest you are better off just copying and pasting code from one module to another. But the
problem with that approach is so obvious that it's ridiculous. When implementing an extensive algorithm or
application, we discover many situations that require identical code. Getting back to the Crew class, you can
see several possibilities for code reuse. For example, suppose the Crew class implements a database lookup,
or encrypts a stream. By cutting and pasting code for each new type of crewmember, you end up with
additional code in additional classes all over the place. Every constructor, Equals method, GetType,
GetHashCode, and more will have to be rewritten with this very sophisticated and advanced feature called
cut and paste.

A bigger problem with the cutting−and−pasting scenario arises when you need to improve or change the
original method that does the encryption or the database lookup. You now have to go to every place the code
was pasted to and paste in the new code. This not only wastes a lot of time, but the potential for introducing

 Maintenance

288

bugs is enormous. That's not code reuse; that's code misuse.

You might also stumble across recommendations to avoid inheritance completely and use aggregation and
containment techniques. This is not sound advice either. Nothing in life is a perfect fit; there are no constants.
In some scenarios, inheritance points the way; in others, aggregation or another pattern points the way. The
problem is not that one technique is bad and another is good. The problem arises when you use the techniques
for the wrong reason.

It is true that inheritance has been overhyped in many quarters; and as a result, rather than learning when to
correctly use inheritance, novice programmers start using it everywhere. The problem is that when they finally
grow up, they can't shake the bitter experience of having to redesign applications and learn new tricks, so they
slam inheritance and tell you not to use it. That's a difficult pill to swallow when you work with a framework,
like .NET, in which inheritance underpins the entire infrastructure.

Implementing a Space Ship's Fuel Injector Software

We've come a long way with the theory in this chapter, but now for some code that shows inheritance in
action. We are now ready to implement the ShuttleInjector class, which will comprise the following
elements:

Instance Fields These are the variable and constant data fieldsof course, they represent objectsof our
class. For every instance of the class, there will be a separate and totally private copy of the object's
fields that can only be accessed from within the instance they are part of.

•

Instance Constructors In this class, we only need one essential constructor, the New method.•
Properties Properties are implemented to obtain status information related to the injector's on/off
state and current velocity, and so on.

•

Methods A number of methods will be implemented from the base class.•

The Inherits keyword in a class specifies a class to be derived from. In other words, the class intends to
inherit the interfaces, methods, and fields of the base or superclass.

The following code demonstrates the new class for an object (a simulator) that can control an injector, about
to inherit from the class BaseInjector. Visual Studio will report to you that you need to implement a lot more
than just New, specifically as directed by the base class through the facility of the Inherits keyword:

Public Class ShuttleInjector
 Inherits BaseInjector

 Public Sub New()
 MyBase.New()
 End Sub

'there are methods to implement

End Class

In the preceding declaration, the Inherits keyword specifies that the derived class, ShuttleInjector, inherits
the properties, methods, and any initialization data from the parent class, BaseInjector. However, understand
that the use of the Inherits keyword does not circumvent any non−inheritable or non−overridable members in
the base class. These remain sealed if that is what you intended. The inheritance will become clearer in the
next section.

 Implementing a Space Ship's Fuel Injector Software

289

Note The .NET Framework suggests using PascalCase notation when naming members, such as
methods and class names, and using camelCase for variables and fields. For a detailed
discussion on notation recommendation for .NET code, refer to Chapter 4.

Instance Fields

The first thing we do after creating an empty class is provide (declare) a number of instance (or member)
variables, which will reference the data fields of the object. Remember, these data fields are nothing more
than objects of the fundamental types contained in both the BaseInjector and ShuttleInjector classes. So,
let's jot down the following variables and constants in our ShuttleInjector class specification:

First variable, warpSpeed This represents an integer to store the warp speed of 0 through 9, which
represents light speed plus a significant percentage thereof.

•

Second variable, warpDrive This is a Boolean value used to store the on/off state of the warp drive.•
Third variable, injectorStatus This is a String for storing information about the status of the injector.•
First constant, C This constant represents the speed of light, which is 186,355 miles per second. The
term "warp" or "warpspeed" for this simulation shall thus mean light speed plus a certain level above
it. (It is, however, believed that traveling at or beyond the speed of light slows the aging process, and
that would inject new considerations in our algorithm, which of course we will just have to ignore for
this trial.)

•

The variables and constants are declared as follows in the class:

Private warpSpeed As Integer
Private warpDrive As Boolean
Private injectorStatus As String = "Injector is Offline"
Const C As Integer = 186355

All Visual Basic variables are initialized to their default values when the class is created or instantiated, and
do require access or visibility modifiers regardless. Declaring with Dim alone modifies the fields to Private
access. This is required by CLS; however, not all .NET languages use the same default values. In Visual
Basic, integers default to 0 when initialized, but C# integers required explicit initialization.

Note The use of Dim is not required for instance variables that are modified. If you try to use Dim
with Private, Public, Shared, and so on in the declaration of the instance variable, Visual
Studio will, cheekily, remove it. Check out Chapter 4 and Chapter 7 for a refresher of the
variable and constant declaration basics.

When the first variable is initialized to zero, it means that the warp drive is online but that no antimatter is
present in the annihilation chamber of the warp drive (annihilation is similar to the combustion technology of
the average motor vehicle used as transport during the Information Age).

The second variable gets initialized to off, which you represent as False by using the Boolean type. If
warpDrive is set to off, it means the spaceship may be stationary or traveling under "impulse" drive. If the
warpDrive is set to on, it means the spaceship has engaged warp drive by starting up its warp engines.

Do you need to declare instance variables for every class you create? No. You can create a class that does not
require instance variables or fields at all. Or you can create a class that declares variables or constants and
leaves them initialized to their default values.

Place your instance or class fields directly after the declaration of the class. While the scope or visibility of the

 Instance Fields

290

variable is global to the class, the instance variables are declared private, which thus hides them from being
accessed by the outside world. This is the essence of encapsulationthe hiding of information (discussed in
Chapter 1). If you really think about it, nothing else, other than the members of the class, needs access to these
variables, and no matter what or where your code resides in the class, you always have access to the class
variables. The visibility and scope of variables is discussed at length in Chapter 4, and in Chapter 13, which
tackles the subject of encapsulation.

The code in your IDE window should thus now look like the following showing the methods and properties
that are yet to be implemented:

Public Class ShuttleInjector
 Inherits BaseInjector

 Private warpSpeed As Integer
 Private warpDrive As Boolean
 Private injectorStatus As String = "Injector is Offline"
 Const C As Integer = 186355

 Public Overrides ReadOnly Property GetSpeed() As Integer
 Get
 End Get
 End Property

 Public Overrides ReadOnly Property MPS() As Integer
 Get
 End Get
 End Property

 Public Overrides ReadOnly Property DriveState() As Boolean
 Get
 End Get
 End Property

 Public Overrides Property InjectorState() As String
 Get
 End Get
 Set(ByVal Value)
 End Set
 End Property

 'Gentlemen start your warp engines
 Public Overrides Sub StartInjector()
 End Sub

 'Stop the warp engines
 Public Overrides Sub StopInjector()
 End Sub

 'Set warp speed
 Public Overrides Sub SetWarpSpeed(ByVal newWarpSpeed As Integer)
 End Sub
End Class

Visual Studio will stop complaining about implementing the abstract methods as soon as you have overriden
all inherited definitions.

 Instance Fields

291

Instance Constructors

The next member to define and code is the instance constructor, which requires the New keyword. The
Injector class is one that is going to be activated or instantiated as an object, so we need a constructor to
"bootstrap" the object when we send it the message to construct itself as a new object.

The instance constructor is nothing more than a method that can initialize the object's data fields and other
initial tasks in a class, at its creation as an object. Its purpose is to provide control over the state of the object
at its creation. The code in the New method is processed before any other code in the class.

The preceding code includes the call MyBase.New, which is required at the beginning of the instance
constructor. If you omit this line, the CLR makes the call for you, but if you need to either lock the class
(prevent its instantiation) or do more with the New method, you will have to implement it. In the preceding
example, using the base class's constructor will work.

As mentioned earlier, your constructors do not need to initialize the class instance variables. And you can thus
call such constructors no arguments or parameterless constructors. If the class can be created without
constructor code, you can leave the constructor block empty, or you can leave it out altogether because the
CLR invokes the parent's constructor, derived from Object, which you will learn about in a few minutes.

Using the specification notation you learned about in Chapter 7, you can now go ahead and write up the
specification for the injector's instance constructor as follows:

Constructor definition The constructor New creates an instance of injector and initializes the
object's data.

Public Sub New()

•

Preconditions The warpSpeed = 0 and the warpDrive variable is False; that is, warpDrive = off.•
Postconditions After the activation of the object, the warp drive is off and warp has not been
engaged.

•

Parameters None•
Exceptions None•

So, let's code the constructor as follows:

Public Sub New()
 MyBase.New()
 injectorStatus = "Injector is offline"
End Sub

In the case of our ShuttleInjector class, however, we have only one instance variable that needs to be
initialized with a value no matter the default variable assigned by the consumer language of your class. In this
case it's the injector's injectorStatus variable, which needs information pertaining to the state of the injector
when the object is first created.

The warpDrive naturally defaults to False. You want to know that when a ShuttleInjector object is created,
it will be in a useful or "kosher" state to protect the consumer from something unexpected. When you start a
car, it does not suddenly jump into a drive gear; it first idles in neutral. We want the same behavior when
consumers use our injector software.

Here are the CLS rules for instance constructors:

 Instance Constructors

292

The name of the instance constructor must be New, which ensures that the code in this method is the
first processed before any other code in the class.

•

The instance variables are only assigned or initialized after the activation of the base class
constructoreven if you explicitly provided the call to the parent constructor (with MyBase.New),
which must always be the first line of code in the constructor.

•

The constructor looks and behaves like a method; however, it is activated when the object is itself
created using the New keyword. You cannot explicitly or directly call the class constructor after the
object is activated, and the constructor cannot call or invoke itself (the compiler will not let that code
through either).

•

The constructor does not return any values to its activation mechanism; thus, using the keyword
Return in the constructor does nothing but waste white space.

•

You can have more than one constructor in a class along with the instance constructor. Constructor code is
processed when the program is executed or when an object is created, but only one constructor method, New,
is automatically invoked by the CLR. Additional constructors must therefore be called by code provided to
New for them to fire when the object is created. The other custom constructors can also set various instance
variables and perform post−creation checks to ensure algorithm or object integrity.

As mentioned earlier, you do not need to explicitly include MyBase.New at the beginning of your instance's
constructor block, because the default behavior of the CLR is to call the base class constructor regardless (in
the example shown earlier, the New constructor explicitly calls the constructor of the root Object class).

Also, as mentioned earlier, if you declare New as Private, consumers of your class will not be able to derive
from the class or instantiate it. This behavior can be useful and further protects a class that has been explicitly
sealed for inheritance.

Properties

While you might provide a property method to return the warp speed (using the WarpFactorEnum
enumeration constants set up in the last chapter), you might also find it useful to provide a property that can
be used to determine the actual velocity in terms the average human would understand.

Note Properties were introduced in Chapter 7.

Let's write a specification for a simple "get" property to get the actual warp speed settings of the injector (the
property must return a value, so the property behaves like a function and returns a value).

Property signature: GetSpeed. This read−only property is used to access the current warp speed as
the warp factor (0−9). It takes no arguments. The full declaration of the property is as follows:

Public ReadOnly Property GetSpeed() As Integer

•

Return value: This property gets the current warp speed and returns it to the caller as an Integer
value.

•

The code can be written as follows:

Public Overrides ReadOnly Property GetSpeed() As Integer
 Get
 Return warpSpeed
 End Get
End Property

 Properties

293

When the simulator is executed, the default warp speed will be reported as 0. Notice that this accessor does
not have a parameter, and you will not need to test for any precondition. The data required by the accessor
property is provided by the instance variables and is available to the members of the class. The warpSpeed
data is private but not exactly hidden either. Notice that the property is public and thus can be called by any
class (see the section "Class Characteristics" earlier in this chapter). Placing the variable behind another layer
in the class, a property, can further hide the direct access to the already private warpSpeed field.

Remember, warp speed is (in our case) light speed plus a significant percentage of light speed. If warp factor,
represented by the constant value C, is equal to one light year, you can easily calculate the miles per second
(MPS) of, say, warp 5 (WarpFactorEnum .ImpulsePlusFive). So, you could write a property called MPS
that computes and returns the value as MPS. Let's now do the specification and code for the method to convert
the warp speed to MPS:

Property definition: MPS. This read−only property gets the current speed in MPS.

Public Property MPS()

•

Returns: The property gets the current warp speed from the warpSpeed field that is global to the
instance and converts the speed to MPS.

•

The code should be as follows:

'Get the MPS speed of the warp factor
Public Overrides ReadOnly Property MPS() As Integer
 Get
 MPS = warpSpeed * C
 End Get
End Property

Now we need to implement DriveState, which returns a value True or False for the current state of the warp
drive (on or off) as set in the warpDrive field. The specification is as follows:

Property definition: DriveState This property gets the current state of the warp drive. If the drive is
on, then the return value as a Boolean type will be True; if the drive is off, then the return value will
be False.

Public Overrides ReadOnly Property DriveState() As Boolean

•

Returns: The property returns True if the drive is on and False if the drive is off.•

The code should be as follows:

'Check the state of the warp drive
Public Overrides ReadOnly Property DriveState() As Boolean
 Get
 Return warpDrive
 End Get
End Property

The last property to implement is InjectorState, which returns the current String value held by the
injectorStatus field. The property may also be used to supply new data to the injectorStatus field. The
specification is as follows:

Property definition: InjectorState. This property gets the current state of the injector held in the
field's String.

•

 Properties

294

Public Overrides Property InjectorState() As String

Returns: The property returns the String value from the injectorStatus field.•

The code should be as follows:

'Check the state of the warp drive
Public Overrides Property InjectorState() As String
 Get
 Return injectorStatus
 End Get
 Set(ByVal Value As String)
 injectorStatus = Value
 End Set
End Property

Methods

The next members will be implemented as methods. You will need to increase warp speed, so you will need to
pass an argument to a parameter that represents the level of warp speed that you want to set. However, we
may also need to throw exceptions in this method and perform other tests and calculations that could be
complex. This is the point at which I prefer to forgo properties for standard modification methods.

To kick off the simulation of warp speed, we need to implement at least two modification methods for the
ShuttleInjector class. We will need a method to start the injector coils and a method to shut down the injector
coils. We also need a method to set the warp speed, which is more involved. All three methods manipulate
and change the object and can still be implemented as properties, rather than methods. Now, let's look at the
specification for the first method:

Method definition: StartInjector. The method starts the injector and sets the state of the warp drive
to on (no preconditions or parameters are required).

Public Sub StartInjector()

•

Postcondition: The state of the warp drive is set to on.•

The code should be as follows:

'Gentlemen start your warp engines
Public Overrides Sub StartInjector()
 warpDrive = True
 injectorStatus = "Injector is Online"
End Sub

Notice that StartInjector is a simple Sub method, because it does not need to return anything to the caller.
The method also does not take any arguments, because it does little else, in the current version, other than to
change an instance variable. Later, as you get into writing more complex methods, you will probably always
be passing reference or value arguments to parameters.

You also do not need to provide any preconditions at this stage. Later, you can code in certain requirements to
increase the validity of the simulation. For example, you might need to test for injector temperature, subspace
anomalies, and so on. I have also not provided any special exception handlers here. You don't really need
them at this stage. But you would need to add exception handlers if you were testing for temperature and other
preconditions before starting up the injector.

 Methods

295

Note Exception handling is discussed in depth in Chapter 11.

Now, if you are going to start the warp engines, you will need to stop them as well, so write another simple
modification method to do this and call it StopInjector. The code for this method is identical to the code for
the StartInjector method, only it performs the opposite. The specification and code for the StopInjector
method is as follows:

Method definition: StopInjector. The method stops the injector and sets the state of the warp drive
to off (no preconditions or parameters are required).

Public Sub StopInjector()

•

Postcondition: The state of the warp drive is set to off.•

The code should be as follows:

'Stop the warp engines
Public Overrides Sub StopInjector()
 warpDrive = False
 injectorStatus = "Injector is Offline"
 End Sub
Public Sub

Before you execute code that actually increases warp speed, you need to check if the warp drive is set to on.
The following is the specification for the SetWarpSpeed method:

Method definition: SetWarpSpeed (ByVal newWarpSpeed As Integer). The method sets the warp
speed (no preconditions are required).

Public Sub SetWarpSpeed(ByVal newWarpSpeed As Integer)

•

Parameters: The parameter newWarpSpeed is provided in the range of 0 8 (warp 9 has not been
tested yet).

•

Precondition: The method must first test if the warp drive is on (or the warp core could breach,
because there would be no place to transfer the energy). It must then test if the newWarpSpeed
parameter is legal (less than warp 9).

•

Postcondition: The state of the warp drive is set to on.•
Exceptions: This method throws exceptions.•

By throwing exceptions, you will test the precondition (instead of using flow control statements).
DriveNotOnException is thrown if the warp drive is not set to on (warpDrive = True) and
IllegalWarpParamException is thrown if the engineer (or any accidental activation of the method, for that
matter) tries to set the warp speed above 8 with the WarpFactorEnum.ImpulsePlusInfinity value (lest you'll
take the ship to infinityne'er to be heard from again).

When working with exception handlers, code is placed between Try . . . Catch blocks. This was introduced in
Chapter 7 and is fully discussed in Chapter 11. While Visual Basic still supports the classic On Error
mechanisms of the past (mainly to help porting), you will not find many examples of it in this book.

The following code represents the first version of the SetWarpSpeed method:

 'Set warp speed
Public Overrides Sub SetWarpSpeed(ByVal newWarpSpeed As Integer)
 Try
 If Not warpDrive Then

 Methods

296

 Throw New DriveNotOnException()
 End If
 Try
 If newWarpSpeed > warpSettings.ImpulsePlusEight Or
 newWarpSpeed < warpSettings.Impulse Then
 Throw New IllegalWarpParamException()
 End If
 warpSpeed = newWarpSpeed
 Catch F As IllegalWarpParamException
 'shut down warp drive to prevent warp core breach
 warpSpeed = warpSettings.Impulse
 StopInjector()
 injectorStatus = "Stopping on invalid warp setting. "
 End Try
 Catch E As DriveNotOnException
 'update object status field
 injectorStatus = "warp drive was not started"
 Return
 End Try
End Sub

That's the entire implementation of the ShuttleInjector class (verion 1.0). You can access in the Vb7cr
solution, in the Shuttles project. The BaseInjector assembly also includes the enumeration for warp factor
constants and the two exception classes you see in the SetWarpSpeed method. I know you are anxious to test
this code, so let's dive into publishing and using the ShuttleInjector class.

Publishing the ShuttleInjector Class

Publishing your class, or making it available to consumers of your application, is very simple on the .NET
platform. There are two ways to use the ShuttleInjector class. You can directly import the source class file
into your application, or you can compile the class and lock it up in an assembly. If you have no issue
distributing the source, or your user has permission to use the source, then compiling it is the extra step you
might not need.

To simply compile your class and place it into an assembly and use it in your application, go to the Build
menu in Visual Studio and choose Build (the shortcut is CTRL−SHIFT−B). To use the class directly or
reference the assembly, follow the steps described in the next section. If you are not yet familiar with the
Visual Studio compiler, I suggest you read Chapter 7 and Chapter 17.

Typically, you would want to build the class and make it an assembly, or include it with other files in your
collection. The main reasons you do that are to prevent consumers from changing the class and for version
control. If you publish a class and secure it to a central location on your developer network, then the
consumers of the class can all use the class, and will be able to trust that no other consumer has altered it, or
changed its original specification.

The ingeniousness of a class is that it can be used in many different ways. In the following example you will
see how you can use the object behind a simple user interface, an interactive testing form, to test each
property and method. (Console−based applications are useful for testing classes and observing how your
methods will be used in other applications, because you do not have to waste a lot of time inheriting forms
and coding events under button clicks, and so on. However, as soon you need a little interaction from a user,
console−based applications are no longer useful. As a rule, consoles should be used as a simple facility for
displaying information and taking simple command−line arguments.)

 Publishing the ShuttleInjector Class

297

Activating the ShuttleInjector Class

To use the ShuttleInjector source code in your new project, follow these steps:

Go to the Project menu in Visual Studio .NET and choose Add Existing Items. You can also do this
on the Project menu in Solution Explorer.

1.

Locate the file and click OK. (You can also right−click the Project node in Solution Explorer and
choose Add, then choose Add Existing Items.) The source file now appears in Solution Explorer,
under your project node.

2.

Before you can use the class to instantiate ShuttleInjector objects, you must include the Imports
statement immediately after the options directives (which always come first), as follows:

Imports VB7cr.Shuttles
Public Class YourClass
...

3.

If you want to use the assembly containing the ShuttleInjector class, then follow these steps:

Go to the Project menu in Visual Studio .NET and choose Add Reference.1.
Locate the assembly and add it as a reference, and then click OK. The source assembly now appears
in Solution Explorer, under your project's References node. (You can also expand the Project node in
Solution Explorer, right−click the References node, and choose Add Reference.)

2.

Before you can use the assembly to instantiate ShuttleInjector objects include the Imports statement
immediately after the options directives, as shown in the earlier code.

3.

Now we are ready to start using the referenced classes in our application.

To test the ShuttleInjector class, we need to activate a single ShuttleInjector object and let it send status
information to a simple user interface. We can also use the user interface to get input from the engineer, such
as starting and stopping the injector, setting the warp speed, and so on. To reference an object of type
ShuttleInjector from the user interface we need to provide the necessary code to instantiate it. This is
achieved as follows (after first importing the assembly that contains the ShuttleInjector class):

Dim shuttleInj As New ShuttleInjector()

We do not need many components on the initial form to begin interacting with and testing the shuttleInj
object. Starting and stopping the injector requires user input so we'll need a start and a stop button to let the
user start and stop the injector. We can wire up the properties and methods to the button, as demonstrated in
the following code:

'start button
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 shuttleInj.StartInjector()
End Sub

'stop button
Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 shuttleInj.StopInjector()
End Sub

 Activating the ShuttleInjector Class

298

We also need the user to select the warp factor. This can be best provided using a ComboBox control, and the
standard one that ships in the Visual Studio toolbox is sufficient. The following line of code submits the warp
factor value to the SetWarpSpeed method in the shuttleInj object.

'choose the warp speed
Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ComboBox1.SelectedIndexChanged
 If shuttleInj.DriveState Then
 shuttleInj.SetWarpSpeed(ComboBox1.SelectedIndex)
 End If
End Sub

Notice in the above code that we first test the DriveState value so that we don't cause the injector to blow a
fuse. Lastly, a timer component would be useful to update the information being displayed on the form. This
is achieved easily in a timer's Tick event handler:

Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ListBox1.Items.Clear()
 ListBox1.Items.Insert(0, "Drive State: " & shuttleInj.DriveState)
 ListBox1.Items.Insert(1, "Injector State: " & shuttleInj.InjectorState)
 ListBox1.Items.Insert(2, "MPS: " & shuttleInj.MPS)
 ListBox1.Items.Insert(3, "Current Warp: " & shuttleInj.GetSpeed)
End Sub

Firing up the injector is simply a matter of executing the form and clicking the start button (of course, the
ShuttleInjector is just a simulator that still needs to be wired to I/O ports and interfaced to a warp coil
injector before it can be any more useful than it currently is).

The running application is shown here.

You can test its tolerance for exceptions by selecting an invalid warp value in the ComboBox control. The
object simply "absorbs" the exception behind the scenes as it tests the incoming values in the SetWarpSpeed
method and sends a message to the user interface, as shown.

 Activating the ShuttleInjector Class

299

For more information on event−driven programming and forms, see Chapters 14 and 16, respectively.

The Inherited Members of Object

As mentioned earlier in this chapter, there is more to the class you created than meets the eye. This is true
because the root object of all types in the .NET Framework is Object. No matter what class you create, it will
inherit the members of Object the framework requires to be inherited. The Object hierarchy is introduced in
Chapter 2. Chapter 3 demonstrates using Visual Studio .NET's Object Browser.

Note While modules are attached to the Object hierarchy, they do not inherit, nor can they be part of any
inheritance hierarchy.

If you inspect the ShuttleInjector object in the Object Browser, you will notice the members it inherited from
Object. Another place to observe the inherited elements is with the WinCV application. Chances are you
already observed this when writing the class, as demonstrated earlier. These methods are exposed to you for a
good reason. For example, the New and Finalize methods are the constructor and destructor definitions,
respectivelyand you cannot create objects without them, even though they often do nothing until
implementation is called for. So, let's look at these inherited methods and what they give you.

Testing for Reference Equality with Equals

In the last chapter, we talked about the difference between comparing objects and comparing the reference
variables to them (what they refer to). Now, let's look at how you can use the Equals method on objects.

The Equals method is a function that has only one argument, an object Obj (or Object). When you execute
the following code,

If Sim1.Equals(Sim2) Then
' . . .
End If

would you expect the method call to return True and cause the code to step into the IfThen structure? If you
said yes, you are wrong, because the default behavior of the Equals method as prescribed by the framework is
to compare the variable references and not the value of the objects. In other words, the preceding code is no
different than the following:

If (Sim1 Is Sim2) Then
' . . .
End If

 The Inherited Members of Object

300

But, if you wish to compare the objects (that is, check whether the values of the two objects are value for
value, bit for bit, the same), you need to both overload the method (replace its parameters) and reimplement
(override) it in the derived class. (Overloading and overriding are similar concepts and are discussed in
Chapter 7.)

This reimplementation of the Equals method is a powerful feature because you, the class implementor, get to
decide what constitutes equality of the values of objects derived from the same type. Have a look at the
following method you enhance in the injector class:

Public Overloads Overrides Function Equals(ByVal Obj As Object)_
 As Boolean
If (Obj.GetType() Is Me.GetType()) Then
 Return True
End If

Has it sunk in yet? Here's what's going on: The method in the base class Object only compares the references,
and we learned earlier that if the references reference the same object, the return value will be True. So, by
reimplementing the method in ShuttleInjector, you can customize what gets evaluated, how it gets evaluated,
and what gets returned. The specification and implementation of your Equals method is left entirely up to
you.

In the preceding example, we have decided to compare the objects by simply calling the inherited GetType
method (discussed shortly), and if the GetType methods of both objects return the same values, the
comparison will be True.

Now, check out the code used by the consumer of the Injector class:

If Sim1.Equals(Sim2)Then
. . .
End If

Gee. It's the same code used earlier, only this time it returns True, because we are no longer comparing
references; we are comparing payload. Reason: We are calling the new Equals method and not the version in
the base class. The only problem with the implementation shown here is that GetType is not appropriate for
comparing objects value for value. GetType only returns the exact run−time type of the instance. You need to
compare the members and the data of each object as well.

Yet the flexibility you have can also be a loaded shotgun. The consumer of your classes might make decisions
on a return value of True while some critical values remain different. So, you obviously need to document the
API and the method calls very carefully and be sure of your design. You can also implement the Equals
method in such a way as to be sure that each object being compared actually compares, from one end of the
object to the other. A few tricks are available to help, discussed later in this chapter and in the forthcoming
chapters.

ToString

What the heck is ToString? This is a question I hear from many new programmers, in the Java world as well.
This is another overridable method that, in many implementations, simply returns a string representing the
fully qualified object name (FQON). But it is most often used to provide the String representation of a type's
value. So, the following code,

If Sim1.Equals(Sim2) Then

 ToString

301

 Console.WriteLine(Sim1.ToString())
 Console.WriteLine(Sim2.ToString())
End If

will output to the console as follows:

ConsoleApplication.Injector
ConsoleApplication.Injector

Notice that it returns the name of the instance, not the name given the reference variable.

However, overridable is the key here and, thus, like Equals, you can implement the derived method to suit
your application. For example, take a peek at the following code:

Dim Str As String = "Foo Bar"
Console.WriteLine(Str.ToString())

This ToString call does not return the FQON. Instead, it returns the actual string assigned the object. So the
console output is Foo Bar.

You can have a lot of fun with this method, and it can be very handy with other stuff you will learn in later
chapters (and you also saw it in action with the Structure and Enum classes in the last chapter). For now,
let's override the method because the default return value not only is boring, it also is not very useful to
consumers of the class. Here's a new version of the ToString method you can add to your injector class:

Public Overrides Function ToString() As String
 Return "Injector Class, Version 2.0. June 2001."
End Function

Cloning

You will find a number of frequently used patterns in OO software development where it is convenient for
you to make additional, identical instances of an object. This is known as cloning. A clone is an identical copy
of an object, but it remains a completely separate entity from the master copyjust like Dolly the sheep. When
you clone an object, you end up with a new object and a new reference variable to that object.

The CLS supports two types of clone procedures: shallow clones and deep clones. A shallow clone lets you
make an identical copy of an object, as illustrated in the next chapter. A deep clone lets you make a copy of
the object and any references to other objects being maintained by the object.

To make a simple shallow clone, the root Object gives you a method called MemberWiseClone. This is
illustrated in the following example:

Public Sub Carbonize()
 Dim Sim1 = New Injector()
 Dim Sim2 = New Injector()
 Sim1.SetWarpSpeed(4)
 Sim2 = Sim1.MemberwiseClone();
End Sub

The MemberWiseClone method is protected, which means you cannot override its functionality and
reimplement it (that, of course, does not stop you from creating a custom Clone method that clones an object
according to a new pattern you wish to implement). But to use the base method, it will only be available to

 Cloning

302

derived classes or Me, the current instant of the class. You will deal with cloning, deep cloning, and the
ICloneable interface in Chapter 10. (By the way, the Java architects also spelled their Cloneable interface
with an e in the middlewhich is not exactly correct. Interesting coincidence, or is it that all software architects
can't spell?)

GetHashCode

A discussion of genetic cloning will almost certainly lead to discussions about DNA. When talking about the
cloning of objects, the discussion will usually include the hash code subject. A simple definition of a hash
code is that it is an integer key, created on the contents of an object, which can be used as a means of
searching and sorting objects.

The GetHashCode method is used to implement hash tables, which are used for doing fast lookups by key. A
hash table makes use of the key to increase the efficiency of searching and sorting objects, and there are
various tried patterns for its use.

Every object in .NET produces a hash code, and the GetHashCode method implements a very simple hashing
function that produces a simple key. In fact, everything you do generates hash codes, because everything in
.NET is an object. The elements in a list of URLs in a browser have associated hash codes, a collection of IP
addresses have associated hash codes, and the elements in an array have associated hash codes. Every .NET
programmer should have an unshakeable understanding of hash codes and hash tables.

In Chapter 12, you will look into what's involved in using hash tables, but for now, check out what the
GetHashCode method retrieves. Adding the following line to your code,

Console.WriteLine(Sim2.GetHashCode())

writes integer "3" to the console (your compiler will probably return some similar number). How amazingly
scientific is that result for one of the cornerstones of computer science?

You are probably thinking, "That doesn't look very unique either." It isn't. GetHashCode is another important
method that is left up to the class implementors to override. The base class version simply returns an index
value representing the class instance (the CLR chooses it, and not long after I tested it, it returned 3 for an
Object that had already been disposed of), so it is very possible that it will not be unique. In fact, only the
strongest hashing functions will produce a (relatively) unique hash code for you.

Making GetHashCode overridable is correct behavior, similar to the reason Equals is overridable. This
mandates that you reimplement it using the hashing algorithm of your choice. This is the case with all OO
languages. Stay tuned for more on this subject in Chapter 12.

GetType

You had a look at the GetType method earlier, in the discussion of the Equals method, so you know that it
returns the exact run−time type of the argument. So, the statement

Console.WriteLine(Sim2.GetType)

just returns the FQON.

 GetHashCode

303

ReferenceEquals

The ReferenceEquals method lets you compare the variable references of two objects, to determine if they
refer to the same object. It works like the default implementation of the Equals method, but you do not have
to override the implementation (the method is not overridable).

You might be tempted to ask why the architects provided this method, if it has the esteemed Equals to do that
work? If you do decide to reimplement the Equals method as shown earlier, then when you need a simple
conditional element to check if two variables reference the same object, ReferenceEquals comes to the
rescue. Here's an example:

Sim1 = Sim2
If Object.ReferenceEquals(Sim2, Sim1) Then
 Debug.WriteLine(Sim1.GetHashCode())
 Debug.WriteLine(Sim2.GetHashCode())
End If

In this piece of brilliant code, Object.ReferenceEquals returns True because the variable references were
assigned one to the other (Sim1 = Sim2). And as an added bonus, the GetHashCode statements display "3" to
the console on both linesbecause both variables refer to the same object.

Finalize

The architects of CLS decided to give us a Finalize method. What is it good for? In its original stateabsolutely
nothing. And that's because a garbage collector (or GC, as discussed in Chapter 2) does the housekeeping for
you, making sure that discarded objects are purged from the CLR, an so on.

When an object is discarded, or when an application or process terminates, the GC automatically cleans up for
you. But there might be a specific pattern or algorithm that requires you to override this "placeholder"
method. Just making it a habit of good design is reason enough to call Finalize in its simplest form: a method
that overrides Finalize to provide a mechanism to call the base Finalize method to do some customer
housekeeping and "mark" the current object for collection by the GC. The following code is one example:

Protected Overrides Sub Finalize()
 MyBase.Finalize()
End Sub

Class implementers and component writers might require such control, and interoperability with legacy
objects. In the COM world for example, objects will require explicit finalization. For the most part, you can
work without worrying about this method.

Aggregation and Composition: Reuse by Containment

As you work with classes, you'll begin to discover certain repetitive patterns emerging that dictate how classes
relate to each other. You'll find that the initial design of the framework and implementation of the class
diagrams are effectively achieved with inheritance, but as you get into the details of how that application
actually works, continuous extension of classes neither applies nor works.

As stated earlier, inheritance has its place in the foundations of your class hierarchies, but implementation
(putting it together) requires alternative thought and design. Think like a farmer: First you till the soil, then
you sow the seeds, then you harvest. You can't sow the seeds or harvest until you have tilled the land, but all

 ReferenceEquals

304

the steps are required before you can start thinking about going to market.

We have sown the seeds with inheritance and implementing base classes, but now we need alternative
techniques to reap what we have sown. Aggregation and composition are two techniques in OOP that allow us
to reuse existing code and collaborate with other implementations.

Some OOP experts make a distinction between composition and aggregation; others will tell you they both
mean the same thing. At the conceptual level, expressing an alternative to the is−a relationship, that may be
true. But at the implementation level there are important differences, as you will shortly see.

While inheritance represents the is−a relationship between classes, aggregation and composition represent the
has−a relationship between classes. A bus, for example, has seats for its passengers, but a bus is not a seat.
The seats are embedded in the bus as member objects. Seats have their own class hierarchy, as do busses. The
hierarchies of both classes remain separate and distinct because a bus cannot be a seat and visa versa. This is
shown in Figure 9−11.

Figure 9−11: The difference between inheritance and aggregation/composition
Aggregation is exactly how your form classes come to life with all manner of functionality. You embed
components and controls onto the form, like buttons and text boxes. Forms, buttons, and text boxes, however,
are distinctly separate objects. A form is not a text box and a text box is not a button (although there may be
traces of a common ancestor far back up the chain in the base classes for components and controls).

Note The aggregation rule states that aggregation is represented by has−a relationships between classes. If
ClassA has−a ClassB, then ClassB should be aggregated or composed in ClassA.

Where aggregation differs from composition is that aggregate objects or aggregates are sub−types that are
embedded in the container class and composite classes or composites are classes that are composed in the
container class. Aggregates are not exclusive to their container and may be embedded in other containers.
Aggregates can be any exposed types in any assembly that can be declared and instantiated in the container
class. Composites on the other hand are exclusive to their container. They are formally declared and
implemented in a container class as a composite or nested class.

Additionally you always have direct access to the implementation, or source code, in a composite class.
Aggregate objects are not exposed in this manner; you have no access to their implementation and source
(their non−exclusivity is represented in UML by the open diamond shape shown in Figure 9−6). The
remainder of this section explores aggregation in more detail while composition is pervasive in the patterns
described in Chapters 12 through 14.

To understand when we need to aggregate let's tackle another space−age project. Imagine that on our
spacecraft, the captain decides that the food replicator should be extended to cater to fast food. One of the first
recipes she or he wants coded into the system is a good old−fashioned burger from the 20th century and you
have the job of upgrading the replicator software. So, you set out to first design a class for your burger patty.
Burger patties are usually round, and we'll want to specify certain sizes for our patty, including the
circumference, area, and so on. Thus, initially, it makes sense to extend the class Circle as the base for the
Patty class.

But the Circle class is missing a method to specify the height of the patty. So, do we now add a height method

 ReferenceEquals

305

and field to our Circle class, or do we look for a class that already implements a height method? Turns out the
more−specialized class Cylinder is available with the exact functionality we need. So, our Patty class can
safely extend Cylinder, which extends Circle.

As Figure 9−12 illustrates, we now have a class hierarchy as the basis for generating patties out of thin air.

Figure 9−12: The burger patty factory
When we are ready to broil our burger patties, we will need to construct a method that creates the patty. We
will thus be able to send a message to the inherited methods that set the size of the patty, a method for patty
diameter, and a method for patty height (and other ingredients, the discussion of which is beyond the scope of
this book). This inheritance chain is demonstrated in the following code:

Public Class Circle
 Function CreateCircle(ByVal diameter As Integer) As Circle
 'to be implemented
 End Function
End Class

Public Class Cylinder : Inherits Circle
 Function CreateCylinder(ByVal height As Integer) As Cylinder
 'To be implemented
 End Function
End Class

Public Class Patty : Inherits Cylinder
 'declare patty ingredients here
 Sub Createpatty(ByVal height As Double, ByVal diameter As Double)
 'To be implemented in the year 2345
 End Sub
End Class

At this particular point, you can see that Patty qualifies to inherit from the aforementioned class hierarchy,
because a patty is−a Circle and (also) is−a Cylinder. But is this where the inheritance line ends?

As you can see, we can create the dimensions for a patty by using the functions inherited from Circle and
Cylinder. But now we need to add more ingredients to our burger. Tomatoes are a requirement of burgers,
and we can easily add a CreateTomato method to the Patty class. This would really be a silly idea, though,
because surely a method for replicating tomatoes exists in the replicator software already. Guess what? It
does. A stand−alone Tomato class that also ultimately inherits Circle and Cylinder exists.

How do we reuse the methods in Tomato? For starters, we could simply make it that Patty extends Tomato.
Okay, hold it, time out; we have just made the classic inheritance mistake. (The skeptics are now saying "See,
told you so!") How can Patty extend Tomato? We have just insulted every vegetarian in the universe.
Besides, while there is nothing stopping us from doing this, we will really muck up our clean code, good and
proper. What happens when we just want to replicate a burger patty and not add tomatoes? Tomato has a right

 ReferenceEquals

306

to exist as a separate class because tomatoes are used in many recipes.

The multiple inheritance (MI) would also muck up our code, even if it were possible in .NET. The first
problem would be the clash of method signatures, because we would have two hierarchies deriving from
Circle and Cylinder. So, think about the burger for a moment and not the code or the class. Tomatoes are
placed inside burgers, between the patty and the bun. Why not just add the Tomato and the Patty class to a
Burger class, just as you would in the kitchen?

This pattern (which is a technique) is called aggregation. As mentioned earlier, the application of the rule to
determine when composition is valid is similar to the application of the inheritance rule. Instead of asking if a
thing is−a thing, you ask if the thing has−a thing. In our case, the rule fits. A burger has a tomato or more,
and has a patty or two; tomatoes do not have burgers, nor patties. And for that matter, our inheritance
architecture is also sound because we know that a circle is−not−a burger. Remember, the rule states that
aggregation (and composition) is represented by has−a relationships between classes. If ClassX has−a
ClassR, then ClassR should be contained in ClassX.

You'll probably be surprised to learn that we have been using aggregation from the very beginning, even
before we inherited one line of code. As discussed in the previous chapter and in Chapter 4, the fundamental
types are also objects. So, we are really using the technique when we declare an Integer or a String object to
reference the variable or constant data in our class. We are simply embedding these objects in our new class.
Back to patty making.

We can now begin constructing our patty by referencing both Patty and Tomato classes in the Burger class.
Once we have done this, adding the other classes, like Pickle, Ketchup, and Onion, should be a no−brainer.
Adding methods for controlling calories and fat is a different matter, however.

The code for our Burger class can now be basically implemented as follows:

Public Class Burger
 Friend Patty1 As Patty()
 Friend Tomato1 As Tomato

 Private Sub GoBurger()
 Me.Patty1.Createpatty(2, 10)
 Me.Patty1.Location = New BunPosition(60, 140)
 Me.Tomato1.CreateTomato(1, 8)
 Me.Tomato1.Location = New BunPosition(60, 140)
 End Sub

End Class

If you now look at the code, you'll notice something truly incredible with OOP. Through both inheritance and
aggregation, we are able to reuse all the previously implemented code for the benefit of the Burger
implementation. We are reusing not only the code previously written only for the independent Tomato class,
but also the code for any other "ingredients" of Burger. We will not implement the Burger class further
because I am sure you now have the idea, and besides, replicator technology has not yet been invented (and
when that day comes we will be ready).

It is also important to mention that classes that make wise use of composition patternsusing sealed classes as
often as possiblewill provide much potential for the improvement in performance of your applications. See the
section "Ending Inheritance with Sealed Classes," later in this chapter.

 ReferenceEquals

307

More Aggregation at Work: A Form for Testing

Another good example of how inheritance and aggregation come together to create extensible composite
objects is the Form class. As mentioned earlier in this chapter, forms derive from a long line of ancestors. If
you examine the Form hierarchy in the .NET Framework documentation, you see a line of "in−laws" long
enough to make your hair stand up. Imagine, without inheritance, we would have to re−create all of that each
time we needed a form, or at least make an untold number of copies of it. It was once like that, mind you,
when it would take a week just to draw a dialog box.

If you have created a Windows application project and looked at the code behind the main form, the first thing
you probably noticed is that it inherits from System .Windows.Forms.Form. But there is not much else for
something as complex as a form; there must be more to it than what meets the eye. There is; just examine the
Form class in WinCV and you'll quiver at the long list of members hiding in the hierarchy. This is very
different from how forms were given to us in VB 6 and earlier, in which the forms just seemed to come from
nowhere.

Creating a Windows application is easy. You just go to the New Project dialog box in Visual Studio, as
described in Chapter 3, and select the Windows Application icon. Visual Studio automatically generates a
single form and provides all the necessary innards to render the form in the designer. The Toolbox, which is
chock−full of visual controls, is also activated when you are in Design modethat is, when you are looking at
the form and not the code behind it.

So, let's create a Windows application. But instead of taking the shortcut and having Visual Studio set up the
whole project, let's do the job of creating the form manually. By the end of the exercise, it will be clear to you
how we create a composite object, such as a form for interaction, from inheritance and containment.

Instead of creating a Windows application, just create a project and add it to a single class. Name this class
Formlet and then take the following steps:

Add a reference to the assemblies System.Drawing and System.Windows .Forms. These assemblies
contain the classes that you'll need for drawing the forms and the components, like buttons.

1.

Add an Imports statement to the class and reference the class System.Windows .Forms.Form. You
can also reference the namespace in the Imports list in your project's Property Pages dialog box (this
is described in Chapter 3). As soon as you reference the Form class, Visual Studio picks this up and
shows the default form to you in the designer.

2.

Go back to the Property Pages dialog box. Under the Common Properties folder, select General and
then choose Windows Application for the Output Type. This will allow the compiler to run the
Formlet application for you as a stand−alone application for testing purposes. (You can also invoke
the form from any other class, as we intend to do in a bit.)

3.

Provide a New constructor as follows. You now have the makings of a form. The code for the
Formlet class should now look like the following:

Imports System.Windows.Forms
Public Class Formlet
 Inherits System.Windows.Forms.Form
 Public Sub New()
 MyBase.New()
 InitializeComponent()
 End Sub

 Protected Overloads Overrides Sub Dispose(ByVal disposing_

4.

 More Aggregation at Work: A Form for Testing

308

 As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

End Class

This code now activates the functionality in the hierarchy to produce a blank form. You can view the
form in all its glory by selecting the little form icon in Solution Explorer under the project you
created. Right−click the form and select View Designer.
The next option is to add some useful controls to the form. Again, you can drag and drop the controls
you need from the Toolbox's Windows Forms tab to the form. But by doing it the easy way, you miss
observing composition and containment in action. Rather, change the code view by right−clicking the
form again under your project in Solution Explorer and selecting View Code. You will now be back at
the code behind the form. Now, we need to add a textbox to the form for output, a couple of edit fields
for input, and a button to make something happen. Do we do this by inheriting from the classes of
these components? Not on your life (remember the burger example; a button is not a form and a form
is not a textbox). The way we add components is by nesting each class in the form class. The form
class thus becomes the container, the outer class, for the inner component classes. In fact, the form
class can now become the container for a lot of inner classes that would be awkward to reference by
association, as you will soon see. We can embed the components as demonstrated in the following
code:

Private components As System.ComponentModel.IContainer
Friend WithEvents Button1 As System.Windows.Forms.Button
Friend WithEvents Button2 As System.Windows.Forms.Button
Friend WithEvents ListBox1 As System.Windows.Forms.ListBox
Friend WithEvents ComboBox1 As System.Windows.Forms.ComboBox
Friend WithEvents Label1 As System.Windows.Forms.Label
Friend WithEvents Timer1 As System.Windows.Forms.Timer

This code simply declares reference variables that will instantiate the contained visual components
aggregated to the Formlet class. The aggregate objects can thus directly collaborate with the
container form class. (Refer to Chapter 4's section for information about the visibility provided by the
Friend modifier. The modifier WithEvents is discussed in Chapter 14 and Chapter 16.)

5.

The following code now sets up and positions the visual components on the form:

Private Sub InitializeComponent()
 Me.components = New System.ComponentModel.Container()
 Me.Button1 = New System.Windows.Forms.Button()
 Me.Button2 = New System.Windows.Forms.Button()
 Me.ListBox1 = New System.Windows.Forms.ListBox()
 Me.ComboBox1 = New System.Windows.Forms.ComboBox()
 Me.Label1 = New System.Windows.Forms.Label()
 Me.Timer1 = New System.Windows.Forms.Timer(Me.components)
 Me.SuspendLayout()

 Me.Button1.Location = New System.Drawing.Point(60, 140)
 Me.Button1.Name = "Button1"
 Me.Button1.TabIndex = 0
 Me.Button1.Text = "Start"

6.

 More Aggregation at Work: A Form for Testing

309

 Me.Button2.Location = New System.Drawing.Point(140, 140)
 Me.Button2.Name = "Button2"
 Me.Button2.TabIndex = 1
 Me.Button2.Text = "Stop"

 Me.ListBox1.Location = New System.Drawing.Point(13, 44)
 Me.ListBox1.Name = "ListBox1"
 Me.ListBox1.Size = New System.Drawing.Size(260, 82)
 Me.ListBox1.TabIndex = 2

 Me.ComboBox1.Items.AddRange(New Object() {"0", "1", "2", "3"})
 Me.ComboBox1.Location = New System.Drawing.Point(120, 16)
 Me.ComboBox1.Name = "ComboBox1"
 Me.ComboBox1.Size = New System.Drawing.Size(56, 21)
 Me.ComboBox1.TabIndex = 3
 Me.ComboBox1.Text = "0"

 Me.Label1.Location = New System.Drawing.Point(16, 20)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(96, 16)
 Me.Label1.TabIndex = 4
 Me.Label1.Text = "Set Warp Factor:"

 Me.Timer1.Enabled = True
 Me.Timer1.Interval = 10
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(288, 177)
 Me.Controls.AddRange(New System.Windows.Forms.Control() _
 {Me.Label1, Me.ComboBox1, Me.ListBox1, Me.Button2, Me.Button1})
 Me.Name = "Form1"
 Me.Text = "Formlet"
 Me.ResumeLayout(False)
End Sub

That's all there is to creating a form we can now use instead of a console application to interact with the user.
While there is no small amount of code on this form and "above" it in the framework, using it for some of the
more complex things we want to do in later chapters will be much easier than using the Console class, as you
saw with our little Shuttle Injector application shown earlier.

With that ultimate and highly elegant demonstration of combining inheritance and aggregation or
composition, we move on to two important options for classes where inheritance and aggregation do not play
a partsealed classes and shared classes.

Ending Inheritance with Sealed Classes

Sealed classes are also known as final classes in object−oriented parlance. In other words, a sealed class
cannot be derived from and thus cannot beget child classes or become a superclass or a base class. This
sealing off of the class applies to its members as well. The methods of a sealed class can be called, but they
too are finallocked down in a sealed object. An attempt to derive from a sealed class will not go down well
with the compiler.

The following code creates a sealed class:

NotInheritable Class FinalInjector
 Inherits RocketInjector
End Class

 Ending Inheritance with Sealed Classes

310

Why would you seal a class? Two reasons: First, you may not feel it appropriate to allow other classes to
derive from this class (at least not until you are ready to release it). Second, a sealed class can increase
run−time performance because the compiler can inline any implied virtual (inheritable) function member
invocations into nonvirtual function member invocations. In other words, the compiler does not need to
provide for an alternate implementation at a later time, and thus the memory addresses of the members and the
method implementation are set at compile time.

Unless you intend a class to be extended, you should seal it. Whenever the compiler encounters inheritance
potential, it has to provide for this potential with various binding and referencing techniques, all of which
cater to polymorphism, binding, and so on. This is not the case with sealed classes that can be used in
composition design, which thus would improve performance.

Improved Performance with Shared Classes and Modules

Shared classes are classes that are explicitly declared not inheritable (so they are final) and can be made so
they cannot be instantiated, which means there will always be only one copy of the class and its members.
Shared classes (also known as static classes) are useful for collections of like utility methods that do not need
the overhead of instantiation into objects.

A good example of such a utility method is a method that opens a file. There is no need to have more than one
copy of this method in your application, because once the method has serviced a thread, it is ready to service
another thread. The data passed to the method's parameters is discarded and a new argument arrives to provide
new data (a new file and path name) of a file to be opened. The File class is a good example of a .NET
Framework shared or final class. The following code is an example of a sealed class that is also shared and
thus cannot be instantiated:

NotInheritable Class TheEnd

 Shared ata As Integer
 Shared ing As String
 Shared ouble As Double
 Shared cimal As Decimal

 Private Sub New()
 'this sub aint going anywhere
 End Sub

 Shared Sub StaticSub()
 End Sub

End Class

How do you make a class static? Simply declare it NotInheritable, as demonstrated in the preceding code.
This is, however, not enough to prevent instantiation, so you need to provide a New constructor and lock it
down with the Private modifier. This will prevent a consumer or user of the method from attempting to
invoke New. They will just get a compiler error.

Declaring a class as NotInheritable does not implicitly make all the class members static or shared. To make
each class member (including fields and properties) static, modify them to static with the Shared keyword.

Visual Basic, however, provides an additional shared class over the other .NET languages: the module (the
equivalent of the C# sealed class). Modules do not have any instantiation potential whatsoever, and using
them is akin to creating modules in structure−oriented languages. All the members in a class are implicitly

 Improved Performance with Shared Classes and Modules

311

shared, which is very convenient. When you automatically create a console application, for example, via the
New Project dialog box, Visual Studio automatically puts all the contents of the console application in a
single module.

Refer to the chapter on methods, Chapter 7, for more information on shared methods. Also check out the
.NET implementation of the famous Singleton pattern in Chapter 13.

Observations

There were many things to learn in this chapter, but the most important concepts we studied were inheritance
and composition with .NET classes and the major differences between them. As you have seen, inheritance
provides an elegant facility for code reuse and maintenance. It also supports what is fundamental to all
software development, iterative and incremental development.

Inheritance provides a facility for isolating bugs in new code because the new bugs will mostly manifest in the
classes that derive from the tested and debugged base classes. You can be sure that when a bug arrives in your
class, the problem is in the extended class. Of course, this means too that we are putting a lot of faith in the
base class library. It seems highly unlikely that in a collection of several thousand classes, there are no bugs in
.NET.

We also looked at composition and containment as a means of reusing implementation and associating objects
one with the other. It is thus important to point out inheritance is not a facility to get hooked on and start using
everywhere and anywhere. Most of the time, your application's classes will come to life by interacting with
each other through association, aggregation, composition, delegation, substitution, and various other roles and
responsibilities.

A final word before we embark on a lot more code in the coming chapters. While applications need to move
bits around the computer, you don't get very far in OOP by constantly dwelling in the basement where the
functionality is. Instead, you should be thinking in terms of classes and objects and learn how to transform the
logical and dynamic view of your models into meaningful technology that caters to the problem domain
expressed by your client.

 Observations

312

Chapter 10: Interfaces

Overview

In software development, the interface is the faculty of abstraction, coupling (loose or tight), and
polymorphism. It's easy to see how interfaces facilitate polymorphism because only one version of an
interface exists in a system or a framework, yet many people can implement it or program against it in many
forms and in many places. The emphasis is on many forms, which is what polymorphism is.

Interfaces are deemed so important for software construction that they are one of the key Fundamental Design
Patterns published in the groundbreaking work Design Patterns (Gamma et al.). The formal interface design
pattern referred to by the object− oriented community is the Abstract Factory pattern. Its intent is to create
families of related or dependent objects by specifying interfaces without having to specify or provide concrete
classes (refer to Chapter 9).

Note See Design Patterns: Elements of Reusable Object−Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides. (Addison−Wesley, 1995.)

But patterns are also found in many other formal patterns, such as the key Structural Iterator pattern
(described in Chapter 13). In this chapter, we examine the forces behind the emergence of interface patterns
and investigate the various ways in which interfaces play a role in software development. The chapters that
follow will take interfaces to more advanced levels.

First we will look into abstraction: how it facilitates developing software by abstracting and hiding the
complexity of the implementation behind the interface. We will also explore the implicit interfaces that exist
in all .NET classes and objects, and the explicit interface you can create by using the special interface class.

We will also examine how interfaces are declared and referenced, and the various styles used to bridge
interfaces to implementation classes in order to collaborate with the data and functionality behind the
interface. Finally, we will examine both how to define an explicit interface and how to implement custom
interfaces and the .NET interfaces that ship with the framework. In particular, we will look at the
implementation of the IClonable, IComparable, and IEnumerable interfaces.

The formal interface class provides an important facility for polymorphism in .NET, which will be the
principal concept discussed in this chapter. This chapter will also present the pros and cons of using abstract
classes versus interfaces.

Note See also "Abstract Classes" in Chapter 9.

Abstraction and Interfaces in Object−Oriented Software Design

We take eyesight and our eyes so much for granted that we rarely think what it would be like to suddenly lose
them. The act of seeing, however, is a vastly simpler act than the actual processing of the images behind the
scene.

Stop and think about your eyesight for a minute. While reading this page, you likely are unaware of the
intricate "implementation" of image processing that is going on behind your lenses, such as how light passes
through the retina, gets inverted by the lenses, and is interpreted by the nerves at the back of your eye sockets
before being processed by the brain.

313

Unless you are an eye surgeon, you don't think about thisyou just see. Can you even imagine that the image
you are currently looking at is really upside down? If you try and imagine it, you'll soon begin to notice some
lightheadedness. That's the essence (and benefit) of abstractiona process that enables us to cope with the many
incredible complexities around us.

You are able to ignore the details and focus on what's relevant. If you had to stop and think about how you see
every time you see, you would simply not be able to see. Abstraction is the same for software engineering. If
you had to constantly focus on the minute details over every function, and even into the molecular level of the
operators, you would find it impossible to write code.

In procedure−oriented design, procedural programming, the unit of abstraction is the procedure or the
function. In object−oriented design, the unit of abstraction is the class, and ultimately the object of that classa
much higher level of abstraction. By encapsulating methods, properties, and data in classes, it becomes much
simpler to tackle complex problems and make some headway in programming the large systems that exist
today.

Another example: When a racing car driver gets into a car, he or she focuses on the drive, the road,
navigation, and the competition. If the racing car driver had to focus on the engine, the gas, and the
combustion forces going on inside the pistons, he or she would not be able to drive a centimeter.

Grady Booch's marvelous book Object−Oriented Design with Applications (The Benjamin/Cummings
Publishing Company, Inc., 1991) has been an arm's reach away from my keyboard for more than a decade. In
it is the following definition for abstraction in software engineering: "An abstraction denotes the essential
characteristics of an object that distinguish it from all other kinds of objects and thus provide crisply defined
conceptual boundaries, relative to the perspective of the viewer."

A good designer/programmer can provide a clear and concise design in the arrangement and interrelationship
of objects. That same programmer or another can then write a clearly defined interface for the objects
represented in the design. And that same programmer or another can write a good implementation behind that
interface.

However, it is vitally important to keep each level of abstraction in the hierarchy of problem or abstraction
domains separate in practicefrom highest−level design to the very lines of code in the method
implementations. You need to keep the various levels of abstraction in their own domains. This border
between the domains, which hides the implementation and thus provides the abstraction, is called the
interface.

Note See Chapter 7 for information on the decomposition of methods and the inner interfaces
between methods in a class; see Chapter 9 for information on modeling, and Chapter 13 for
more information on class secrets and information hiding.

This is the reason why it is important to separate the implementation from the interface in object−oriented
design and know why you are doing it. It matters not that the separation is split between two Visual Basic
source code units or that the separation is within a single source code unit, with one class declaring the
interface and the other declaring the implementation. It matters more that the separation actually exists and
that it's part of the design. Figure 10−1 shows the "interface" in graphical terms.

 Chapter 10: Interfaces

314

Figure 10−1: To access an object, you reference its interface

Getting Passionate (or Radical) about Interfaces

Interfaces are so elegantly integrated into the .NET Framework that I cannot help being passionate about the
subject. Let's explore the reason for explicit interfaces further.

To fully understand object−oriented software development "philosophy" and its many concepts, you need to
understand the concept of both abstraction and interfaces and why they are so important to .NET. Not only
that, explicit interface design and implementation is a key requirement for "professional grade" .NET software
developmentboth for standard applications and algorithms and for component development. Please don't think
you can program without them.

Formal interface design and implementation is not new to software development, but it is one of its most
misunderstood concepts. And, as mentioned in Chapter 2, interface implementation has often been blamed for
DLL hell and versioning problems. The common language runtime's versioning features and side−by−side
execution environment provide a haven for numerous versions of an interfaceeven if they are identicalthus
freeing the programmer of the burden of maintaining versions of interfaces in a registry.

A large number of interfaces actually ship with the .NET Framework base class library. They carry no
implementation, which is left to the programmer who can either implement directly or bridge the interface to
an implementation that may already exist. Implementing an interface is a lot like implementing a Mini or
some other car that everyone loves but that no one might be making any more.

Imagine walking into a store and buying just the Mini's chassis and the body and then being told by the
salesperson that you now have to take home the shell and build your own internals, engine, seats, drive shaft,
dashboard, and so on. You would probably be very confused at the prospectif you don't have a nervous
breakdown at the idea. Why buy a car that you have to implement to drive?

Here's your dilemma: As a driver of past Minis, you've never really paid much attention to the
implementation. It has always been abstracted away from you. You have had only to interact and
communicate through the interface: the steering wheel, shift or gear stick, accelerator, and breaks. When
something went wrong with the car, you took it to the shop, which knew the ins and outs of the
"implementation." Now you are faced with all the messy details of the implementationthe idea of getting your
hands all greasy is the last thing you were thinking about when you bought the "interface."

Looking at the interfaces in the base class library (and there are many of them), you, the programmer, might
be excused for thinking the same thing. You design and implement a really cool application that the IT
department is going to love you for, and a day before your are ready to deploy, the head of the financial
applications department tells you she must have encryption support. No problem! The last time you checked
in the huge collection of namespaces, there were encryption classes out the wazoo.

 Getting Passionate (or Radical) about Interfaces

315

You rush to plug one of those encryption classes into the application, and all you find are empty shells, the
signatures of methods, properties, and events that are yet to be implemented. "Shucks, Microsoft was so late
in delivering .NET it forgot to finish up these classes," you think. You might chuckle here, but I have actually
heard exasperated calls for help along the lines of, "Okay, I plugged in IPluggable, but where's the beef?" I
too was as befuddled years ago, when I found myself staring at empty interface classes with just the interface
declares present, and searching the rest of the file proclaiming, "What's up with this? Invisible code?"

Understanding interfaces is a little easier if you understand modern engineering practice. Let's go back to the
store selling Mini shells. You decide to go along with the Mini "interface." You ask the salesperson how you
implement the Mini, and she refers you to a list of companies that specialize in Mini implementation. Each
one of these companies implements the Mini differently, but on the outside, the Minis all look the same, only
some Minis go faster than others, one implements a turbo drive, and another implements a rocket engine.
There's even a company that specializes in do−it−yourself Mini implementation. For pocket change, you can
read the company's manual on how to build your own Mini internals and implement them. After a while, you
can become so proficient at Mini implementations that you might even go into business implementing Minis
for other Mini lovers.

What do you see emerging here? You can have a whole collection of Minis that all look the same and all drive
pretty much the same, except one can travel at a significant percentage of the speed of sound. No matter
which Mini you climb into, the gears, steering wheel, brakes, clutch, and so on are all in exactly the same
place. But you have multiple implementations of the same Mini interfacethe Mini implementation is in "many
forms." You are staring at "Mini−morphism" in all its glory.

The expert or practiced search routine software writers can all implement the same encryption interfaces. The
interface members must be implemented, but they can all be implemented differently. For example, a search
method behind an interface might implement a conditional routine to test the value of Integer types, but
another implementation might use bitwise operations instead. The implementations are different, in many
forms, but the interfaces remain the same. They have to.

Interfaces and Inheritance

One of the main factors contributing to the confusion about interfaces in object−oriented languages is the
proclamation that they are a substitute for multiple inheritance and the "limitations" of even single−parent
implementation inheritance. I have read this sorry confused excuse for interfaces in Java, .NET, and the
official documentation of other languages: "X doesn't support multiple inheritancebut that's okay, because it
supports interfaces." This is technically correct, but I have a problem with this blasé and simplistic
explanation for interfaces. I believe you are just not getting it if you are going with this line.

Interfaces are not a formal substitute for inheritance, which, as discussed extensively in the last chapter, is a
facility for creating families of closely related, and thus tightly coupled, classes. Thus, when a class inherits
from a base class, the child or derived class is coupled to its parentand one of the key benefits, aside from
classification, is code reuse.

Interfaces do not promote the classification of objects. It is simply not why interface classes are uncoupled
from the concrete classes that contain their implementation. Read the definition of the Abstract Factory
pattern in Design Patterns (Gamma et al.), and you will see that interfaces promote loose coupling, by
allowing separate classes to interoperate.

Inheritance relationships are born of the close relationship of one class to another, a child to its parent. For
example, consider employees at a company or (one of my favorite examples) the crew on a spaceship. All
"staffers" are first crew or employees before they are captains, engineers, cooks, pilots, gunners, medics, and

 Interfaces and Inheritance

316

so on. In other wordsas demonstrated in the UML diagrams for inheritance in Chapter 9the communications
officer on a spaceship is−a member of the crew. The parent class is thus Crew, and the subordinate, child,
extended, or derived class is the ComEngineer.

The Crew class bestows all that is common about crewmembers to the descendent classes. ComEngineer, for
example, will inherit the base members and either override, overload, or shadow the parent members.

Interfaces, on the other hand, do not allow inheritance of data and implementation, because (as we have
discussed at some length) they have none.

It should thus be clear that inheritance promotes a tighter coupling of classes, while interfaces, by separating
implementation from the interface, are able to promote loosely coupled and completely disconnected classes
and the ability to access the implementation of unconnected objects. Most important, however, is that the
interfaces drive poly− morphism in the system of classes and objects that makes up your applications.

Despite the confusion about interfaces being a substitute for multiple inheritance, it is clear where the
misunderstanding originates. Suppose you need to provide a new object to represent a new type of
crewmember on the spaceshipthe logistics crew. So, you create the class Logistics and derive from Crew to
inherit all the common attributes and properties of Crew, such as CrewName, CrewRank, and CrewID
fields, and methods used in authentication, sign−on, time on duty, and so on.

In the derived class, you extend the base class with members and implementation that applies to the Logistics
class, even though the Logistics engineers are derivatives of Crew. Now you want to add support for
comparing Logistics objects that compares fields unique to the Logistics objects.

The Comparer methods do not exist in Crew, so you'll have to implement the IComparer interface in
Logistics instead or bridge in an implementation that already exists, to get the desired functionality available
to the class. But is this a substitute for multiple or even single inheritance? No. How can the Logistics class,
which we have said is−a crewmember, also be a child of the Comparer class? Logistics does not share an
is−a relationship with the Comparer classin the same way that a raptor is not a member of the canine family,
or a bicycle is−a train when it feels like going choo, choo, choo.

In other words, inheritance is used in object−oriented engineering only for two purposes (as repeatedly stated
in Chapters 1 and 9): to represent the is−a relationship (and all of its benefits) among classes, and to express a
tight coupling between the classes, for code reuse.

We also touched on multiple inheritance in Chapter 9. But multiple inheritance detracts from class structure.
Even if you could inherit from multiple parents, the benefit of maintaining that focused class hierarchy would
be very quickly lost.

Interface implementation and class inheritance, multiple or single, do share one thing in common, however:
they both contribute to polymorphism between objects and methods. But interfaces do not make up for the
lack of multiple inheritance in object−oriented languages, because they serve distinct and very different roles.

Thus, while the architecture for "inheriting" the definition of an interface is technically the same for standard
class inheritance, proclaiming interface inheritance a substitute for multiple inheritance without understanding
the difference is completely misguided and counterproductive.

 Interfaces and Inheritance

317

Realizing the Benefits of Interfaces

The driving force behind modern object−oriented frameworks like .NET is to be able to engineer software that
can be easily extended and changed. Engineers are taught to design software with this idea in mind; computer
science grads, sadly, often are not. The engineer will design software for the problem at hand, but provide the
facilities in his or her software to change the implementation as the problem changes. The implementations,
for example, might require calls to different operating systems, different hardware platforms, and new indirect
method calls.

In other words, we as software engineers must provide interfaces that are as general or as abstract as possible.
The implementation, however, need not be as general. And, in many cases, it cannot be. But the interface has
achieved the polymorphism objective of delivering method implementation in many forms, which means you
are given the flexibility to implement in a variety of ways.

Implicit Interfaces

All standard class declarations and member declarations implicitly expose interfaces so that their objects can
be referenced and instantiated, and their functionality and data accessed in predefined and regulated ways.
This implicit, but always present, interface comprises the standard object's identifier and the encapsulated
method signatures (as well as other class members, such as constants, variables, and properties).

Without the implicit interface, you would never be able to reference a class or instantiate an object and access
its methods and data. In other words, the interface in the standard class is said to be automatically defined.
The implicit interface is evident in a standard class declaration, as follows:

'The MyDay implicit interface declaration
Public Class MyDays
 'The method definition or signature declared is the interface
 Dim Days As New DaysEnum

Function SetDay(ByVal Day As Integer) As String
 Return 'something
 End Function
End Class

and sending a message to this interfaceor calling the methodis done by the client as follows:

Public Function GetDay(ByVal day As Integer) As String
GetDay = MyDays.SetDay(Days.Saturday)

End Sub

where Days.Saturday is a variable of type Integer (as a constant of the DaysEnum enumeration) that is
passed to the SetDay method. In the preceding code, this method is implicitly implemented in the MyDays
class. In other words, MyDays implicitly implements the interface MyDays.SetDay. The class or code−level
representation of the implicit interface is demonstrated in Figure 10−2.

 Realizing the Benefits of Interfaces

318

Figure 10−2: The implicit interface and the implementation behind it
Visual Basic and all .NET languages implicitly provide the interface for the implementation in standard
classes. You might not be thinking about the interface when you create a class and begin coding a method, but
you are actually providing an interface on−the−fly. Object Pascal or Delphi source files make you more aware
of the interface in every unit. For every class, you must first declare the interface as follows:

{interface}
type
 TMyDays = Class
 public
 function SetDay(Day: Integer) : string;
{}

{implementation}
 function TMyDays.SetDay(Day: Integer) : string;
 begin
 SetDay := Day;
 end;
end;

The Visual Basic equivalent is as follows:

Class MyDays
Function SetDay(ByVal Day As Integer) As String

 SetDay = Day
 End Sub
End Class

The only difference between the two languages is that, in the Visual Basic example, the class name and the
method signature (in bold) are the (implicit) interface (and there's about 30 percent less code apparent in the
Visual Basic version).

Visual Basic can also be very flexible when it comes to deciding where to place the interface and where to
place the implementationand how to tie the two together. For example, the standard base class (MustInherit)
can also be abstract, which implements the interface (well sort of) but provides no code in the implemented
methodsa job left to the deriving class. The abstract class must be inherited so that the method can be
implemented or used in the deriving class. The abstract class would be declared like this:

'example of abstract class that implements interfaces
Public MustInherit Class MyDays
 Dim Days As New DaysEnum
 Function SetDay(ByVal day As Integer) As String
 MustOverride
End Class

 Realizing the Benefits of Interfaces

319

As you learned in the last chapter, this class cannot be referenced or instantiated because it cannot provide any
service. And its true abstract methods are modified with the abstract modifier, MustOverride. Only the
deriving class that inherits the interface and its abstract methods and implements them can be referenced and
instantiated.

Explicit Interfaces

.NET provides a form of reference type that allows you to explicitly declare an interface and keep it
completely separate from any implementation. In other words, the interface class and the class that
implements the interface represent the most loosely coupled arrangement of classes you can achieve in the
.NET Framework.

Interface classes are a fundamental construct used in many places in the .NET Framework. They have been
provided to ensure that when implementing certain algorithms, such as cloning, comparing, encrypting,
iterating, and so on, consumer classes are guaranteed to implement the supported operations specified by the
interface.

By implementing the interface according to its definition, polymorphism is ensured. What do we mean by
ensured? As you know, polymorphism means many forms. Thus, an interface that defines a method forces all
implementors of that method to conform to the method definition. For example, if an interface method
CompareTo has two parameters expecting objects, and you reimplement it with three parameters, or change
the identifier to CompareObjects, the polymorphism would be broken. Interfaces do not allow that.

How polymorphism permeates around the .NET application is evident in the ability to pass a reference to an
object's implemented interface as an argument to a method parameter. This allows two totally uncoupled
classes to exchange functionality as shown in the following example:

Public Sub CompareTo(ByRef val1 As IComparable)

You can now pass any object that implements the IComparable interface as the argument for the val1
parameter, even though the implementations of the various IComparable objects may be very different from
each other.

In this regard, the interface acts as a filter and forces an implementor to support the definition of the interface
regardless of how it is implemented. The interface is thus a contract that must be honored by the implementor.
You can think of the interface as defining a contract for conduct by the implementor. It forces the
implementor to work with the required parameter types and to return the required return types (when the
method is a function). It also enforces usage of the correct data as well as properties and events.

Another objective of the interface is that the .NET architects help you implement standard and supported
operations that are not viable candidates for implementation in formal classes. This is why many interfaces
only have a single method for you to implement (such as Clone).

You will design and implement interfaces for a variety of reasons. Here are several of the most important
ones, in addition to the abstraction facility and polymorphism provided:

Interfaces can and should be used for types that are not part of any identifiable class hierarchy, or that
on their own form the basis for types that are not any particular "animal," typical of utility classes. As
you will see later in this chapter, several interfaces can be coupled together to provide a single utility
class.

•

 Explicit Interfaces

320

Interfaces can and should be used for developing classes in situations where inheritance of
implementation from base or parent classes is not required. Class hierarchies, is−a relationships, and
interface declaration and implementation serve very different design requirements.

•

Interfaces can and should be used in situations that call for interface implementation. A good example
is the Structure (Value Types) that cannot inherit implementation via standard class inheritance (see
Chapter 9).

•

Interfaces should not be used as a substitute for the lack of multiple inheritance. That's not the
premise for their inclusion in the .NET Framework, or any other object−oriented framework. Multiple
inheritance does not have its place in the .NET Framework; interfaces do and have nothing to do with
multiple inheritance. This is further discussed in this chapter. Also see "Inheritance and Multiple
Inheritance" in Chapter 9.

•

Interfaces are great for structure and formality in a classgreat tools for class providers to force
conformance by class consumers. If your classes seem like badly packed, jumbled up, holiday
suitcases (the whole family's togs tossed into one bag), then it's in need of the structuring that
interfaces provide.

•

Finally, and most importantly, interfaces allow you to delegate. This is probably their most advanced
and useful purpose. By being able to collaborate with an interface that is a bridge to an autonomous
class that implements the interface, the client to the interface has a way of targeting the
implementation. By being totally decoupled from the class that references the interface and the class
that implements it, the client class can use an interface to delegate functionality to classes specially
designed to play certain roles for them. In other words, rather than working under is−a relationships,
classes collaborate on the basis of being able to play the role of something else. And the interface, a
form of delegate or agent, is the middle person in the relationship. This concept is discussed in detail
in the next few chapters and is the basis for .NET event handling. So don't worry now if you did not
understand a word of what I have just said.

•

Abstract Class or Explicit Interface

When do you use an interface and when do you use an abstract class? Understanding the difference between
the two is important and can be confusing because both declare abstract members and they cannot be
instantiated.

To recap from the last chapter: An abstract class is a class that cannot be instantiated, but must be inherited
from. In this regard, all abstract classes are declared with the MustInherit modifier. The main difference in
terms of implementation is that an abstract class may be fully or partially implemented in its declaration
space, while the formal interface class cannot be implemented in its declaration space in any way, shape, or
form. Abstract classes form the basis for inheritance hierarchies and, as such, they are usually partially
implemented. The abstract class thus serves as the basis for encapsulating common functionality for inherited
classes. Object is the ultimate abstract class.

Classes can inherit from only one base class, and while you can provide polymorphism by deriving from the
base class, all classes that need access to that polymorphism must inherit, directly or indirectly, from your
abstract class. This can be a limiting factor in the design and layout of your application.

A positive aspect of abstract classes is that, through inheritance and the implementation of the members, all
deriving classes gain access to the same functionality. Interfaces cannot provide this facility, and the
consumer of the interface must manually provide the access to the implementing or referencing objects.

While I strongly believe that interface implementation and class inheritance capabilities have distinct rolesand
I intend to expose the differences later in this chapterhere are some recommendations for choosing between
the two constructs (assuming polymorphism rather than classification is the objective):

 Abstract Class or Explicit Interface

321

Abstract classes provide a simple and easy way to version all deriving classes. By updating the base
class, all the inheriting classes get automatically updated. This is not possible with interfaces, as you
will see in this chapter.

•

If you need to create functionality that will be used by a wide range of unrelated objects, then the
interface is your choice. As discussed in Chapter 9 (and often repeated in this chapter), abstract
classes provide the base class for classes of objects that are closely related. Interfaces are best suited
for providing common functionality to unrelated classes and are not a substitute for the lack of
multiple inheritance. If you fully understand inheritance, as discussed in the previous chapter, then
this distinction will be clear to you.

•

As mentioned earlier, interfaces are great for targeting functionality that resides in other classes and
that can be used in a wide variety of places, even in abstract classes in which the implementation can
be inherited, and the polymorphism thus propagated.

Note Chapter 9 provides extensive coverage of abstract classes, for further reference.

•

An Introduction to Interface Design and Implementation

The interface can be explicitly declared with the Interface class as demonstrated in the following code. (Don't
worry about copying any of this code; just follow along and try to understand what is taking place. Later in
this chapter, we'll go through creating and implementing an interface step by step.)

'The IMyDays Interface declaration
Public Interface IMyDays
 'The method definition or signature declared in the interface
 Function SetDay(ByVal day As Integer) As String
End Interface

Note As shown earlier the implementation of IMyDays interface makes use of the DaysEnum enumeration
that we constructed in Chapter 8. Great code reuse, huh!

No implementation is allowed in the preceding class. As you can see, you are not allowed to provide the
terminating End keyword for the method, such as End Function. The interface is then implicitly
implemented in another class (often called the concrete class) in the following fashion:

Class MyDayManipulator
Implements ImyDay

 Sub New()
 End Sub

Function SetDay(ByVal Day As Integer) As String Implements
IMyDays.SetDay

Select Case Day
Case 1

Return "Monday"
Case 2

Return "Tuesday"
Case 3

Return "Wednesday"
Case 4

Return "Thursday"
Case 5

Return "Friday"
Case 6

Return "Saturday"
Case 7

 An Introduction to Interface Design and Implementation

322

Return "Sunday"
Case Else

Return "No such day matches the number"
End Select

End Function
End Class

What you are seeing here is a loose coupling of classes, which can be better visualized with the graphic in
Figure 10−3 (which, as you can see, is very similar to Figure 10−2).

Figure 10−3: Loosely coupled modules separating interface from implementation
Note Members of an interface are public by design, and access modifiers are invalid in the interface

class.
You can now access the implemented method by simply sending a message to the MyDayManipulator
object, as follows:

Class MyDay
 Dim mydayman As New MyDayManipulator
 Function GetDay(ByVal Day as Integer) As String
 GetDay = mydayman.SetDay(Days.Tuesday)
 'GetDay is now given the string value of day 3 and you _
 'can now do something with it
 End Sub
End Class

Many classes in the .NET Framework implement classes in this fashion. Examples include implementation of
the IClonable interface, implemented in many classes, IComparer, and IEnumerator.

Depending on your design requirements, the preceding style of referencing the interface can be a little
inelegant and rigid because you are referencing, from a logical point of view, the object rather than the
interface. However, you can first create a reference variable of the actual interface and then "plug" it onto any
object that implements the interface. .NET lets you do that, and thus you can reference the interface anywhere
in your code and reuse any object that provides the implementation, where appropriate. The illustration
demonstrates this idea.

 An Introduction to Interface Design and Implementation

323

Code to reference the interface rather than the implementing object can be written as follows:

Imports Vb7cr.Interfaces
Public Class InterfaceTester

 Shared Sub Main()
 'instantiate the object that implements the interface
 Dim daymanipulator As New MyDayManipulator()
 'create the reference variable of the interface
 Dim Day As IMyDay = daymanipulator
 'reference the interface rather than the object
 Console.WriteLine(Day.SetDay(Days.Friday))
 Console.ReadLine()
 End Sub
End Class

The InterfaceTester code writes Friday to the console.

Many classes in the .NET Framework implement interfaces. You can then use the implementing classes by
referencing variables of the interface as just described. This is known as interface indirection and it is
discussed further later in this chapter and in the chapters ahead.

Accessing and Using the Implementation

How do you thus use the explicit interface? There are several implementation access styles that point the way
in terms of fundamental design. We looked at these styles earlier, but they are worth repeating.

The first style to discuss, because it is the most often used, directs that the class that needs access to the
implementation of an interface explicitly implement the interface (in other words, the class that implements
the interface is also the class that requires direct access to the implementation). A good example of this is the
implementation of the IClonable interface in many classes, even in the base class of a hierarchy.

While abstraction and polymorphism are still served here, because the interface exists separately from the
implementation, this style may clutter the container class, especially if the class implements more than one
interface, which it can.

For example, if your class Trajectory inherits from class Astro and then implements
IWormHoleTransform, IEngageWarp, IHyperJump, IBendSpace, and so on, life in the class can become
very crowded. This interface crowding is illustrated in Figure 10−4.

 Accessing and Using the Implementation

324

Figure 10−4: Implementing the interface in the class that needs it
Interface crowding can also produce problems of method signature clashing. In other words, ambiguities arise
because you might attempt to implement two interfaces that declare the same method signature. So, one of the
methods cannot be implemented. You can't simply expect to overload all method signatures either, because
some interfaces might forbid it.

The second style suggests you implement the interface in a separate class file and provide access to the
implementation via an interface bridge. This is also known as interface indirection. This is demonstrated in
Figure 10−5.

Figure 10−5: Implementing the interface in another class for access by indirection
Granted, you might still get ambiguities because you could easily reference more than one class that declares
the identical method, but the signature clashing is more easily overcome through fully qualifying the method
through the class's namespace (see Chapters 4 and 9). To access the implementation, simply create a reference
to the interface and assign it to an implementing object. This is an elegant means of accessing implementation
that I like a lot.

You can also pass interfaces as arguments to method parameters. An example of this style is presented later in
this chapter, in the section "Implementing IComparable."

Compound Interfaces

Using interface inheritance, multiple interfaces can be merged to form a single compound interface class. In
other words, you can create a base interface class and then create a child interface that derives from it. A
third−generation interface can also inherit from the second generation and thus inherit the interfaces from both
its parent and grandparent, forming what is called a compound interface or an interface hierarchy. The
resulting interface can then be implemented in either of the two kinds of implementation styles discussed
earlier. Here is an example of the compound interface:

Public Interface ICompare
 Function Compare(ByRef ObjA As Object,_
 ByRef ObjB As Object) As Boolean
End Interface

Public Interface IEncrypt :
Inherits ICompare
 Function Encrypt(ByVal Value As String) As Object
End Interface

Public Interface IIterator : Inherits IEncrypt
 Function GetNext() As Object
End Interface

The interface IIterator in the preceding example has inherited the definitions of both ICompare and
IEncrypt.

 Compound Interfaces

325

Interfaces thus support multiple inheritance, meaning one interface can inherit multiple interfaces to form one
compound interface. Have a look at the following example, which does the same thing as the previous codeit's
just a cleaner approach to coupling the interfaces:

Public Interface IIterator : Inherits IEncrypt, ICompare
 Function GetNext() As Object
End Interface

With such flexibility, it is unavoidable to end up inheriting an interface more than once. In the preceding code,
IIterator actually inherits the ICompare interface twice, once through IEncrypt, which originally inherited
ICompare, and a second time by implicitly inheriting ICompare. However, the compiler lets this go because
it only sees one ICompare in the hierarchy, no matter how many references there are to it. The illustration
shows how Visual Studio automatically enumerates and merges the inherited interface members, but it does
not duplicate the definitions inherited twice.

If you implement an interface, you also have your side of the deal to fulfill. The contract requires you or your
client to implement the entire interface, and every aspect of the interface as it is defined. So, compounding the
interfaces or inheriting multiple interfaces also has its downside, as demonstrated in the following code, which
requires you to implement the methods of all interfaces inherited by the interface you are implementing:

Public Class Iterator : Implements IIterator

 Private Function Compare(ByRef ObjA As Object, ByRef ObjB As Object) _
 As Boolean Implements IIterator.Compare
 End Function

 Function Encrypt(ByVal Value As String) As Object _
 Implements IIterator.Encrypt
 End Function

 Function GetNext(ByRef ObjA As Object, _ ByRef ObjB As Object) As Boolean _
 Implements IIterator.GetNext
 End Function

End Class

What is clear in this code is that if you implement the compound interface, you must implement the entire
compound interface, even if you only need to implement one method specified. If you do not need the whole
shebang, rather implement a single interface that contains only the definitions you need.

Another technique is to use an adapter classa proxy interface that adapts another interface for accesswhich is
discussed in Chapter 14. Or, you can place all the interfacescompound, inheriting, or otherwiseinto an abstract
class, and then inherit that abstract class. The abstract class lets you implement only what you need to,
although you lose the only implementation inheritance "lifeline" you have in the process, which would be a
waste and considered bad design.

 Compound Interfaces

326

Designing and Defining Interfaces

Designing an interface is known as interface factoring. This factoring is the process of deciding what
properties, events, and methods are to be included in a certain interface. When you design or at least construct
an interface, it is important to know what the interface is intended to hide and the abstraction behind that
interface. You should thus make sure that each interface abstracts a single tightly focused implementation.
When you start cluttering up the interface with unrelated methods and properties, you obscure the abstraction
domains and place unnecessary burden on the implementor.

Thus, if you are going to design an interface for a collection of encryption methods, it makes no sense to
"toss" the definition for comparing objects, or disposing of objects, into the same interface just because you
don't feel like creating another interface project.

While you should take care to assemble definitions of a common purpose in one interface and not confuse the
interface, at the same time, you should not split up an interface into too many related components. For
example, splitting a collection of ten financial methods for an accounting interface into two interfaces, one for
debits and one for credits, would be silly. They are better packed into one clean interface.

It is best to start small and get the interfaces up and running quickly. The interface can then evolve, because
you can add more definitions and interfaces as needed.

Tip Convention calls for giving the interface an initial capped letter I. This is not necessary but it
helps you and your consumers to distinguish interfaces from the classes that implement them.
The initial−capped I is the convention used by Microsoft for interfaces published in the .NET
Framework (for example, ICloneable, IComparer, and so on).

Interfaces, Once Published, Must Not Change

As you know from the previous code examples demonstrated, for interfaces to succeed, they cannot change.
In other words, the abstract definition encapsulated by the interface class must always remain the same. If the
definition of a method, property, or event must change, you must create a new interface definition or member,
leaving the old one in place for backward compatibilityfor consumers that depend on it and that have
implemented it, directly or indirectly.

Once your interface has been published, there is no telling who has implemented it and where. Changing the
interface while other classes have already implemented it breaks software. Implementation thus depends on
the interface to remain constant. It is thus often said that an interface must obey an unseen "contract" it has
with the consumer or implementor, a contract that must be maintained because the consumer has implemented
the interface on the trust that it will not change. This is known as interface invariance.

Note You can't simply add more methods to an existing interface and hope your interface consumers
will not notice. Remember, the consumer or contractee must implement the entire interface. If
you add a method, the consumer will be forced to implement that method the next time he or she
compiles.

Interface Invariance

Interface invariance protects existing software that has been written to use the interface. So, when you clearly
need to add new definitions or alter an existing definition, a new interface should be created instead. The best
way of publishing the interface is to give it the same name and add a version number onto the end of the name

 Designing and Defining Interfaces

327

(and then properly document the changes and additions). So, the IEncrypt interface mentioned earlier might
be published as IEncrypt2 or something similar that clearly identifies it as a new version of an interface that
already exists.

Constructing the Interface

You declare or define the interface within the Interface and End Interface keywords as demonstrated with
the following formal syntax:

InterfaceDeclaration ::=
[Attributes] [InterfaceModifier+] Interface Identifier LineTerminator
[InterfaceBases+]
[InterfaceMemberDeclaration+]
End Interface LineTerminator

InterfaceModifier ::= AccessModifier | Shadows

A simple code equivalent is written like this:

Public Interface IFace
End Interface

You can also add the optional Inherits statement after the interface identifier to list one or more inherited
interfaces, as demonstrated earlier in this chapter. The Inherits keyword can be on a new line after the
interface identifier, or you can place it directly after the identifier in front of the new−line colon symbol, as
follows:

Public Interface IFace
 Inherits IGullible
'. . .
End Interface

or

Public Interface IFace : Inherits IGullible
'. . .
End Interface

The Inherits statements must precede all other elements in the declaration except comments. All remaining
declaration statements in the interface definition keywords can then be Event, Sub, Function, and Property.
Remember, you cannot add End Sub, End Function, or End Property terminating statements to the
interface.

Interface statements are public by default and you cannot declare them as being anything else (it would be
illogical to hide the interface). However, you can modify the implementation of the interfaces by using any
valid member modifier, such as Private, Friend, or Protected Friend (see Chapters 4, 7, 8, and 9), which can
carry out any secret design or information hiding needed in the class. There is only one exception: The
keyword Shared defines a static class method and is therefore illegal on an interface method. You can also
overload the methods and properties on an interface with the Overloads modifier, but using any of the
polymorphism Overrides, MustOverride, or Overridable modifiers is illegal. Table 10−1 provides a list of
the legal and illegal modifiers for implemented interface members.

 Constructing the Interface

328

Table 10−1: Legal and Illegal Access and Polymorphism Modifiers in Interfaces and on the Implemented
Members

Access and Polymorphism Modifiers Legal/Illegal

Public Illegal in the interfaces itself

Protected, Friend, Protected Friend Legal only for implementations

Shared Illegal in interfaces and on implemented members

Overrides, MustOverride, Overridable Illegal in interfaces, legal on implemented members

Overloads Legal in interfaces and on implemented members

Getting Started with the Interface Definition

The steps to take to create an interface are straightforward, but there are a few angles to tackle this task. First,
you could create the interface definition in the same way you create the abstract class, by just providing the
abstract methods and not going into any implementation at all for now. This approach would also allow you to
first model the interface in UML with tools like Visio or Rational Rose, which would allow you to write the
definitions out to Visual Studio code units.

Another approach would be to implement and provide the methods of a standard class and then later decide if
it makes sense to extract an interface using the formal Interface class.

The latter approach is often how interfaces come into existent, but that does not mean you need to forgo the
benefits of modeling the classes in UML first. You will likely first model a standard class and then fully
implement it. Then you will decide whether or not the class would benefit from the creation of a formal
interface to it (or the provision of adapter interfaces).

This is, in fact, how the IIterator interface introduced earlier in this chapter came into existence. I first fully
implemented it in the linked list class (discussed in Chapter 13). But it is better served as an interface that can
be implemented apart from the list class. I thus made it available for many other forms of collections, data
structures such as lists, and so on.

It is also worth noting that IIterator is a formal behavioral design pattern documented in the book Design
Patterns, mentioned at the beginning of this chapter. The book describes the intent of the pattern as a means to
"provide a way to access the elements of an aggregate object sequentially without exposing its underlying
representation."

My motivation for implementing IIterator external to a LinkedList class was to prevent the class from
becoming bloated with the various traversal and list traversal functionality that was going into the IIterator. I
noticed that my simple LinkedList class was in fact becoming bogged down with iterator−specific methods
that were detracting from the clean implementation of the LinkedList and its data elements encapsulated
within (see Chapter 13).

The IIterator interface thus allowed me to extract the construct from the LinkedList class and allow it to be
used with objects that have other traversal and iteration needs. (By the way, this is also the motivation behind
Java's iterator interfacea very clean adaptation of the formal IIterator pattern.)

Basically, our objective is this: Define an interface for accessing a collection of objects in a linked list. The
iterator has the job of accessing the collection, iterating from one object to the next, forward (in the case of
singly linked lists) and backward (in the case of doubly linked lists), and so on. The following list represents
the formal requirements of the IIterator object:

 Getting Started with the Interface Definition

329

The IIterator object must be able to gain access to the list to iterate over.•
The IIterator object must be able to obtain a reference to the first item (node) in the list.•
The IIterator object must be able to keep track of, or record, the current element.•
The IIterator object must be able to keep track of previous elements iterated over.•
The IIterator object must know when it has reached the end of the list, the last object.•
The IIterator object must be able to communicate to the list object information the list object requires
to do its work, such as adding, inserting, removing, and changing data.

•

Figure 10−6 illustrates the relationships between the LinkedList object, the IIterator interface, and an
IIterator implementation (any IIterator implementation).

Figure 10−6: The class that instantiates a LinkedList object also instantiates a reference to an IIterator
interface in order to access the functionality of the IIterator for the list in question
An important objective of creating the IIterator interface is to allow list objects to work with their own
IIterator objects. A LinkedList object will therefore reference an IIterator interface and work with a
suitable implementation, or create its own IIterator object by implementing the IIterator interface.

The following code is an example of the IIterator interface:

Public Interface IIterator : Inherits IComparable
 Function GetNext(ByRef ObjA As Object,
_ByRef ObjB As Object) As Boolean
 Function HasNext() As Boolean_
'is there a node after the current position
 Property Current() As Object
 Sub AddClone()
 Sub Add(ByRef Obj As Object)
 Sub Remove()
End Interface

The next two examples show the two ways a class can reference the interface and instantiate an IIterator
object for its use:

Imports Vb7cr.Iterator
Public Class TreeWalker
 Dim iterImp As Iterator
 Public Sub GetObject(ByRef Obj As Object)
 MyTree.Node = Iter.GetNext(Obj)
 End Sub
End Class

Or better yet:

 Getting Started with the Interface Definition

330

Public Class TreeWalker
 Dim Iter As IIterator = New Iterator
 Public Sub GetObject(ByRef Obj As Object)
 MyTree.Node = Iter.GetNext(Obj)
 End Sub
End Class

Chapter 13 provides the complete implementation of the IIterator interface in the class IIterator, and
demonstrates its employment with the LinkedList class. The chapter also examines the .NET Frameworks
IEnumerator interface, which is also an iterator for collections and how IIterator can inherit IEnumerator
in order to support .NET ICollection objects.

Implementing Interfaces

The .NET Framework's collection of interfaces is extensive and there are literally dozens of interfaces for
many different operations. There are interfaces for graphics, networking, data structures, databases, and so on.
All .NET interfaces are prefixed with an uppercase I for easy identification as an interface.

You can use the Object Browser to browse the collection of interfaces in the various namespaces. If a
particular collection of classes provides interfaces, you find them by expanding the class tree down to the
Bases and Interfaces node in the Object Browser tree. Selecting the interface in the browser brings up a
summary of the interface in the Details pane of the browser. Interfaces are also listed higher up the
namespaces.

You can also explore the interfaces that ship with the Framework with the Class Viewer tool, WinCV. And
they are all listed in the documentation that ships with the .NET Framework SDK and Visual Studio Help.

With so many interfaces, it would be meaningless to list them all and explain them here. However, let's look
at the implementation of two of the few well−known interfaces, IClonable and IComparable, which will
give you an idea of what's required to support and implement an interface. Later chapters will implement
some of the other built−in interfaces, as well as custom interfaces. First, let's go over some of the interface
semantics to put us on the right track.

Interface Implementation Semantics

You use the Implements keyword as demonstrated earlier to signify that a class implements a specific
interface. You can implement multiple interfaces in a single class as long as you list the classes being
implemented. This is achieved by providing a comma−separated list behind the Implements keyword, as
follows:

Public Class SeaFood
 Implements IShrimps, IScallops, IOysters, ICrabs

In addition to the Implements keyword that comes after the class declaration, you must also provide the
Implements keyword after the name of the interface member (method, property, or event) being
implemented. This is demonstrated in the following code:

Function Select(ByVal Food As String) As Boolean Implements IShrimps.Select
End Function

 Implementing Interfaces

331

Interestingly enough, you do not need to use the same identifier for the implemented member name and the
interface member name, which was a required convention (InterfaceName_MethodName) used in the
classic versions of Visual Basic. For example, the following code shows the implementation of a method (in
bold) given a different name in the interface (also in bold):

Sub FindNext(ByVal aNext As Integer) _
Implements IIterator.GetNext

The method signature, however (including any return type), must not change; otherwise, the interface will
complain. Still, the most common way to implement an element of an interface is with a member that has the
same name as the interface member, as shown in the previous examples, and it's best to stick to what's easiest
and not overly complicate matters unless you are avoiding name collisions.

Note When a private member implements a member of an interface, that member becomes available
by way of the interface even though it is not available directly on object variables for the class.
This is a very important facility for event handling and delegation, as described in Chapter 14.

Implementing ICloneable

The ability to clone (a fancy synonym for "copy") an object is a fundamental operation in object−oriented
systems. You have object "a" and for some reason you need to create object "b" as an exact copy of "a."
Looking at the class members, the first method you'll notice is MemberwiseClone, which we discussed in the
previous chapter.

This method performs a shallow copy of the object and is implemented throughout the framework, providing
standard shallow copy functionality. But what if the shallow copy is not appropriate? What if you have a
special object that requires a deep clone (copy the object and any objects it refers to) and need to implement
the cloning in a special way? A good example of such a deep copy is making a copy of a linked list object.
The list itself references a collection of objects, which are its data elements or nodes, so by a deep copy, you
would want to copy all the objects maintained by the list and not just the references to the original nodes.

First you might ask: "Why would the base class not implement a deep clone method that I can use in any class
I create?" The basis for this thinking is that the cloning methods would be used in all objects, and thus it
would make sense to implement a Clone method in Object so that everyone inherits these methods. But this
is only part of the reason deep cloning is not supported in the base Object class.

Implementing alternatives to the MemberwiseClone, such as a deep clone, is not appropriate in all objects,
and because of the variety of ways of cloning, if you want to implement a deep copy, then you need to
implement it yourself. The way of doing this would be via the ICloneable interface.

ICloneable is a simple interface and provides only one member definition, the method Clone. In the
following example, ICloneable is implemented in a simple class representing an object that stores a reference
to another object:

Public Class Node
 Implements ICloneable

 Public Data As Object

 Public Sub New()
 MyBase.New()
 End Sub

 Implementing ICloneable

332

 Public Function Clone() As Object Implements ICloneable.Clone
 Dim baseNode As Node
 baseNode = Me.MemberwiseClone()
 baseNode.Data = Me.Data
 Clone = baseNode
 End Function

End Class

The Node object is now endowed with the ability to return an exact copy of itself, first by cloning its members
and then by cloning the objects that are encapsulated within its structure.

Implementing IComparable

The next interface we will investigate lets you provide support for comparing the current object to another
object. Again, the interface only specifies one method, CompareTo. In the following method, the object of
type Node must be passed to the CompareTo method, which makes a value comparison to the current object
(Me):

Public Function CompareTo(ByVal tnode As Object) As Integer _
 Implements IComparable.CompareTo
 If (Not (TypeOf (tnode) Is Node)) Then
 Throw New ArgumentException("Argument must be of type Node")
 End If
 If (Me.Data Is tnode.Data) Then
 Return 1
 ElseIf Not (Me.Data Is tnode.Data) Then
 Return 0
 End If
End Function

As you can see in the preceding code, we are given the liberty of defining the implementation rules for our
methodthe freedom to determine how to implement a method that compares one object to another. Thus, we
can determine what constitutes a comparison (and returns 1 or 0) and what does not (and returns 0 or −1).

To compare two objects (for example in a binary tree, as demonstrated in Chapter 13), we would construct a
method called CompareTo as follows:

Public Function CompareTo(ByVal tnode As Object) As Integer _
 Implements IComparable.CompareTo
 If (Not (TypeOf (tnode) Is Node)) Then
 Throw New ArgumentException("Argument must be of type Node")
 End If
 If (Me.Data Is tnode.Data) Then
 Return 1
 Else
 Return 0
 End If
End Function

The preceding code is straightforward except for one thing that might throw you. While you are passing in
object arguments to the method's parameters, the parameters are asking for IComparable objects, hence the
parameter declares are As IComparable and not As Object. As such, the method is laying the ground rules
for you to submit only objects that implement IComparable, and if you try to submit an object that does not
implement the interface, you write the necessary code to raise an exception. This is demonstrated in the

 Implementing IComparable

333

following code:

Public Function Max(ByVal val1 As IComparable, ByVal val2 As IComparable) _
 As IComparable
 If (val1.CompareTo(val2) > 0) Then
 Return 1 'val1 > val2
 End If
 If (val1.CompareTo(val2) <= 0) Then
 Return 0 'val1 <= val2
 End If
End Function

Both of the preceding methods are useful in implementations of linked lists. The latter method will be
revisited in the example of binary trees in Chapter 14.

Some last thoughts about interfaces: Interfaces can have static members, nested types, abstract or virtual
members, properties, and events, but any class implementing an interface must supply the full definitions for
the abstract members declared in the interface. Without the full definition, the compiler will complain bitterly.

An interface can require that any implementing class must also implement one or more other interfaces as a
precondition.

The following restrictions apply to interfaces:

An interface can be declared with any accessibility, but interface members cannot be anything other
than public.

•

Security permissions cannot be attached to interface members or to the interface itself.•
You can define a "discreet" constructor in an interface, calling it anything you want, but you naturally
cannot define the New constructor.

•

Exceptions Covered in this Chapter

The following three exceptions are used in interface implementation and are principally discussed in Chapter
7:

ArgumentException•
ArgumentNullException•
ArgumentOutOfRangeException•

The exception object that is most important in the use of interfaces is ArgumentException. This exception is
commonly raised when passing to method parameters. The exception is raised by the receiving method upon
testing the argument for its support for a particular interface. See "Implementing IComparable," earlier in this
chapter.

Observations

The subject of interfaces is extremely interesting and complex at the same time. However, it is important, nay
vital, to understand that interfaces are a fact of .NET programmingand all OOP environments for that matter.
There are going to be very few scenarios that will not require any significant implementation of an interface,
and possibly a definition of a new interface.

 Exceptions Covered in this Chapter

334

To recap the important facts about interfaces in .NET: It should be clear to you that interfaces provide a key
facility for polymorphism. This is true for both implicitly defined interfaces that are automatically defined in
standard classes and explicitly defined interfaces defined in the formal Interface class.

Interfaces provide a facility for implementing small, loosely coupled objects or instances of functionality that
are not part of any formal class hierarchy. In this regard, they should not be considered a substitution for
multiple inheritance but rather as a facility to provide functionality to classes external to and without
consideration for any class hierarchy. In other words, interfaces can usually be implemented or accessed
anywhere and can be considered neutral constructs.

The .NET Framework provides interfaces to help you support a number of important operations. These
interfaces are so defined to ensure that you stick to supported operations and standards.

One final and important observation for your consideration: If you are planning to provide interfaces to
consumers (customers or fellow programmers), it makes sense to provide good example code and
documentation to help your consumers implement the interface. It's all very well to provide the definition for
an extensive interface, such as a drawing interface or a text interface, but if you don't help your customers
understand how to implement them, you are not going to be highly regarded. This should not be a difficult
thing to do, because you should not release a formal or explicit interface unless you have fully tested the
definition of the interface, which is done by fully implementing it.

 Exceptions Covered in this Chapter

335

Chapter 11: Exceptions: Handling and Classes

Overview

Structured Exception Handling (SEH) is new to the Visual Basic language. Although it prevents further
execution of troublesome code in a manner similar to the familiar On Error Goto construct, it is a very
different construct to On Error Goto. When a program encounters an error in classic VB, all further
processing of statements after the violating line is suspended, and the execution is transferred to a region in
the current routine where the programmer can deal with the error. That's where the similarity ends.

The classic Visual Basic error handling, while still supported in Visual Basic .NET, is a form of unstructured
error handling that did not serve VB programmers well. Visual Basic unstructured error handling is not a
holistic approach to guarding code and properly dealing with an error. Visual Basic 6 and earlier code often
suffers from lack of error handling specifically because On Error Goto statements are left sterile, and don't
provide much error management at all. A good example of this is the following VB 6 code, providing
so−called inline error−handling:

On Error Resume Next

which sometimes serves no purpose other than to defer the handling of the error and leave holes everywhere
in the code.

SEH is a critical component of programming against the common language runtime (CLR). You cannot write
reliable software without it, for a number of reasons. The CLR terminates any application that does not catch
an exception; so even the slightest error that otherwise would allow your software to continue without much
risk of application failure will result in your application being terminated. The approach forces the
programmer to deal with the inherent problems in his code.

Note SEH in Visual Basic .NET works like SEH in Visual C++, Object Pascal, and Java.

It has been one of my observations, as both a programmer and a project manager, that developers often treat
error handling like loathsome documentation. They try to ignore it until all functionality is written. They
believe writing error−handling code is tedious and often insist they can program functionality correctly the
first pass. This malady is also prevalent in so−called death−march development projects. The deadline is so
tight that the code to handle the exceptions and errors is skimped on.

The exception−handling code is thus left until the last minute before a product is passed to beta or, worse,
shipped to customers. The problem is that the bigger and more complex the application, the higher the
chances are that areas that require explicit error handling will be overlooked or forgotten about come release
time. There is often a last−minute rush to go through all the methods and write the exception− handling code.
Like documentation, exception handling should be considered along with the method specification (as
demonstrated throughout this book, most notably in Chapter 7 and Chapters 12 through 17), not after the
product has been released to manufacturing.

Chapter 7 provided a brief introduction to exception−handling code, so you may feel that you have already
covered some of the material presented in this chapter. But this chapter also covers advanced subjects, such as
custom exception classes and exception filters.

The older, unstructured error−handling practices are not covered in this chapter, for the reasons previously
mentioned, with one exception (no pun intended): a description is provided of how to tap into the Visual Basic

336

Error object that is supported in Visual Basic .NET.

In any event, the On Error syntax cannot be used in a method that exploits SEH constructs. I have never felt
comfortable about On Error and its Goto construct, and I believe that the sooner you port your code to SEH
and fully adopt it, the better. Unstructured error handling is simply unstructured and comparing VB 6 error
handling code to SEH is like comparing break dancing to ballet.

If you don't handle exceptions as they are raised, your application dies. The CLR closes down your
application, and there's nothing you can do to recover or save data. The CLR is a safe execution environment.
As mentioned in Chapter 2, its priority is to protect the execution environment. SEH should not be left out of
your methods unless the construct or what you have written does not require an exception handler, or if any
exceptions can be handled somewhere else on the stack, in other methods, or even in other classes and objects.

Why Do We Need Exception Handling?

We inject exception−handling code into our programs to trap errors and "handle" them "gracefully" and to
prevent a program from terminating unexpectedly. Some errors don't result in an application crashing. But if
we were to allow a program to continue mortally wounded it would present undesirable results to the user or
risk trashing data. Instead SEH anticipates the impending disaster and presents a viable rescue plan.

Visual Basic .NET provides us with the facility to catch all types of exceptions. We can code specific handlers
to catch only certain types of exceptions, or exceptions generated by related types, or classes. We can also
force an exception, and even use the exception as a flow mechanism that leads to alternate functionality
provided by a method (but this is discouraged, because there are formal constructs for flow control that are
much less resource−intensive than the instantiation of exception objects).

To summarize, we need exception handling for the following reasons:

Applications need a facility to catch a method's inability to complete a task.•
To process exceptions caused by a process accessing any functionality in methods, libraries, or classes
where those elements are unable to directly handle any exception that arises as a result of the access
and the ensuing computation.

•

To process exceptions caused by components that are not able to handle any particular exception in
their own processing space.

•

To ensure that large and complex programs (actually, any Visual Basic program) can consistently and
holistically provide program−wide exception handling.

•

Exception− and error−handling routines need to be part of the code that defines any method. Get into the habit
of making sure that for every method you write, you include code in the method that jumps in if the method
does not complete as excepted or produces results contrary to what is expected. (A trained SEH writer will
look to assert, test conditions and states, and fully consider code and only bring on the exception handler as a
last resort or failsafe. Such patterns and techniques are explored in more depth in Chapter 17.)

Structured Exception Handling 101

The concept of SEH is straightforward. Code is optionally enclosed in a block that sets up a guarded perimeter
around the code to be executed. This guarded code is everything that falls between the Try and Catch
keywords. Here is an example. The statement in bold is in the guarded or protected section, in the code from
line 14 to line 16:

 Why Do We Need Exception Handling?

337

13 Try
14 GetTrim = Call(SetFalloff) <− begin protected code
15
16 <−end protected code
17 Catch
18 End Try

As soon as an exception is raised, all further execution of the method's code is halted and transferred to a
catchment area. The catchment area is the Catch block between Try and End Try.

You need to think ahead of the possible exceptions that may be raised by your code. For example, consider if
it's possible to get stumped on a memory exception or an arithmetic exception. If so, then you need to provide
an exception handler for that exception. You can also provide a default exception handler that will catch the
exception, if nothing earlier catches it and if you are not sure what exception class to activate. We will discuss
the default handler later in this chapter.

When the CLR begins to process the code in the Catch section, it looks for an exception handler, the
exception instantiation code, in the local catch sector that matches the exception anticipated. When a match is
found, an exception object to cater to the exception is created to deal with the exception.

If the CLR finds no match for the exception in the local method's Catch block, the CLR rolls back up the call
stackto methods that were previously calledlooking for a handler in one of the earlier methods. (It will not go
to the call stack if you do not first attempt to catch an exception.) And if no exception handler is found on the
stack, the application will be terminated with an unhandled exception violation.

Note You can also rethrow an exception to another method, and even to another class, and avoid walking up
the stack. These concepts are further explored later in this chapter.

Exception objects are no different from standard instances. They derive from the root Exception class and
contain the necessary methods and data to deal with the information generated by the CLR. As you will later
see, exception objects trap error information, trace the stack, and so forth. Customer handlers you write can
even provide fancy methods to deal with the error in your own special way. For example, you can easily write
the error to the Windows error−logging facilities, a technique we'll explore later in this chapter.

Exception objects also have access to local and class data (variables), which lets them correct errors that
resulted in the exceptions in the first place. Once you have caught and "handled" the exception, the exception
object is dereferenced, marked for destruction, and immediately collected by the CLR.

The processing scenario just described will be illustrated in the following code. Main starts a "roll" through
three methods of which the last causes an overflow exception. However, only the first method can handle that
exception an thus the exception handlers will pop off the stack until the first method's default Exception
handler handles the exception:

Module FindExcept
 Dim var1 As Integer 'default is 0
 Dim var2 As Integer = 10

 Sub Main
 'first will call second and second will call third which
 'causes an overflow exception
 FirstMethod()
 Console.WriteLine("Press 'q' to quit the sample.")
 While Chr(Console.Read()) <> "q"c
 End While

 Why Do We Need Exception Handling?

338

 End Sub
 'FirstMethod has a default catch that can process the exception
 'later on in the flow
 Public Sub FirstMethod()
 Try
 SecondMethod()
 Catch Except As Exception
 Console.WriteLine("First: " & Except.Message)
 If var1 <= 0 Then
 var1 = 5
 End If
 End Try
 End Sub

 'This method will not handle the exception
 Public Sub SecondMethod()
 Try
 ThirdMethod()
 Catch Except As DivideByZeroException
 Console.WriteLine("Second: " & Except.Message)
 End Try
 End Sub

 'nor will this method
 Public Sub ThirdMethod()
 Try
 var2 = var2 / var1
 Catch Except As DivideByZeroException
 Console.WriteLine("Third: " & Except.Message)
 End Try
 End Sub
End Module

Which mechanism manages the entire process? Every method in your executable code, regardless of whether
or not it declares a TryCatch block, is apportioned space in an internal exception information table that is
managed by the CLR. This table is automatically created when you run your application. The table is
maintained by the CLR throughout the life of the executable. You don't have to know anything about this
table, nor do you need programmatic access to it.

A region of the exception information table is provided to every method. If your method does not provide
SEH, its portion of the table will be empty. If a method does provide SEH, the information in the table is used
to describe the block under protection and any exception handlers associated with it.

The exception information table represents four types of exception handlers for protected blocks:

The default exception handler that must process an exception.•
The exception objectfiltered handler, which handles an exception object of a specified class or any of
its derived classes.

•

A user−filtered handler, which runs user−specified code to determine whether the exception should be
handled by the associated handler or should be passed to the next protected block.

•

A Finally handler, which executes whenever code exits either of the TryCatch handlers, regardless
of whether or not an exception occurred. If a Finally block is not provided, this section of the table is
also left empty.

•

When an exception is raised by a method, two things happen. First, the CLR searches the table for the
exception handlers associated with the errant method. Since the table stores information about every protected

 Why Do We Need Exception Handling?

339

method, the CLR can very quickly link the exception to the method that caused it, and then access the handler
provided to deal with the exception.

Second, the CLR creates the exception object to wrap all associated data generated over the exception. It will
then execute any statements you provide in the catch handler. Your catch handler code can directly access the
exception object and its properties, methods, and other members. See the section "System.Exception" later in
the chapter for more details.

Exception objects are processed and collected almost immediately after the CLR or the application no longer
needs them (which is usually as soon as the method that raised an exception returns normally). As such,
memory consumed by exception objects is released back to the environment far quicker than memory
consumed by objects in both managed and unmanaged code. This makes exception handling by the CLR far
less resource−intensive than what is possible in an unmanaged environment, such as standard C++ unmanaged
exception−handling code.

Exception−Handling Models

Two exception−handling models are used in modern object−oriented programming:

The resumption model•
The termination model•

The CLR is based on the termination model, which means that the block in the method that caused the
exception in the first place is terminated. If the exception is not handled, application termination ensues.

The Resumption Model

The resumption model dictates that after code blows up, you need to return things to normal; but in this
model, the execution returns to the "raise point" in the code where things got hairy in the first placeafter the
exception is handled.

Handling this scenario takes some skill because you need to resume normal execution without reraising the
exception. You are thus forced in the handler to change flow, logic, and data to be sure the exception is not
reraised. A forced "rerun" of the code (with new input) may sound like the right thing to do, but it also makes
programming a lot harder and, in fact, more prone to disaster. Programming against possible exceptions is not
good OO programming practice either.

The Termination Model

The termination model dictates that you cannot (normally) return to the point in the code where the exception
was first raised. This is how Visual Basic has always worked, even with the old On Error construct. The
exception kicks you out of the block of code that erupted, nixes the block on you, and forces you to deal with
the mess or make a hasty exit.

If you do handle the exception, control returns to the line immediately after the TryCatch code, as
demonstrated in the following method. In the following FireEvent method mdArray(CurrentCode) in bold
causes an exception. After the exception is handled, however, the code after the End Try in bold executes

Public Sub FireEvent()(I ByVal CurrentCode as Integer)
Dim code As Integer = −1
 Try

 Exception−Handling Models

340

 code = mdArray(CurrentCode)
 Catch Except As IndexOutOfRangeException
 Console.WriteLine(Except.Message)
 End Try
Dim EDA As New EventDataArgs(True, code)
OnEvent(EDA)
End Sub

The preceding method raises an IndexOutOfRangeException exception when it tries to access an element
that is out of the upper bound of the mdArray. After the exception is handled, the execution continues after
the End Try statement and the OnEvent call continues with 1 as the value for the code argument. In other
words, code did not get changed.

What if you need to execute the code in the Try block that blew up? Handling the exception "gracefully" and
then "leaving it at that" is not always enough. That's where the termination model used by .NET shines. You
can always recall the method in the code after the End Try. Rerunning the code block can also be made
possible from a Finally block that comes after the catch. Later we'll see how to use the Finally block.

It important to understand the two models, with the objective of writing code that is less buggy and easier to
document and follow. Your error handling does not need to end in the Catch blocks of the method that caused
you grief. The neat aspect of the underlying exception−handling architecture is that you can direct control
through any Catch handlers until a handler that is specifically defined to handle the exact infringement is
foundno matter how deeply nested the source of the problem. As you'll see later, you can delegate the
exception handling to another object entirely.

The exception handling process is analogous to a baseball game: After the pitch (the entry into the method),
the errant ball is caught in the catcher's mitt and then thrown to second base to catch the runner trying to steal
second. No luck at second base, so the defensive on second flings the ball to third base. Third is not tagged in
time and the ball is thrown to home plate to catch the runner coming down from third.

While you do not need to "throw" an exception from one side of your application to another, you can use it to
specifically rethrow or reraise the exception, even transfer it out of the original TryCatchFinally block to
another method. You can also do whatever you need to do to fix the problem that caused the original hiccup
and then return to the original method to try again (passing the ball back to the pitcher to have another shot).
The exception−handling code and the code you can place in a Finally block can be used to roll back and clean
up. It is key to remember that whatever happens in the exception−handling code, execution will resume with
the code that comes after the End Try statement.

Recovering from Exceptions

There are exceptions from which you cannot easily recover. You can recover from your application or custom
exceptions, but you cannot easily recover from most run−time exceptions without changing conditions in the
system and hardware underpinning the application. What's the difference between exceptions raised from run
time errors (in the CLR and even beyond its borders) and the custom exceptions?

Exceptions can be raised for the following reasons:

Syntax errors These errors can occur if something is declared incorrectly and the compiler does not
realize it. Syntax errors slip by unnoticed when syntax checking is turned off, by setting Option
Strict to the Off position. A good example of a syntax error is an element or member of an object
being accessed when the object has not been created.

•

 Recovering from Exceptions

341

Run−time errors These errors occur during execution of your code, but may have absolutely
nothing to do with your code. They can be produced by some of the simplest problems that may arise
during run time, but the errors do not normally mean the algorithm or application is flawed. An
example of such an error is an attempt to open a file or database that does not exist because the
administrator moved the server. Your duty, however, is to write code that anticipates that a time may
come when an idiot decides to delete a production database and bring the whole company, and your
application, down. Other examples of actions that cause run−time errors include trying to dial a
telephone number with no modem attached, serializing an object to a full disk, and processing a
lengthy sort with no memory. In all of these cases, if the resources existed, no errors would result and
no exceptions would be thrown. Run−time errors usually come from the operating system, which
detects the violations in its part of the world, beyond the borders of the CLR where operating system
services live.

•

Logic errors These errors are similar to syntax errors because they go unnoticed by a preprocessor or
the compiler. A divide−by−zero error is a classic example. This is not seen as an error until the
program finds itself in a divide− by−zero situationthe logic of the algorithm leads the program to code
that is essentially, but not inherently, flawed. Other examples include trying to access an element in
an array that exceeds its upper boundary, reading beyond the end of a stream, trying to close a file that
has not yet been opened, or trying to reference an object that has been terminated. Logic exceptions
usually come from the operating system, which detects the violations. You may also provide custom
exception classes to deal with your own logic errors.

•

Conditional errors These are exceptions, usually custom−built by deriving from a base exception
class, and are explicitly raised. You would raise exceptions only if a certain precondition or
post−condition exists or does not exist in your code. For example, if a node of a custom linked−list
class is not found at the start of an algorithm or block of code, you could raise a custom
NoSuchElementFoundException exception to trap the condition. A post− condition exception
would be raised if a condition you specify in the exception handler does not exist after the algorithm
is processed. For example, if your code is supposed to leave the application in a certain condition
before continuing and does not, you could provide an exception right therein a post−condition
exception handler.

•

You can create custom exceptions to cater to anything you believe should be considered an error and that is
not provided by the default exception classes provided in the base class library.

Note Using the directive Option Explicit On at the top of your class files forces the Visual Basic
compiler to forward−check your syntax before it is compiled. It lets you be sure that all code
is free of syntax errors before run time.

An exception is an object that is derived from the superclass Exception. When you add an exception handler
to a method, you are essentially providing a means of returning control to the application and resuming
execution as normally as possible. What would life be like if humans were provided with error or exception
handlers like this? Just as you are about to make a gargantuan mistake, an error handler would catch the
"error" and put you back on track. Humans learn from mistakes; unfortunately it takes a lot of effort to write
heuristic software.

You can make it so that the caller of a method handles the exception raised in the target method. It might also
be necessary for the caller of the caller to handle the exception, and you might have to go quite far back on the
call stack to handle an exception.

When a method that bombs on an error is unable to deal with it, we say it has thrown an exception. This term
comes from C++ and has caused many developers to balk at the idea of a class having a fit any time
something goes wrong in a program. You might think of handling the "throw" as being similar to catching a

 Recovering from Exceptions

342

ball at a baseball game. Drop the ball and miss the catch and you let the team down. Such exception handling
is not a new idea. For example, structured exception handling has been part and parcel of the Object Pascal
language and Delphi since its inception.

Exception Statements

To catch exceptions in Visual Basic, you need to enclose your code in a TryCatch block. The guarded code
to execute is placed in the Try section of the block, and any errors are handled in one or more Catch blocks.
After the last Catch block, you can provide the optional Finally block that will always execute regardless of
whether or not an exception occurred. The Finally block is mandatory if no Catch block is used. Later, I will
show you how you can use the Finally block to reset resources and provide some housekeeping.

Try

Back in the early '90s when I was a "newbie" Delphi programmer, I made an effort to code 99.9 percent of my
stuff in try except/try finally blocks. In other words, no matter what routine I was writing, as soon as I
arrived at the point in the method where the algorithm starts, the first line of my code was try. I am not
ashamed to admit that I often did stuff like this:

 Try
 Y/0;
except
 on EZeroDivide do HandleZeroDivide;
end;

I did this (Object Pascal code) at a time when exception handling had just been introduced to the new
object−oriented programming languages that were emerging. Clearly, more than a decade ago, many of us
wrapped code in these exception−handling blocks just to "play it safe." You may laugh, but at least it was
better than adding the line On Error Resume Next at the top of every routine regardless of what that routine
did.

This habit carried over into my Java programming by 1995 and I always believed this until I decided to
investigate exception handling in much more detail than I needed to. Before you get carried away, consider
the following advice:

Not all code produces exceptions. There's no point enclosing the call to BackGround.SetColor
between a TryCatch block. First, you do not really have the ability to handle the exception properly,
and second, it's unlikely that a property like this will be coded in such a way that it can risk
exceptions. And even if a property were prone to exceptions, the exception handling should not be
handled by a method that calls faulty code. Imagine asking a restaurant patron to "handle" his or her
own "fly−in−the−soup" exception.

•

Exceptions not handled by the method that raised them may, and often should, get handled by
methods that came before it. In other words, the methods are popped off the call stack one by one
until a suitable handler is found. So not handling the exception at the point it was raised does not
mean your application is going to go to hell on the A−train. The FindExcept class presented later
shows how this "delegation" works.

•

Variables and constants declared inside the TryCatch blocks are only visible inside the block in
which they were declared. In other words, their visibility does not extend beyond the scope of the
guarded block of code. You will also not be able to see the variables from the Catch or Finally
sections of the handler.

•

 Exception Statements

343

These points suggest that you should not willy−nilly enclose everything in TryCatch blocks but rather should
think through your code properlyaccording to the design patterns, models, and well−scripted method
specifications discussed in Chapter 7. If you do this, you'll easily be able to figure out exactly where you need
to put a handler and the purpose it will serve.

Catch

The code that handles your exception begins at the Catch statement as follows:

Catch Except As Exception

or

Catch E As Exception

The preceding statements serve to instantiate the exception object that can handle the type of exception. Each
exception object is a reference type, and in the preceding code, Except and E are the reference variables. The
variable reference model at work here is the same object reference model described in the previous chapter,
and you can work with or on any exception object as you would with any other instance.

What the illustration shows is this: At the point an error is detected, the next line of code processed is the
Catch line, which instantiates an exception object to deal with the exception. The exception object is accessed
by way of its reference variable. As soon as you have instantiated the object, you can get to work on handling
the error. "Handling" can range from doing practically nothing to doing a whole lot. The first job might be to
consider the user who might be inconvenienced, and report information to that user. So, we could display a
message to the user, as demonstrated in the following code, which produces the message box seen in the
illustration below.

Public Sub CheckForModem()
 Try
 If Not ModemExists Then
 Throw New Exception()
 End If
 Catch E As Exception
 MsgBox("Can't find the modem.", MsgBoxStyle.Exclamation, _
 "The Complete Reference")
 Finally
 isCompleted = False
 End Try
End Sub

 Catch

344

Note Only provide the user with information he or she has the power to change or can use. It makes no sense
to tell a user that a "DivideByZeroException just occurred."

Naturally, you would want to use common sense here and communicate with the user in a manner he or she
will be able to relate to. If the exception is a matter of concern for the program and its creator, then there's no
need to report the exception and the contents of the exception object's message field to the user. Simply
handle the exception and move on if possible.

Table 11−1 lists the members of the framework's base class library exception objects (r signifies read−only
and r/w signifies read and write). Let's go through these members and see how they can be used to handle
exceptions.

GetBaseException

This method returns the root cause of an exception. In a chain of exceptions, there will always be a link back
to the root exception via the InnerException property. You can gain access to the root exception, read any
information from it, and pinpoint exactly in your code where the trouble started in the first place. The
ToString method of the root exception will provide you with the type of current exception and will identify
the line that raised the exception. Have a look at the following code:

Public Sub GetToStringOfException()
 Dim ex As Object
 'set up the exception for out of range error
 Dim mdArray(5) As Integer
 Try
 mdArray(6) = 10 'oops
 Catch Except As IndexOutOfRangeException
 ex = Except.GetBaseException
 Console.WriteLine("Info: " & ex.ToString)
 Finally
 isCompleted = False
 End Try
End Sub

The output to the console window is as follows:

Info: System.IndexOutOfRangeException: Index was outside the bounds
of the array. at Vb7cr.ExceptionTests.GetToStringOfException() in
C:\Vb7cr\Exceptions\ExceptionTests.vb:line 157

See also the discussions on InnerException in "Creating Your Own Exception Classes" later in this chapter.

Table 11−1: Methods and Properties of an Exception Object

Exception Member Usage

GetBaseException Returns the root cause of the exception

Catch

345

GetObjectData Serializes out the exception object's data

GetType Gets the type of the current object

HelpLink (r/w) Sets a link to a help file associated with the exception

InnerException (r) Returns information about the exception caused by the previous exception
object

Message (r) Returns any error message that describes the exception

Source (r/w) Gets or sets the name of the application that caused the exception

StackTrace (r) Takes a snapshot of the call stack and places the information in a string you
can access

TargetSite (r) Returns the name of the method that threw the exception

ToString Returns a string representation of the current exception (maybe the same data
as the message)

GetObjectData

This method serializes out the exception object's data.

HelpLink

This is a property you hard code as a constant to the class and set it whenever your class is raised. The link
can be provided to the user in a variety of ways. The consumer of the class may display it to a message box
and from there let the user visit a Web page with further information or as a means to collect debug data. See
"Creating Your Own Exception Classes" later in this chapter.

InnerException

This property stores the reference to an exception object that may have preceded the current exception. There
are two ways that another exception can arise as the result of an exception. The first way is that the code in the
current exception handler itself causes another exception. After all, the Catch block itself has as much power
to process code as the Try block. I don't believe you should add 101 lines to the Catch block. That's not good
programming. But even one line of code can be a problem.

The second way is if you explicitly raise another exception with an explicit Throw from the Catch block. The
latter way is a more likely scenario, because you may have something else to test in the Catch block and
decide to raise another exception. The second exception raised can be used to take the flow of execution to the
handler provided in the method that originally called the method that started the exceptions.

Later, in the section "Creating Your Own Exception Classes," we'll look at some code that specifically
accesses the InnerException property.

Source

This property stores the name of the class or instance in which an exception was raised. Combine the Source
property with the Message property and other data to create a detailed report on an exception. The entire
string can then be stored and shipped off to a log, saved to a file, or made available to an administrator that
can have access to a window that has access to the information.

In the example that follows, I concatenated Source with the Message property and pushed it onto a stack
object storing my exception information for the class:

Catch

346

Public Sub LookAtSource()
 Dim mdArray(5) As Integer
 Dim myErrorStack As New Stack() 'remember stacks need New for activation
 Dim myErrorSource As String
 Try
 'this next line raises another IndexOutOfRangeException
 mdArray(6) = 10
 Catch Except As IndexOutOfRangeException
 myErrorSource = Except.Source & ": " & Except.Message
 myErrorStack.Push(myErrorSource)
 Console.WriteLine(myErrorStack.Pop)
 Finally
 isCompleted = False
 End Try
End Sub

The StackTrace Property

This property is similar to Source but the information is a lot more detailed. You get the exact call from the
main call stack for the application. The call returned is the method call and the line number in the class where
the exception occurred. This property is very useful for debugging, as the following example shows:

Public Sub LookAtStackTrace()
 Dim mdArray(5) As Integer
 Try
 mdArray(6) = 10
 Catch Except As IndexOutOfRangeException
 Console.WriteLine(Except.StackTrace)
 Finally
 isCompleted = False
 End Try
End Sub

This code writes the following line to the console window:

at Vb7cr.ExceptionTests.LookAtStackTrace() in
C:\Vb7cr\Exceptions\ExceptionTests.vb:line 190

See also the discussion on InnerException in "Creating Your Own Exception Classes" later in this chapter.

Tip The stack trace begins at the throw−point, the statement that causes the exception, and ends at
the Catch statement that catches the exception, so be aware of this fact when deciding where to
place a Throw statement.

Message

We examined the Message property earlier. It provides a message created by the author of the exception
object, and hopefully provides details about the cause of an exception. Often it's just information about the
type of exception raised, such as "Index was outside the bounds of the array."

The message string may be in the language specified by the Thread.CurrentUICulture property of the
thread that throws the exception.

Catch

347

TargetSite

This property returns the method that raises your exception. You can combine it with some of the other
properties, like Source, to supply your own information concerning the classes and method in which
exceptions originate.

Finally

When an exception occurs, execution stops and control is given to the closest exception handler. This often
means that lines of code you expect to always be called are not executed. There are times when resource
cleanup, such as closing a file, must always be executed even if an exception is thrown. To accomplish this,
you can use a Finally block. A Finally block is always executed, regardless of whether an exception is thrown
and regardless of whether you used a Catch block to handle the exception.

The following code example uses a TryCatch block to catch the IndexOutOfRangeExceptions we have
been looking at for the past couple of examples. In the following listing the Finally block executes regardless
of the outcome of the action and sets the isCompleted Boolean variable to False in order to return to the
menu rather than close down the application.

Public Sub Main()

 Dim menuChoice As Char
 While Not isCompleted
 Console.WriteLine(" ")
 Console.WriteLine("−−−−−−−−−−MENU−−−−−−−−−−−")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.WriteLine("a: Test the NodeNotFoundException.")
 Console.WriteLine("b: Test exception parser.")
 '...
 Console.WriteLine("i: Get a LookAtStackTrace.")
 Console.WriteLine("Q: Q or nothing to quit application.")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.Write("Choose a process: ")

 menuChoice = Console.ReadLine()
 Select Case menuChoice
 Case Is = "a"c
 GetNodeNext()
 Case Is = "b"c
 TestParser()
 '...
 Case Is = "h"c
 LookAtSource()
 Case Is = "i"c
 LookAtStackTrace()
 Case Else
 isCompleted = True
 End Select
 End While
End Sub

'lots of methods in between

Public Sub GetNodeNext()
 Try
 Throw New NodeNotFoundException()
 Catch NExcept As NodeNotFoundException

Catch

348

 Console.WriteLine(NExcept.Message)
 Finally
 'we need this line to keep the menu in the console alive
 isCompleted = False
 End Try
End Sub

The Finally section in the preceding method returns the user to the Console and provides for a normal exit
from the application, no matter what the exception.

The preceding technique is useful, but in most applications and services, the Finally block is used to clean up
after the code in the blocks that preceded it, no matter whether an exception was raised or not. Because the
Finally block is always called, you never want to recall the method, either directly or indirectly, from the
Finally block because you'll end up putting the method on a carousel.

The Finally block will also be processed after an Exit Sub or an Exit Try statement aimed at knocking the
execution out of the entire method. It will also process after a Return anywhere in preceding blocks. And the
Finally block is also executed after an exception is passed up the call stack to a method that was pushed down
onto the stack earlier and even within inner and nested exceptions.

The Finally block is also not restricted, so it's quite possible for it to raise another exception. Should that be
the case, the exception will be passed up the call stack to a method that has a suitable Catch handler that can
be delegated the task. Keep code in the Finally block simple and as exception−proof as possible, because it
makes no sense to be raising exceptions after a lengthy cleanup.

Note When an exception is handled by a method further into the call stack, or not by a handler in the
method that caused the exception, the code that comes after the exception (after the End Try
statement) is not processed. This is normal behavior regardless of whether Finally is used or not.

When Filters

The When keyword in a Catch handler is a new concept that lets you "filter" exceptions according to criteria
you specify. Interestingly, only Visual Basic and C++ support this concept of user−filtered exceptions. Since
exception handling has been around for many years without such a concept, I wondered in what situations
such an idea would be useful. Turns out that it helps reduce the amount of exception−handling code by letting
you decide when you want to handle an exception in the local handler or let the exception through to be
handled further into the call stack.

It is also useful when a particular exception object corresponds to several errors. For example, several areas in
your Try code can raise argument, null reference, and similar exceptions. The syntax for using the When
condition is as follows:

Catch Except As Exception When Something is True

In the following simplistic example, which works like an IfThen statement, we set up two Stack objects that
will render exceptions of type DivideByZeroException (a Decimal divided by the default values of denom
and demon2) rather than the overflow exception. Calling the method with denom as zero causes the first
exception to be picked up be E1. However, when we fix denom with the value 10 the When keyword takes
the code over E1 to be caught by E2. Check it out:

Public Sub CatchWhen()
 Dim myStack As New Stack()

 When Filters

349

 Dim yourStack As New Stack()
 Dim value As Decimal = 10
 Dim denom As Integer
 Dim denom2 As Integer
 Try
 myStack.Push(value / denom)
 yourStack.Push(value / denom2)
 Catch E1 As DivideByZeroException When denom = 0
 Console.WriteLine(E1.Message & " at myStack")
 Catch E2 As DivideByZeroException When denom2 = 0
 Console.WriteLine(E2.Message & " at yourStack")
 Finally
 isCompleted = False
 End Try
End Sub

In the preceding example, the custom MyDivideByZeroException will be instantiated only when the denom
variable is zero; otherwise, all other DivideByZeroExceptions will be handled by the second handler.

When Filters and the Error Object

Visual Basic maintains a global and system−wide error object that you can tap into by using the When
exception filter as follows:

Try
 mdArray(6) = 10
Catch Except As IndexOutOfRangeException When Err.Number = 9
 '...
End Try

In the preceding example, you can access the Error object (Err), which typically has a property that contains
the specific error code associated with the error. You can use the error code property in the expression to
select only the particular error you want to handle in that Catch clause.

The following Visual Basic example illustrates the CatchWhen statement:

Try
 '...
Catch When Err = VBErr_ClassLoadException
 '...
End Try

or

Try
 '...
Catch When Err.Number = 9
 '...
End Try

While using When with the error object appears useful, it doesn't offer anything more powerful than standard
SEH Catch handlers. The following example does not present you with a reference variable:

Try
 mdArray1(6) = 10
Catch When Err.Number = 9
 MsgBox(Err.Description)

When Filters

350

End Try

However, you can use the Err object to create an exception because the SEH architecture and the Err object
basically get their error grist from the same mill. Still, it's better to work with exception objects and work the
Err object out of your future.

Nesting Try Blocks

If you're new to writing code inside TryCatch blocks, it can take some time to get into the habit of doing so.
While you can easily compile Visual Basic code without a TryCatch block, good Visual Basic design guards
code whenever necessary.

I often have thought that the compiler and the run−time environment should require, in most cases, that the
TryCatch blocks be mandatory for certain syntax. When you write delicate code without a TryCatch block,
you are relying on the run−time system to serve up the default exception handler. But that's like flying on
autopiloteventually you have to take control to land the plane.

When you have been writing Visual Basic code long enough, you begin to think in terms of TryCatchFinally
in the same way you think in terms of objects and classes, or methods and their membersthe inherent makeup
of an object−oriented program. It just becomes natural to build blocks of functionality with the Try keyword.

It should come as no surprise, therefore, that a single Try block does not always cater to complex methods.
Many circumstances will require you to create additional TryCatch blocks inside of your outer ones. In other
words, as a matter of course, you'll be nesting the blocks for complex and perhaps very long methods.
Sometimes you might find reason to nest these blocks to several levels.

When the code being executed enters an outer Try block, the so−called context of that exception is pushed
onto the stack. When something goes wrong and the current exception does not have the correct handler, the
code reverses back up the stack and the next Catch statement is scanned for a handler. The code continues to
back out of the stack until a handler is found or the run−time system is forced to handle the exception. You
saw this at work at the beginning of the chapter, but have a look at the following example:

Public Shared Sub TestNest(ByVal value As Integer, ByVal value2 As Integer)
 Dim result As Integer
 Dim array(5) As Integer
 Try
 result = value / value2
 Try
 array(6) = 10
 Catch Except As IndexOutOfRangeException
 Console.WriteLine(Except.Message)
 Finally
 Console.WriteLine("Inner Finally")
 End Try
 Catch Except As OverflowException
 Console.WriteLine(Except.Message)
 Finally
 Console.WriteLine("Outer Finally")
 End Try
End Sub

What's happening here? This code nests one TryCatch block within another. At first a potential
divide−by−zero exception is set up so as to deal with it on the outer TryCatch block. The code does drill into
the Try nest as you would expect, so it never encounters the IndexOutOfRangeException. The reason is

 Nesting Try Blocks

351

simple: as noted earlier, the code in the entire outer Try block is ignored, and that goes for any nested Try
statements inside of it.

If the outer Try code checked out, then the inner Try would still be live code and the processing would go on
to encounter the IndexOutOfRangeException. However, if no suitable exception were found, the outer
Catch block would be tried for a suitable handler. In the preceding example, the handler might be found at the
level of the calling method, which has a default handler for any Exception object.

Nesting Try statements is not easy, and you can often waste a lot of time with misplaced closing End Try
statements and out−of−position Catch statements, which result in a compiler error reporting that the Try is
catchless. Here's a tip: First create and complete the outer Try statement, complete with its Catch and
especially a Finally block, if you need one. Then go into the inner Try block and code the new inner
TryCatchFinally from start to finish. Do not leave out all the Catch blocks until after the Try blocks are
done. You'll tear your hair out trying to properly place the Catch and Finally blocks with the correct Try
blocks. Follow similar design logic to the steps suggested back in Chapter 6 for nested conditional statements.

While you can practically nest to as many levels as you need to, your code will become very hard to follow
and maintain, and that's not good design. When you code methods that have the potential of generating many
exceptions, stack the Catch handlers rather than nest them. This has the same effect as a deeply nested
collection of TryCatch blocks, but it's far easier to follow, as the following code demonstrates:

Public Shared Sub TestStack(ByVal value As Integer, ByVal value2 As Integer)
Dim result As Integer
 Dim array(5) As Integer
 Try
 result = value / value2
 array(6) = 10
 Catch Except As OverflowException
 Console.WriteLine(E.Message)
 Catch Except As IndexOutOfRangeException
 Console.WriteLine(Ex.Message)
 Finally
 Console.WriteLine("Only one Finally")
 End Try
End Sub

While you gain clarity in your code, stacking the handlers rather than nesting the TryCatch blocks has a
significant downside: You are limited to one Finally block when you stack handlers. Nested Try blocks give
you a Finally block for every exception handler. In other words, if you nest to five levels, you get five Finally
blocks. This may be an important consideration, depending on the objectives of the method. However, there is
yet another technique that is discussed later, in the section "Delegating to an Exception Handling Class."

While stacking and nesting ability is powerful, too much of either suggests that your method needs to be
decomposed as discussed in Chapter 7. A method can be hundreds of lines long if it has to be but you will
write better code, which will be easier to read and maintain, if methods are functionally cohesive units.

Throw

The exceptions that are raised or instantiated in the code examples that we have seen so far in this chapter are
automatically raised by Visual Basic. You don't have to raise an ArithmeticException because Visual Basic
implicitly does that for you if your code fouls up. There are also occasions when you can explicitly raise an
exception, when you deem it necessary or need to meet specific objectives. You do this by using the Throw
keyword, followed by New constructor to create the object.

 Throw

352

Using the Throw keyword is simple. At the so−called "throw point," simply raise the exception as follows:

Throw New SomeKindOfException

Notice that we use the New keyword because we are essentially instantiating an object, a derivative or
specialization of System.Exception or its children.

There are several uses for the Throw keyword. We have seen the first use several times already in this
chapter. We decide to raise or reraise one of the standard exceptions that come included with the base class
library and that the CLR knows about. Usually, we use Throw New because of some condition in our code
that requires it. We might decide to throw the exception based on a certain precondition not existing in a
method or a post condition also not existing (or existing).

Another important use is to raise a custom exception that the CLR might not know about. You can create your
own exception class for certain custom conditions, and you'll need to raise the custom exception with Throw
New because only you can determine, at design time, why and when to raise it. We can also use Throw to
delegate exception handling to another exception class, but I will get into that idea a little later in this chapter.

So how do you handle exceptions that the CLR is not prepared for? You can write code that is able to
distinguish between violations that are always caught by the CLR and violations that are not caught by the
CLR (it does not know about them), and you need to provide the facility in your method to catch these
exceptions.

To check and raise exceptions that your code might create, and thus protect callers of the method, you can add
a Throw statement to the method as shown in the following method.

Public Sub Factor()
 Try
 If myStack.Pop <= 0 Then
 Throw New DivideByZeroException
 End If
 Catch Except As DivideByZeroException
 Console.WriteLine(E.Message)
 Finally
 isCompleted = False
 End Try
End Sub

If you declare the exception with the Throw New statement, you are essentially forcing prior callers to handle
the exception. Using this technique is good programming practice because, as your code evolves and increases
in complexity, you know you have the reinforcement bar in place should your concrete come under
unexpected pressure.

Two interesting items to note here:

Visual Basic gives you the ability to create a new exception object, thus enabling you to set up a new
exception−handling scenario. This is useful if you need to create specialized exception−handling code
that does a better job for your situation than the default exception−handling classes.

•

Visual Basic lets you pass text and InnerException data to the new exception object's constructor. In
the declaration and instantiation object, the Message property, normally read−only, is overloaded, and
two of the alternative methods are read/write.

•

You can pass data to the parameters of the new object's constructor as follows:

 Throw

353

Catch Except As DivideByZeroException
 Throw New DivideByZeroException("I come from ExceptTests.FirstMethod")
Finally
'...

Note The ability to pass data on Throw New Exception is not immediately apparent from the Visual Basic
documentation.

The Double Play: Rethrowing an Existing Exception

Imagine, as we did earlier, that the exception is a baseball runner trying hard to ruin your game. The defensive
players covering the bases are the exception handlers, "trying" hard to "catch" the runner. After the first throw
from the pitcher, an exception handler (the catcher) picks up the ball and "throws" it to first base. This is, in
fact, the second chance the team gets to handle an exception.

Visual Basic lets us set up a similar scenario. An exception can be caught once and then rethrown to another
handler using code similar to the following:

Catch Except As OverflowException
 Except.Source = Me.ThrowPoint
 Throw Except 'double−play
Finally
'...

Where would you use the double, or even triple, throw? Sometimes you may have a need to catch an
exception, add information and data to its read/write properties, and then rethrow the exception. This example
rethrows the exception but not before first adding information to the Source property, which for some
exceptions is left empty. You can also add a URL link to a page on a Web site somewhere or to a local help
file by populating the HelpLink property and then rethrowing the exception. Here is a more concrete
example:

Public Module ExceptionTests
 Shared Sub Main()
 Try
 TestThrow(10D, 0)
 Catch Except As Exception
 Console.WriteLine(Except.Message & " " & Except.HelpLink)
 Finally
 Console.WriteLine("Normal exit: Press 'q' to quit the sample.")
 While Chr(Console.Read()) <> "q"c
 End While
 End Try
 End Sub

 Public Sub TestThrow (ByVal value As Decimal, ByVal value2 _
 As Integer)
 Dim result As Decimal
 Try
 result = value / value2
 Catch Except As OverflowException
 Except.HelpLink = "http://www.codetimes.com/adfwe54353fef.htm"

 Throw Except
 Finally
 Console.WriteLine("Outer Finally")
 End Try
 End Sub
End Module

Throw

354

This may be a little hard to follow, so let me explain. The method that caused an exception is called
TestThrow (adapted from TestNest, shown earlier), which comprises a TryCatchFinally block. This method
is called by Main, which causes an OverflowException object caused by passing in Decimal 10 to be divided
by Integer 0 to TestNest parameters. An inner handler takes care of the exception and tacks on the URL to
the HelpLink property.

The next line is Throw Except, which rethrows the exception, this time complete with the data in the
HelpLink property. The second throw point does not create a new exception; it just rethrows the exception.
The exception is caught by the handler in the method that called TestThrowin this case Main.

Note When you rethrow an exception or throw a new exception as demonstrated in the preceding example, the
CLR passes the rethrown exception object to a handler in the previous method, because the current Try
and Catch blocks are out of scope. Only the Finally lives on, and the flow of execution dictates that the
Finally from the current method is processed before the newly thrown exception is handled by the
method the flow of execution returns to.

Using Throw to Delegate to an Exception−Handling Object

Another technique used in other object−oriented environments that have SEH is the delegation of exception
handling to an exception−handling object or operations class.

When a complex method has the potential to raise several different types of exceptions, or when you have
many methods in a class that all have exception−raising potential, you may have to nest TryCatch blocks to
many levels or stack the Catch handlers to several "stories." This can make the method hard to read, maintain,
and manage as I mentioned earlier. You can instead catch any exception caused by the method in a single
default catch handler and then pass the reference to another method that can better handle the exception
object. To use the baseball analogy again, it's like throwing the ball to the catcher at home plate and then
letting the catcher decide where to throw next.

The pattern is simple as shown in the UML diagram here.

Create a static class or instance with methods that receive the reference variable to the exception's object
instantiated elsewhere in your application. Then, in the method that raises the exception, catch the object
using the default exception handler. With the exception object "in your mitt," pass it by reference to the
exception−handling method in the exceptions class or object delegated to handle the exception.

Once the reference has been received by the method in the exception−handling class, it can be rethrown to an
assortment of exception handlers. The following code shows how I implemented this idea. The class contains
a method that does not do much except throw an exception to simulate the real thing.

Imports Vb7cr.Exceptions
Imports System

Throw

355

Public Class ExceptionTests

Private Ex As IExceptor = New ExceptorImp()
Public Sub TestParser()
 Try
 Throw New Exception()
 Catch Except As Exception
 Console.WriteLine("came back with: " & Ex.ParseExcept(Except))
 Finally
 isCompleted = False
 End Try
End Sub

The method TestParser can call the ParseExcept method of the IExceptor interface and pass it a reference
to the object. The following interface and implementation code is on the receiving end of the call:

Interface IExceptor
 Function ParseExcept(ByRef Except As Exception) As String
End Interface

Class ExceptorImp
 Implements IExceptor

 Public Function ParseExcept(ByRef Except As Exception) _
 As String Implements IExceptor.ParseExcept
 Try
 Throw Except
 Catch E As DivideByZeroException
 Return E.Message
 Catch E As DivideByZeroException When E.Source = _
 "ExceptionTests.ThreeInOne"
 Return "Right place pal " & E.Message
 Catch E As IndexOutOfRangeException
 E.Source = ""
 Return E.Message
 Catch E As NodeNotFoundException
 Return E.Message
 Catch E As Exception
 Return "Two mules for sister Sarah " & E.Message
 End Try
 End Function
End Class

The method ParseExcept in the above code implements a number of options depending on the type of
exception. It gets the reference to the exception object and simply rethrows it to its own Catch blocks. The
stack of Catch blocks can filter the exception until the correct exception object is found. It can then be dealt
with, as you deem necessary. The ParseExcept method returns normally to the method that called it, so any
additional lines of code, or a Finally block, are still executed by the caller.

Note The above code was taken from an e−mail server I wrote a couple of years back. Any network
programming you do, particularly sockets, has the potential to create many scenarios you'll want to
throw exceptions on (and many that will give you no choice). These include losing connections,
receiving bad data, receiving invalid responses from hosts, getting malformed URLs from the sockets,
parsing malformed domain names and e−mail addresses, and so on.

You can be as creative as you need to in the ExceptorImp class. The code in ExceptorImp also implements
an exception filter with the When keyword, as shown earlier in this chapter, so you can tighten the connection

Throw

356

between the class that caused the exception and the ParseExcept method. The following code demonstrates
two exception handlers for different DivideByZeroException objects filtered according to source:

Catch E1 As DivideByZeroException When E.Source = "Delivery.GetPercenatages"
 Return E1.Message
Catch E2 As DivideByZeroException When E.Source = "Receiving.GetPercenatages"
 Return E2.Message

One thing I should point out as a matter of interest: The class that parses the exception is implemented here as
an interface and implementation. You could just as easily couple interface and implementation in a standard
class. However, de−coupling the interface from the implementation like this is useful for varying the
implementation and reusing the interface for a number of situations. This is made possible with the following
declaration used eariler:

Private Ex As IExceptor = New ExceptorImp()

This code couples the interface IExceptor (as Ex) to an implementation of it (in this case ExceptorImp. The
pattern is known as Strategy and is covered in more detail in Chapters 13 and 14.

Exception−Handling Tips

Structured exception handling is very important, but you should not overuse it. Here are some important tips
to make sure you do not:

Avoid using Visual Basic exception handling for anything other than handling errors. Often,
developers will find that TryCatchFinally blocks make for interesting flow−control structures, but
using them for this purpose only serves to damage the structural integrity of the program and consume
resources.

•

Creating custom exception classes for every error you might encounter doesn't make sense. Creating
equivalents of the run−time exception classes only wastes time and resources.

•

Notwithstanding the usefulness of the Throw feature, you should handle exceptions, as far as
possible, in the method in which they were raised. This, too, conserves resources and makes your
code easier to follow.

•

When using nested Try blocks or multiple Catch blocks, you need to remember to place the default
Catch E As Exception as the last Catch block, because placing it earlier will prevent any later
exception classes (both custom or built−in) from ever getting executed.

•

Handle all exceptions; do not simply catch exceptions and then do nothing with them. Providing
"sterile" exception−handling code does not mean you do not have to deal with the exceptions, and
they should not merely be "swept under the carpet."

•

As mentioned in Chapters 5, 6, and 7, you should carefully evaluate if you need to throw an exception
or if the implicit throw can be avoided. Program defensively. Use flow control and iterative routines
to check for conditions that would cause an exception, and then program around those conditions.
Here is an example that causes an exception, and you now have to deal with it:

Try
 conn.Close()
Catch ex As InvalidOperationException
 'now you have to deal with it.
End Try

•

In the following example, the exception is avoided because you have tested the code for exception
"potential":

•

 Exception−Handling Tips

357

If conn.State <> ConnectionState.Closed Then 'avoid the exception
 conn.Close()
End If

Note See the State pattern in Chapter 13 and the discussion of state machines in the same chapter.
Here is another example that can potentially raise exception hell but avoids it through other
mechanisms:

Class FileRead
 Sub Open()
 Dim stream As FileStream = File.Open("myfile.txt", FileMode.Open)
 Dim b As Byte
 'Method ReadByte returns −1 at EOF (the end of the file).
 While b = stream.ReadByte() <> True
 'Do something.
 End While
 End Sub
End Class

•

On the other hand, if the test or conditional routines require you to write more code or more resources,
or both, than the exception, you should rather raise or throw the exception and then provide the means
to deal with it.

•

When you need to create custom or user−defined exceptions that will be used in remoting or
transapplication domain scenarios, you must ensure that the assemblies that contain the metadata for
the exceptions are available to the code executing remotely, or across the application domains. For
example, if an application in an application domain throws an exception that is contained in an
assembly not under its application base, the CLR will throw a FileNotFoundException. To avoid this
situation, put the assembly into a common application base shared by both application domains, or if
the domains do not share a common application base, sign the assembly containing the exception
information with a strong name and deploy the assembly into the global assembly cache (refer to
Chapters 2 and 19 for more−specific information).

•

Prefer exceptions to returning error codes or HRESULT.•
Provide a message that informs; watch the language and grammar. Users and consumers appreciate
grammatically correct and informative messages. An obnoxious E.Message that reads something like
"user is a loser" will not help your reputation.

•

Creating Your Own Exception Classes

We've covered working with the Visual Basic built−in, or class library, exception handlers. But solid
exception−handling code often requires custom exception handlers.

Creating your own exception classes is not a difficult task. These exceptions need to be derived from class
Exception, or the derivatives of Exception. Classes that derive from Exception inherit the base methods and
properties of this class. While you can still derive from Exception, you might be better off inheriting from the
children, the specialized classes, of Exception (not necessarily the ones that come installed with the .NET
Framework) and gain access to specific functionality you need, not typically implemented in the root
exception class. To create your own exception class, you can override the methods of the parent as needed.
Before we proceed to create our own exception class, let's investigate the .NET exception class hierarchy.

The .NET Exception Hierarchy

We know that two main types of exceptions can be thrown or raised by an executing program: application
exceptions and exceptions generated by the CLR. However, some exception classes can be thrown by either

 Creating Your Own Exception Classes

358

an application or the CLR.

The Exception class is the base class for exceptions in the .NET Framework. Several built−in exception
classes inherit directly from Exception. These include ApplicationException and SystemException. These
two classes form the basis for almost all run−time exceptions.

Most exceptions that derive directly from Exception add no functionality to the Exception class, so it's
uncertain for the first version of the Framework why the architects chose to split the hierarchy into two
descendant paths: ApplicationException and SystemException. For example, the NullReferenceException
class hierarchy is illustrated here.

When the CLR detects errors that result from failed run−time checks (such as array out−of−bounds errors that
can occur during the execution of any method), it throws the appropriate derived class of SystemException.
On the other hand, ApplicationException is preferred as the base class to derive from for exceptions thrown
by a user program.

The Framework architects suggest that if you are designing an application that creates new exceptions, you
should rather derive custom or application specific exceptions from the ApplicationException class.
According to the SDK documentation, the Framework architects do not recommended that you catch objects
derived from SystemException, and they believe it is not "good programming practice to throw
SystemException in your application."

Without knowing what specifically lies under the exception class "hood," I can't really explain why this is
suggested, because ApplicationException does not appear very different from the root of the exception
hierarchy, Exception. My guess is that later versions of the .NET Framework may enhance
ApplicationException. Whatever the reason, it does no harm to inherit from ApplicationException.

Note The most severe exceptions that can be caught are those thrown by the CLR, and
include ExecutionEngineException, StackOverflowException, and
OutOfMemoryException.

Choosing a Base Class from which to Inherit

Whether you decide to derive from Exception, SystemException, ApplicationException, or one of the
specific child exceptions, such as NullReferenceException, all exceptions ultimately inherit from
System.Exception. Thus, you can throw any object that derives from the Object class as an exception.
Microsoft recommends you throw and catch only Exception objects, or exceptions that derive from it,
because not all .NET languages will be able to throw non−Exception exceptions.

Table 11−2 provides a concise reference to .NET Framework exception classes. It lists the runtime exception
hierarchy.

The CLR has a base set of exceptions deriving from SystemException that it throws when executing
individual instructions. You should look up the standard exceptions provided by the CLR and determine the

 Choosing a Base Class from which to Inherit

359

conditions under which you should create a derived class. For example, interoperation exceptions derive from
SystemException and are further extended by ExternalException. For example, COMException is the
exception thrown during COM interoperability operations and derives from ExternalException.
Win32Exception and SEHException also derive from ExternalException. There is no need to specifically
declare the new exception class as long as it is linked into your namespace (refer to Chapters 2 and 4). You
must reference the custom exception with both the Throw and the New keywords.

As a class or toolkit provider, you may want your consumers to be able to programmatically distinguish
between various error conditions your product needs to cater to. The best way to do this is with your own
user−defined exceptions. Each of the Framework's specific exception classes defines a specific exception, so
in many cases, you only have to catch that exception, or derive from it. On the whole, however, you can
simply derive from the ApplicationException class and be sure you are following supported practice.

Table 11−2: The .NET Framework Runtime Exception Hierarchy

Exception Class Parent Description

Exception None The base or parent class for all
exceptions. This class is not used
as an exception object itself.

SystemException Exception The base class for all
runtime−generated errors. Use a
derived class of this exception for
custom system exceptions.

IndexOutOfRangeException SystemException Thrown by the runtime when an
array is indexed improperly or
when referencing an indexing
outside its valid range.

NullReferenceException SystemException Thrown by the runtime only when
a null object is referenced.

InvalidOperationException SystemException Thrown when something invalid is
done.

ArgumentException SystemException Base class for argument
exceptions.

ArgumentNullException ArgumentException Thrown when an argument is not
allowed to be null.

ArgumentOutOfRangeException ArgumentException Thrown when an argument is not in
a given range.

ExternalException SystemException Base class for exceptions that are
external to the CLR.

ComException ExternalException Exceptions that encapsulate the
COM HRESULT information.

SEHException ExternalException Exceptions that encapsulate Win32
structured exception handling
information.

Tip Whichever way you choose, it is always a good idea to end the class name of your custom
exception class with the word Exception.

 Choosing a Base Class from which to Inherit

360

All exceptions inherit the overloaded New constructors from the base class. The first constructor is
parameterless and thus takes no arguments when you invoke it. Simply make the call as follows:

Throw New OutOfCandyException()

The second version of the New constructor contains a single parameter that sets the message field in the
exception, which is accessible via the Message property after you raise the exception object. To provide a
message to this exception, you can invoke the constructor as follows:

Throw New OutOfCandyException("Sorry, Halloween's over")

The third version of the New constructor provides for the inner exception property as well as the message
information. That call is as follows:

Throw New OutOfCandyException(message, inner)

It is also good practice to implement the three recommended common constructors, as shown in the following
example. You can call secondary constructors if you need to and add custom private methods in the new class
that provides the message and inner exception information internally as soon as the object is instantiated.

In situations where you are using remoting, you must ensure that the metadata for any user−defined
exceptions is available at the server (callee) and to the client (the proxy object or caller). For example, code
calling a method in a separate application domain must be able to find the assembly containing an exception
thrown by a remote call. For more information, see "Exception−Handling Tips."

In the following example, a new exception class, NodeNotFoundException, is derived from
System.NullReferenceException. Three constructors are typically defined in the class, each taking different
parameters. The parameters are: no message for the Message property that is accessible to the constructor, the
inclusion of a message, or the inclusion of a message and data for the InnerException property.

Imports System
Imports System.Runtime.Serialization

<Serializable()> Public Class NodeNotFoundException
 Inherits NullReferenceException

 'Constructors
 Public Sub New()
 MyBase.New("No such node found.")
 End Sub

 Public Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub

 Public Sub New(ByVal message As String, ByVal inner As Exception)
 MyBase.New(message, inner)
 End Sub
End Class

This is the extent of the newly derived class. There is no need to expose the members of the parent to our
class, or override any base method, because the functionality we derived works just fine. If there is something
specific you want to add to the new class, declare a new method or property.

 Choosing a Base Class from which to Inherit

361

Note Do not forget to make the derived class serializable with the <Serializable()> attribute (see
Chapter 15 for more information on serialization).

The new exception class is tested with the following method:

Public Shared Sub TestNodeNext()
 Try
 myList.NodeNext
 If (NodeNext = Nothing) Then
 Throw New NodeNotFoundException()
 End If
 Catch Except As NodeNotFoundException
 Console.WriteLine(Exceptions.ParseExcept(Except))
 Finally
 'stay on current node
 End Try
End Sub

Observations

This chapter provided a thorough overview of exception handling in Visual Basic .NET because the subject is
extremely important. It also served to supplement the introduction to exception handling in Chapter 7, which
provided information on writing code with exception handlers as early as possible in this book. Exception
handling is a vital facility in the design and construction of high−quality algorithms and robust methods.

An observation that I feel is imperative to point out in this chapter is that the pure inheritance in .NET comes
into maximum use for creating your own user−defined, specialized, or custom exceptions. It makes perfect
sense to derive from the base exceptions, as demonstrated earlier, because exceptions are all one of a kind.
They all do the same thing and are tightly focused on handling exceptions raised in your code. Exceptions are
thus tightly coupled and form a natural class hierarchy that is accessed by all parts of an application. It would
make no sense, waste a lot of time, and cause a lot of anguish to your users and class consumers if you were to
reinvent the wheel and develop your own hierarchy of exception classes.

 Observations

362

Chapter 12: Collections, Arrays, and Other Data
Structures

Overview

The .NET Framework provides exhaustive support for the implementation and deployment of many classic
data structures. Easily accessible to Visual Basic .NET, these structures can be used for all manner of local
and distributed algorithms, for visual and nonvisual applications, with Web services, ASP.NET, XML, and
SOAP applications.

The data structure namespaces are underpinned by a powerful assortment of classes that can be used to search
and sort data and to store and manage like and unlike collections of objects. The following is a list of common
data structures you will encounter in this book:

Arrays The most popular data structureor "collection object" in object−oriented parlanceis an array.
An array is an ideal means of storing and manipulating data (as you will later see), and for all the
power that it packs, like the ability to reference its items through an index, it is surprisingly easy to
work with. While the first data structure that always seems to come to mind is an array, a number of
other data structures are more suited or more convenient to managing collections of data.
Nevertheless, this chapter provides extensive coverage on arrays.

•

Lists A list is also a very common data structure. The basic list, known as a "singly linked list,"
maintains a collection of objects that hold the data for each logical item, and a pointer to the next
object in the list. The head of the list is a pointer to the first item; the last item points to null. Like
arrays, lists typically process data at O(n) time (refer to Chapter 7). Linked lists are ideal for storing
unsorted data where the iteration and searching are more important than having sorted data and
ad−hoc access via the indexed element. You could use a list to store recently loaded Web pages, data
feed from serial ports, shopping carts, and any serialized streams of data. In a singly linked list, you
use an iterator or cursor (or an enumerator, in .NET terminology) to "walk" or traverse the linkage of
nodes. In a doubly linked list, the iterator can traverse the list in both directions. You can easily move
the list data to an array. The .NET Framework, however, provides a highly optimized "cross−breed"
between an array and a list, called the ArrayList, which provides similar utility to a linked list.

•

Trees A tree is a hierarchical data structure comprising list−like structures in which nodes point to
each other, like branches on a tree. However, a tree is a nonlinear structure. In other words, the
elements of a tree do not point one element to the next, as they do in lists. Each parent element points
to a left child and a right child. Trees are highly efficient search structures that typically process data
at O(log n) time. A tree is useful, for example, for representing a file system or a directory structure.
Trees are implemented and discussed in depth in Visual Basic .NET Developer's Guide
(McGraw−Hill/Osborne, 2002).

•

Hash tables Hash tables are one of the cornerstones of computer science and one of the most widely
used structures for sorting and accessing objects. A hash table stores the elements of lists in array−like
structures and provides a very convenient means of accessing objects through a key (the hash code)
based on data of the object. Hash tables are highly efficient and flexible, and we will spend some time
reviewing them later in this chapter.

•

Stacks A stack is a very simple data structure to work with. It is a structure or container of elements
that are rigidly ordered by pushing elements into the collection at one end, and then removing them
again from the same end, like a stack of plates in a cafeteria or dining room. Items in a stack are
typically referenced according to their position from the top of the stack. Items are "pushed" and
"popped" from a stack on a last−in, first−out (LIFO) order. Another name for the LIFO stack is a
push−down stack. The call stack of an operating system or the common language runtime is a similar

•

363

structure, in which calls that are pushed down into the structure are suspended until the calls pushed
on top of them are processed.
Queues Queues work in a manner opposite to stacks. In other words, the elements of queues are
accessed according to a first−in, fist−out (FIFO) order. The elements in queues are like people
standing in line at the theater. The elements that arrived in the queue first get serviced first.

•

A stack is a much simpler structure than an array and does not carry the overhead of an array. A queue is also
technically much simpler than an array. But arrays have a lot more features, as we will see, and are thus used
in many algorithms.

NET's Array and Collections Namespace

The .NET Framework organizes its data structure classes and interfaces into two principal namespaces:
System.Array and System.Collections. The former namespace contains only the Array class, while the latter
contains a variety of collection−oriented classes and interfaces. You cannot explicitly inherit from Array;
only Visual Basic can do that for you. To create and use an array, you use Visual Basic's special constructs,
which instantiate the Array for you.

The data structures in the Collections namespace that are similar to arrays maintain a collection of types that
can be referenced to and managed as logical units. The most important difference between collections and
arrays, however, is that the members of an Array object must all be of the same type, because an array is
intended to be a strongly typed collection. In other words, the declaration syntax of the Array class
instantiates the array to contain objects of only a certain type. Many of the collections we will be looking at do
not require explicit typing at instantiation.

The System.Collections namespace contains a variety of interfaces, classes, and utilities that define various
collections of objects, such as lists, queues, bit arrays, hash tables, stacks, and dictionaries. These members
are listed in the tables that follow in this section. We do not have sufficient time and space to review all of
them here, but once you understand the workings of the most important classes and interfaces, the others are
just trivia.

Table 12−1 lists the various interfaces in the Collections namespace. Many of the collection classesincluding
the Array objectimplement one or more of these interfaces. The Array class, for example, implements
System.Collections.IList, which defines methods for accessing objects in a collection via an index. Array
thus qualifies to be categorized as a collection.

Table 12−2, which lists and describes the collection classes, also indicates the various interfaces implemented
by collections. These include interfaces such as IEnumerable and ICloneable, introduced in Chapter 10.

Table 12−1: Interface Members of the System.Collections Namespace

Interface Description

ICollection Defines a method for obtaining the amount of objects in a collection,
synchronization methods, and a method for copying data from
collections to an array

IComparer Exposes a method that compares two objects

IDictionary Represents a collection of key−and−value pairs

IDictionaryEnumerator Enumerator support for the the elements of a dictionary

 NET's Array and Collections Namespace

364

IEnumerable Exposes a method used to bridge to a collection for simple iteration (see
Chapter 13)

IEnumerator Supports a simple iteration over a collection

IHashCodeProvider Supplies a hash code for an object, using a custom hash function

IList Represents a collection of objects that can be individually accessed by
index

Table 12−2: Collection Classes (Array is not a member of System.Collections)

Classes Purpose Implements

ArrayList An efficient array−like structure whose size
is dynamically increased as required; it
implements the IList interface.

IList, ICollection,
IEnumerable, ICloneable

BitArray A compact array of bit values, which are
represented as Boolean values, where True
indicates that the bit is on (1) and False
indicates that the bit is off (0)

ICollection, IEnumerable,
ICloneable

CaseInsensitive Comparer A utility that compares two objects for
equivalence, ignoring the case of strings

IComparer

CaseInsensitive
HashCode−Provider

Supplies a hash code for an object, using a
hashing algorithm that ignores the case of
strings

IHashCodeProvider

CollectionBase The abstract base class for a strongly typed
collection

IList, ICollection,
IEnumerable

Comparer A utility that compares two objects for
equivalence, where string comparisons are
case−sensitive

IComparer

DictionaryBase The abstract base class for a strongly typed
collection of key−and−value pairs

IDictionary, ICollection,
IEnumerable

DictionaryEntry (structure) Defines a structure for a dictionary
key−and−value pair that can be set or
retrieved

N/A

Hashtable A collection of key−and−value pairs that are
organized based on the hash code of the key

IDictionary, ICollection,
IEnumerable, ISerializable,
IDeserializationCallback,
ICloneable

Queue A standard FIFO collection of objects ICollection, IEnumerable,
ICloneable

ReadOnly CollectionBase The abstract base class for a strongly typed
read−only collection

ICollection, IEnumerable

SortedList A collection of key−and−value pairs that are
sorted by the keys and are accessible by key
and by index

IDictionary, ICollection,
IEnumerable, ICloneable

Stack A standard LIFO collection of objects ICollection, IEnumerable,
ICloneable

 NET's Array and Collections Namespace

365

Specialized Collections

In addition to the standard collections, the .NET Framework also provides advanced or specialized
collections, which are grouped in the extended System.Collections.Specialized namespace. These are listed
in Table 12−3.

Table 12−3: Classes in System.Collections.Specialized

Class/Structure Description Implements

BitVector32 (structure) Provides a simple structure that stores Boolean values
and small Integer values in 32 bits of memory

N/A

BitVector32.Section
(structure)

Represents a section of the vector that can contain a
integer number

N/A

CollectionsUtil Creates collections that ignore the case in Strings N/A

HybridDictionary Implements IDictionary by using a ListDictionary
while the collection is small, and then switching to a
Hashtable when the collection gets large

IDictionary,
ICollection,
IEnumerable

ListDictionary Implements IDictionary using a singly linked list.
Recommended for collections that typically contain
ten items or less

IDictionary,
ICollection,
IEnumerable

NameObject
CollectionBase

Provides the abstract base class for a sorted collection
of associated String keys and Object values that can
be accessed either with the key or with the index

N/A

KeysCollection Represents a collection of the String keys of a
collection

ICollection,
IEnumerable

NameValue Collection Represents a sorted collection of associated String
keys and String values that can be accessed either
with the key or with the index

N/A

StringCollection Represents a collection of Strings N/A

StringDictionary Implements a hash table with the key strongly typed
to be a String rather than an object

IEnumerable

StringEnumerator Supports a simple iteration over a StringCollectionN/A
Before we get down to working with the actual data structures, let's first investigate four important interfaces
that underpin collections and arrays: ICollection, IList, IEnumerator, and IEnumerable. While we will
discuss these interfaces and what they define in this chapter, we are only doing so to understand what's at
work "under the hood" of the already implemented classes discussed in this chapter, such as Array,
HashTable, and Queue. Implementation of these interfaces in custom classes is left for Chapter 13, which
also covers the subject of aggregation in more detail.

ICollection

The ICollection interface is the base interface that most collections implement. It not only provides
definitions for the most important utilities of collections and arrays, it also provides the definitions
used in all classes that represent containers of objects, such as ListBox, ComboBox, ListView,
CookieCollection, DataView, and MenuItem.

•

 Specialized Collections

366

ICollection defines the Count property and CopyTo methods, which are the more commonly implemented
members. While the definitions for synchronization are supplied, this does not indicate that collections are
guaranteed to be thread−safe. On the contrary, you need to exercise special care when multiple threads in an
application access the same collections. ICollection is implemented in Chapter 13 (the synchronization
methods have been merely declared without implementation).

IEnumerator and IEnumerable

The IEnumerator and IEnumerable interfaces support iteration through a collection of objects. You must
also implement them if you want to use the For EachNext loop construct with your collections, because For
EachNext knows how to delegate to an enumerator to loop up the collection's elements. See Chapter 13 for
an example of this.

IEnumerator's implementation provides all the functionality needed for an iteratora device that moves from
one object to the next in a collection. IEnumerable is a proxy interface given the taskthrough exposing of a
single member, a methodof returning an iterator (enumerator) for the target collection (see Chapter 10 for a
discussion on interfaces).

Note IEnumerator was a bad choice of name for this interface, because until you know that it implements an
iterator, your first impression is that it defines counting (it does not even define the Count method).
However, it is similar enough to the formal iterator pattern to have been named IIterator. You'll notice
that when referring to the actual object, I use the word "IEnumerator" or "enumerator"; but I use
"iterator" when referring to the concept of iteration from one element to the next. It's also easy to think
the IEnumerator interface has something to do with enumerations (enum value types) which is does not.

IList

The IList interface defines various properties and methods that, when implemented, provide the necessary
functionality for constructing and maintaining a collection. IList also inherits ICollection and IEnumerable,
which thus provides the necessary interfaces for iteration, counting, and working with the collection.

As a descendant of ICollection, IList is given the honor of base interface for all lists and the Array
class. It defines methods such as Add, IndexOf, Insert, Contains and so on. See Chapter 13, "Linked
Lists and Trees."

•

Fixed−size lists, indicated by the IsFixedSize property, do not allow the addition or removal of objects after
the initial creation of the list. Read−only lists, indicated by IsReadOnly, cannot be modified.

Stacks

Stacks have been around for millions of yearswell, at least the noncomputer kinds. Ever since we learned how
to store and horde, we have been stacking objects. We stack plates, money, books, tortillas, cards, and so on.
In OOP, we use a stack to store objects, one on top of the other. Figure 12−1 provides a simple graphical
analogue of a software−implemented stack.

 IEnumerator and IEnumerable

367

Figure 12−1: Objects on a stack can only be accessed last−in, first−out from the end of the stack
A stack is also known as a push−down store, and the implementation of a stack on a silicon wafer works the
same way as stacking waffles on a plate in the kitchen. We take off from the stack the last item we placed
onto it; hence, the term "push−down." If you need a waffle or a plate from a stack, you would not pull one out
from under the stackthe stack would probably topple.

Simply defined, a stack is a data structure comprising a stack of ordered objects, where the objects are added
to the top and can only be removed from the top. We say the stack is "ordered" because we can only add and
remove at one end. We can also say the stack is a LIFO construct.

When objects are placed onto a stack, we say the objects are "pushed," and when the objects are removed
from the stack, we say they are "popped." Picture the stack of plates in your local buffet−style restaurant.
These stacks are usually supported on a spring, so the hungry patrons can easily "pop" off plates as they file
past the food wagons.

Programming an object−based stack with the .NET Framework is easy. And, yes, the language does have a
prebuilt stack class that has already implemented the interfaces we discussed earlier. You can locate the stack
at System.Collections.Stack.

The methods of the Stack class are as follows:

New The Stack constructor is overloaded to allow you to specify a source collection or an initial
capacity

•

Push Pushes an element onto the top of the stack•
Pop Pops an element off the top of the stack•
Peek Looks at the topmost element of the stack without removing it•
Clear Flushes all elements from the stack•
Contains Looks for a certain element in the stack•
CopyTo Copies the contents of the stack to an existing one−dimensional array, starting at the
specified array index

•

ToArray Copies the contents of the stack to a new array•
GetEnumerator Gets an enumerator object for the stack (see the earlier discussion of IEnumerable)•

Stack implements ICollection, IList, and IEnumerable, so the Count, IsSynchronized, and SyncRoot
properties are included.

The code for declaring and using a stack is as follows:

 IEnumerator and IEnumerable

368

Dim myStack As New Stack()

Tip Remember to use the New keyword or you'll end up with a NullReferenceException.
The following application demonstrates the important methods of the Stack class:

Imports System.Collections
Module Stacker

 Private inPut As String
 Private outPut As Integer
 Private isCompleted As Boolean

 Dim myStack As New System.Collections.Stack()

 Sub Main()
 Dim menuChoice As String
 While Not isCompleted
 Console.WriteLine(" ")
 Console.WriteLine("−−−−−−−−−−MENU−−−−−−−−−−−")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.WriteLine("a: Push.")
 Console.WriteLine("b: Pop.")
 Console.WriteLine("c: Peek.")
 Console.WriteLine("d: Print.")
 Console.WriteLine("e: Find.")
 Console.WriteLine("f: Clear.")
 Console.WriteLine("g: Anything else to end.")
 Console.WriteLine("−−−−−−−−−−−−−−−−−−−−−−−−−")
 Console.Write("Choose a process: ")

 menuChoice = Console.ReadLine()
 Select Case menuChoice
 Case Is = "a"
 PushDemo()
 Case Is = "b"
 PopDemo()
 Case Is = "c"
 PeekDemo()
 Case Is = "d"
 PrintDemo()
 Case Is = "e"
 FindDemo()
 Case Is = "f"
 ClearDemo()
 Case Else
 isCompleted = True
 End Select
 End While
 End Sub

 Public Sub PushDemo()
 Console.WriteLine("Type something to push")
 inPut = Console.ReadLine()
 If Not (inPut = "") Then
 Console.WriteLine("")
 isCompleted = PushIt(inPut)
 Else
 isCompleted = True
 End If
 End Sub

 IEnumerator and IEnumerable

369

 Public Sub FindDemo()
 Console.WriteLine("Type the string to find")
 inPut = Console.ReadLine()
 If Not (inPut = "") Then
 Console.WriteLine("")
 isCompleted = FindIt(CType(inPut, Object))
 Console.WriteLine(Convert.ToString(isCompleted))
 isCompleted = False
 Else
 isCompleted = False
 End If
 End Sub

 Function PushIt(ByRef instuff As String) As Boolean
 Try
 myStack.Push(instuff)
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
 End Function

 Public Function PopDemo() As Boolean
 Console.WriteLine("Enter to pop")
 Try
 Console.WriteLine(myStack.Pop())
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
 End Function

 Public Function PeekDemo() As Boolean
 Try
 Console.WriteLine(myStack.Peek())
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
 End Function

 Public Function PrintDemo() As Boolean
 Try
 Dim myIterator As System.Collections.IEnumerator = _
 myStack.GetEnumerator()
 While myIterator.MoveNext()
 Console.Write("Current: {0}", myIterator.Current)
 End While
 Console.WriteLine()
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
 End Function

 Public Function FindIt(ByRef obj As Object) As Boolean
 Try
 FindIt = myStack.Contains(obj)
 If FindIt Then
 Return True

 IEnumerator and IEnumerable

370

 Else
 Return False
 End If
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
 End Function

 Public Function ClearDemo() As Boolean
 Try
 myStack.Clear()
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
 End Function
End Module

How to Program Against a Stack

If there is one thing that is apparent about stacks, it's that you really need little effort to program against them.
As long as you remember that you are pushing and popping objects at the top of the stack and not at the
bottom, you'll have no problems. In fact, stacks are so incredibly easy to work with, you may wonder whether
they really have any utility. After all, the first thing most of us grab at is an array, even for the simplest of
algorithms that don't require all the overhead of an array. But stacks do have many uses, and they are very
efficient.

For starters, the CLR uses a stack to keep track of method calls and parse syntax. I find stacks very useful as a
place simply to store items that I need to refer to at a later time (like a couple of seconds later) in a particular
method or algorithm (as demonstrated later in this chapter). Stacks are very fast, tiny, and efficient and
provide a central location to reference data. If you need to juggle data and only have two hands, then a stack is
what you need. Also, it often makes more sense to push a variable onto a stack than to store it in a temporary
field. Of course, you need to keep track of the items you push into the stack.

You have to remember that the stack is a LIFO structure, so what goes in last comes out first. Here's an
example:

Dim myStack As New System.Collections.Stack()
Public Sub MakeDuck()
 myStack.Push("L")
 myStack.Push("O")
 myStack.Push("V")
 myStack.Push("E")
End Sub

You are pushing the characters that make up the word "LOVE" onto the stack. But when you pop them, what
do you get? Check this out:

Public Function PopAll() As Boolean
 Try
 While Not (myStack.Count <= 0)
 Console.Write(myStack.Pop)
 End While
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)

 How to Program Against a Stack

371

 Return False
 End Try
End Function

Answer: EVOL is written to the console. This probably is not what you expected, but this is perfect for many
operations that require you to store a chronologically acquired order of string objects. Here's an example that
can be developed to keep track of the path a user takes through the Web site:

Public Sub MakeList()
 myStack.Push("http://www.sdamag.com/vb7cr/;$sessionid$QHDT1")
 myStack.Push("http://www.sdamag.com/ vb7cr /;$sessionid$AQBT5")
 myStack.Push("http://www.sdamag.com/ vb7cr /;$sessionid$AQBT6")
End Sub

The last item to go onto the stack is the last link the surfer came from. The preceding implementation is pretty
straightforward. Often you get the most utility from a stack when you reference it from within nested,
iterative, and recursive structures. The following code shows the pushing and popping from within the fabric
of a recursive construct:

Public Sub Transpose (ByRef array() As Integer, _
 ByVal first As Integer, ByVal last As Integer)
 If (first < last) Then

placeHolder.Push(array(first))
 array(first) = array(last)
 array(last) = placeHolder.Pop
 Transpose(array, first + 1, last − 1)
 End If
End Sub

Now, stand in line for a peek at queues.

Note RemoveAt is not implemented in the Stack class, which would defeat the LIFO utility of a stack.
Remember, you can't pull a plate from the bottom or middle of a stack, or else you end up with a lot of
broken china. However, you can pull a plate from the bottom or middle of a list. A RemoveAt
implementation is covered in Chapter 13 in the Linked Lists and Trees section.

Queues

What's a queue? Or rather, what's in a queue? A queue is a FIFO software construct used practically
everywhere to process items in an ordered fashion. A queue is the opposite of the stack, on which the
elements ahead in the stack are pushed down. Figure 12−2 provides a simple graphical representation of a
queue.

 Queues

372

Figure 12−2: Objects in a queue can only be accessed first−in, first−out from the front of the queue
The specification for a queue is one of the easiest specs you'll ever need to prepare. Why? Look around you.
From the moment you wake up to the moment you go to bed, you are standing in queues. For example, we
have two showers between a three−member family, yet I still have to stand in line every morning just to get
five minutes under spray. As soon as the object (me) hits the bathroom, it encounters a queue.

The software queue works the same way. To get into the queue, we need a method to stand "in" line. But we
also need a method that services the object in the front of the linean "out" method. We also need a method to
check if anything is currently in the line. That could be handled by the Count property defined by the
ICollection interface, which would return an Integer value to us. Fortunately, the .NET Framework provides
such a utility, and then some.

A good example of a queue in an application is the caller−on−hold structure of an automatic call distributor
(ACD). Calls come in, but operators are busy, so the callers get placed into a queue. As soon as an operator
frees up, the caller at the front of the queue is taken from the front of the "line" and processed.

The queue data structure represents a collection of ordered items; objects are inserted at the back of the queue
and serviced from the front. The Queue class implements the same interfaces as the Stack class, so the
Stacker example shown earlier for myStack will work the same if you just declare a Queue instead
(myQueue instead of myStack). Like Stack, the Queue class also implements the Count, IsSynchronized,
and SyncRoot properties.

Besides putting people on hold, what else are queues good for? Queues have a lot of applications. In multitier
applications, they are used to schedule objects waiting for processor time. In fact, any algorithm that has
chronological limitations will need to process a queue. Take for example the keyboard I am using to write this
section. I might be typing at 75 words per minute, but each keypress is a serial process. My computer thus
maintains a keystroke buffer, a queue, that deals with each character in chronological order; the last character
in is the last one to the screen.

Despite the similarity to the Stack class, I provided a demo called Queuer, for the Vb7cr solution that
accompanies this book. The members of System.Collections.Queue are listed as follows:

New The Queue constructor is overloaded to allow you to specify a source collection or an initial
capacity

•

Enqueue Places an element into the queue•
Dequeue Services an element from the front of the queue•

 Queues

373

Peek Looks at the element at the front of the queue without removing it•
Clear Flushes all elements from the queue•
Contains Looks for a certain element in the queue•
CopyTo Copies the contents of the queue to an existing one−dimensional array, starting at the
specified array index

•

ToArray Copies the contents of the queue to a new array•
GetEnumerator Gets an iterator for the stack (see the earlier discussion of IEnumerable)•
TrimToSize Trims the capacity of the queue to the actual number of elements•

The following example shows how to program against the queue data structure:

Dim myQueue As New System.Collections.Queue(10)
Public Sub EnqueueDemo()
 Console.WriteLine("Type something to Queue")
 inPut = Console.ReadLine()
 If Not (inPut = "") Then
 Console.WriteLine("")
 isCompleted = EnqueueIt(inPut)
 Else
 isCompleted = True
 End If
End Sub

Function EnqueueIt(ByRef qStuff As String) As Boolean
 Try
 myQueue.Enqueue(qStuff)
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
End Function

Unlike the stack, a queue, as discussed, processes the elements at the front of the structure. Thus, the
preceding example "love" is not printed out as "evol" in the following example:

Public Function DequeueAll() As Boolean
 Try
 While Not (myQueue.Count <= 0)
 Console.Write(myQueue.Dequeue)
 End While
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 End Try
End Function

LOVE is written to the console instead of EVOL as demonstrated in the earlier stack example.

How to Program Against a Queue

Despite the many applications for queues, so few programmers I talk to think of coding one just to deal with
"work flow" in their apps. The structure is very easy to define and code. The following collection of methods
places filenames into a queue for processing. The filenames are taken from the front of the queue for
processing; processing will continue as long as more files are added to the queue before it finishes.

Public Function WorkQueue() As Boolean

 How to Program Against a Queue

374

 Dim fileQueue As New System.Collections.Queue(10)
 fileQueue.Enqueue("file one")
 fileQueue.Enqueue("file two")
 fileQueue.Enqueue("file three")
 Try
 While Not isCompleted
 isCompleted = ProcessWork(fileQueue.Dequeue)
 End While
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred in the work process: " _
 & E.Message)
 Return False
 End Try
End Function

Public Function ProcessWork(ByRef filename As Object) As Boolean
 Try
 Console.WriteLine("Processing: " & filename.ToString)
 ProcessWork = True
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred in the process: {0}", E.Message)
 ProcessWork = False
 Catch E As Exception
 Console.WriteLine("An error occurred in the process: {0}", E.Message)
 ProcessWork = False
 End Try
 Console.WriteLine("Processing is finished...")
 ProcessWork = False
End Function

ProcessWork writes the following to the console window:

Processing: file one
Processing: file two
Processing: file three
An error occurred in the work process: Queue empty.

Two useful methods implemented by both Stack and Queue are the ToArray and CopyTo methods, which
copy the contents of the structures to new or existing arrays, respectively. The ToArray method is shown in
the following example (do not worry if you are unfamiliar with array declaration syntax; that's coming in the
next section):

Public Function CopyToArray() As Boolean
 Dim myArray() As Object
 Dim intI As Integer
 Dim result As String
 Try
 myArray = myQueue.ToArray()
 For intI = 0 To UBound(myArray)
 Console.WriteLine("Item " & intI & ": " & CStr(myArray(intI)))
 Next intI
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 Catch E As IndexOutOfRangeException
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 Catch E As InvalidCastException
 Console.WriteLine("An error occurred: {0}", E.Message)

 How to Program Against a Queue

375

 Return False
 Catch E As Exception
 Console.WriteLine("An error occurred: {0}", E.Message)
 Return False
 Finally
 'dereference the object for this demo
 myArray = Nothing
 End Try
End Function

Arrays

Few programming topics are as important, and as deserving of discussion, in a core reference book as arrays.
Every programmer, no matter the project, will use an arraya data structure for managing collections of
identical data types, such as integers, characters, strings, and even custom reference types. The array is to the
programmer what the chisel is to the carpenter or the scalpel is to the surgeon.

Arrays find themselves in all algorithmseven ASP.NET applications, Web services code, and various
components along the data supply, storage, and retrieval route. This section thus presents not only an
introduction to arrays, but also advanced topics, such as how to use arrays, insert values into them, sort them,
search them, and put them to work. We will also build on Chapter 7's discussion of how arrays can be passed
to methods and how methods can return arrays. This will not be the only chapter in which arrays and array
usage will crop up. Later chapters present some sophisticated techniques and algorithms that require array
implementation and access.

An array is a collection of objects of the same type, conveniently packaged in an indexed, sortable, and
searchable construct. The structure itself, which derives from System.Array, is a collection of objects (as
mentioned earlier, it implements ICollection) that are referenced via the container's name and an index
location.

One of the main attractions of arrays is that their elements, the values they hold, can be randomly accessed. As
you saw, this was not possible with the Stack and Queue classes, which also do not allow you to insert at a
certain location or remove at a certain location.

Figure 12−3 provides a representation of an array. It has a "bottom" and a "top." The array can grow and
shrink. You can copy the array, reference any element in the array, sort the array, search the array, reverse the
elements of the array, and much more.

Figure 12−3: A simple one−dimensional array
The array is referenced with a reference variable (see Chapter 9 for more details on referencing objects), and
you use it to store and retrieve variables of a like type, the elements of the array. The values are stored,
retrieved, and manipulated by referencing the indexor subscriptof the array element (the slot or pigeon hole in
which array objects are "logically" stored). The first element in the array is indexed at number 0, which means

 Arrays

376

it is a zero−based structure. The zero element is also known as the array's zeroth element, or lower bound
element(or LBound) element. An array cannot have zero length; there is always at least one element, which is
the zeroth index, as illustrated in Figure 12−3.

Not all variables referenced in the array are referenced in the same way. String objects, for example, are
referenced by references to the string data (in other words, the array's string elements are just references to the
string objects), while numeric data is stored directly in the array (see the "Boxing" section in Chapter 8).

The elements of an array and its contents can be accessed or referenced through the index (see Figure 12−4),
which would be like punching a hole in the stack or queue to access an element's value in the body of the
structure instead of at one of the ends.

Figure 12−4: Arrays are underpinned by an index, also known as a subscript, which gives you direct and
random access to any element in the array
You refer to the element of the array as the element type. The element type is created when you create the
array, and destroyed when the array is destroyed. Naturally, the only type that cannot be the element of the
array is the array itself.

Note As demonstrated in the earlier queue example, CopyToArray, an array can be declared as
type Object and then upcast to another type later.

Arrays can also comprise more than one dimension, and the elements in the dimensions can be referenced
separately from the elements of the surrounding dimensions, as we will see later in this chapter.

The Array Class

All arrays derive from the base class System.Array. This includes the Length property. The class contains a
number of useful methods and properties, which are listed alphabetically in Table 12−4.

Table 12−4: The Members of System.Array (Excludes Members Inherited from Object)

Class Member Purpose

BinarySearch Searches a one−dimensional array for a value

Clear Sets a range of elements to zero, null, or False in a one−dimensional array.
(See also "The Erase Statement," later in this chapter.)

Copy Copies the entire array or a range of elements in a one−dimensional array to
another array

CopyTo Specifies the starting element to copy to in the target array

CreateInstance Represents alternative array creation syntax for late binding

GetEnumerator Returns an instance of the IEnumerator implementation

 The Array Class

377

GetLength Returns the length of a dimension

GetLowerBound Returns the lower bound element of a dimension

GetUpperBound Returns the upper bound element of a dimension

GetValue Returns the value at a specified index in any dimension

IndexOf Returns the index at the first occurrence of the value searched for

Initialize Not yet implemented

LastIndexOf Returns the index at the last occurrence of the value searched for

Reverse Reverses the elements in a one−dimensional array

SetValue Sets the value at the specified index in a one− or multidimensional array

Sort Provides built−in sort operations

IsFixedSize Returns True or False if the array size is fixed

IsReadOnly Returns True or False if the array is read−only

IsSynchronized Returns True or False if the array is synchronized (thread−safe)

Length Returns the length of a one−dimensional array

Rank Returns an ordinal representing the number of dimensions in the array

SyncRoot Returns an object used to synchronize access to the array
Note Table 12−4 does not include the members inherited by System.Array, such as GetType and ToString.

Declaring and Initializing Arrays

When you create an array, you need to declare a length for each of its dimensions. The length of the array is
the number of elements that you need to store. As you now know, .NET array elements (no matter the
language) are referenced through a zero−based index, which, as mentioned earlier, means the first element of
the array is given the index value 0. So, to specify the length of the array, you defer to the range of indices
counting from and including 0.

Arrays are declared in the same manner as you declare any variable. Visual Basic array grammar includes
parentheses or brackets after the data type (as opposed to square brackets used by other languages). In the
following example, an array reference variable called sAlarms is declared, the intention of which is to
reference an array of ordinal values:

Dim injectorAlarms(10) As Integer

If you need to declare an array reference variable that will reference Double value types, you could declare
the array reference as follows:

Dim latinumPercentages(10) As Double

How many values can either of the preceding arrays hold? Tip: While they are declared as arrays of ten
elements (0 to n−1), you'll be surprised to discover that you won't get ten. The Visual Basic architects did
something here that confuses a lot of programmers. Using the ForNext iteration structure (discussed in the
previous chapter), let's find out what gives:

Public Sub OffByTwoArrays()
 Dim injectorAlarms(10) As Integer
 Dim intI As Integer
 For intI = 0 to injectorAlarms.Length
 Next intI

 Declaring and Initializing Arrays

378

 Dubug.WriteLine(intI)
 Debug.WriteLine(injectorAlarms.Length)
End Sub

Holy mackerel! The injectorAlarms array has 11 values (0 to n−2). Talk about getting what you didn't ask
for. (What's worse is that intI after the For loop ends up at 12 (because it started at 0).) Why did the VB
architects do this? To make it easier to convert from the 1−based arrays supported in the classic versions of
Visual Basic (version 6 and earlier), under the covers, the Visual Basic implementation of the .NET arrays
tacks on the zero element and thus adds one more element to the declaration of, in this case, 10.

When you convert a Visual Basic 6 or earlier array, you get the extra element over and above (or would that
be "under and below"?) the original array lengthin the zeroth position. The problem is that C# and other .NET
languages do not work that way. The same declaration in C# produces a ten−element array (0−9). To thus
declare arrays to the exact length you specify in the declaration, you can use the following kluge code:

Dim latinumPercentages(10 − 1) As Double

It's not elegant but it will do until Visual Basic's array declaration works like C# or J# declarations, or we get
a new array class that's not as confusing (or you take the bold step of creating a new array class from scratch).

The preceding lines of code thus declare the array reference variable named injectorAlarms with the
"potential" to hold 11 Integer or Double values. In other words, the preceding code does not yet lead to the
creation of the actual object. The object gets constructed implicitly at the attempt to assign variables to the
declared elements and when you call New in the declaration. This means that we can create the array
reference variable but delay initialization and activation of the array object, a tactic you can get away with
when you set Option Explicit to Off to allow implicit typing declaration.

The constant between the parentheses does not have to be a number. Any legal means of obtaining the
constant will do; even a value in a queue will work, as demonstrated here:

Dim latinumPercentages(ArrayQueue.Dequeue) As Double

The array reference variable should not be confused with the array element values, which are also variables
(of types). The array variable is really nothing more than a reference to an array object, as you will learn about
in the following chapter.

To initialize the array object in the declaration of the reference variable, you need to call the New constructor.
The following example creates the array object Alarms to hold four Integer variables (in elements 0 through
3):

Dim Alarms() As Integer = New Integer(4) {}

What does this code do? As you are aware, an array in .NET is an object that derives from System.Array.
The New operator thus accesses the constructor of the array class and passes the argument to create the array
of five elements. The array can thus be illustrated as in Figure 12−5.

 Declaring and Initializing Arrays

379

Figure 12−5: The array injectorsAlarms is a five−element array
In addition to the creation or activation of the array object with New, the array object must be initialized with
the trailing curly braces (the same idea is used in C# and Java). You cannot leave out the curly braces, because
that will generate an error, but you can leave the pair of braces empty, as illustrated in the preceding code, or
use the curly braces to provide the initial variables for the array elements, as demonstrated in the next section.

Note In case you were wondering, the Visual Basic 6 syntax of specifying lower bound to upper bound
elements, such as Dim Days(1 to 20) As Integer is no longer supported in Visual Basic .NET.

If an array is an object, then assigning the object to another reference variable shouldn't be a problem. This
can be done if you leave off the parentheses with an assignment statement, as follows:

oAlarms = sAlarms

Both reference variables reference the same object, as illustrated in Figure 12−6.

Figure 12−6: oAlarms and sAlarms refer to the same object
Note The Object Reference Model is discussed in Chapters 8 and 9.
To initialize the array object with data, use a comma−separated list between the curly braces, as follows:

Dim sAlarms() As Integer = New Integer () {1, 2, 3, 4, 5}

To recap, first declare the array, add an equal sign, and then follow the equal sign with the list. (You can also
leave out the New keyword, and the compiler will implicitly make the call. If you make the call to New,
however, you must include the pair of curly braces on the end of the statement, even if the pair is empty.)

The number of elements in the array can be accessed by the Length property of the array. You can test these
array declarations using the Length property. Here's an example:

Debug.WriteLine("There are {0} elements in sAlarms", sAlarms.Length)

Behold, sAlarms is truly one element larger than you declared:

There are 11 elements in sAlarms

 Declaring and Initializing Arrays

380

Declaring Multidimensional Arrays

You can use a multidimensional array to reference elements in more than one dimension. The construct is well
suited for simple referencing of two−dimensional data, much like a spreadsheet. To declare an array of more
than one dimension, use the following syntax:

Dim sAlarms(4,4) As String

This is a rectangular array that has two dimensions. You can think of the array as a table with columnseach
column represents the dimension, as illustrated in Figure 12−7.

Figure 12−7: A multidimensional array of two dimensions
The number of dimensions declared in an array determines the rank of the array. An array of one dimension
has a rank of 1; an array of three dimensions has a rank of 3, and so on. You can't go nuts with dimensions,
either, because arrays are limited to 32 dimensions. The following syntax for declaring multidimensional
arrays is acceptable to the .NET runtime:

Dim mdArray(,) As Integer
Dim mdArray1() As Integer = {New Integer(), New Integer(), New Integer()}
Dim mdArray2(,,) As Integer = New Integer(5, 5, 5) {}
Dim mdArray3(,) As Integer = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}

The first mdArray declaration creates a two−dimensional array that is not initialized with values. The second
mdArray1 declaration creates an array of three dimensions.

Note When calling the Ubound function on a multidimensional array, omitting the dimension returns the
upper bound of the first dimension.

Knowing the rank of an array is not important until you need to work with more than one array and need to
convert from one array to another. See the discussion of ArrayTypeMismatchException in the "Array
Exceptions" section later in this chapter.

Jagged Arrays

A jagged array is an array of more than one array, or an array of arrays. It is useful for working with
two−dimensional data where the structure is not rectangular, as in a multidimensional array. Imagine
declaring two arrays, sticking them together, and then referencing them through a single reference variable.
Each array can be a different length and have multiple dimensions. The shape of such an array is jagged rather
than rectangular or square. The jagged array is illustrated in Figure 12−8.

 Declaring Multidimensional Arrays

381

Figure 12−8: The jagged array
Declaring, initializing, and working with the jagged array can be tricky. The array illustrated in Figure 12−8
comprises two arrays, which can be declared as follows:

Dim sAlarms(2)() As Integer
Dim sAlarms()() As Integer = {New Integer() {5, 6, 7}, _
 New Integer() {10, 24, 63, 82}}

After the jagged array is initialized, you can access the elements in either member array using code,
demonstrated as follows:

Dim sAlarms()() As Integer = {New Integer() {5, 6, 7}, _
 New Integer() {10, 24, 63, 82}}
Dim intI As Integer
For intI = 0 To UBound(sAlarms(1))
 Console.WriteLine(sAlarms(1)(intI))
Next intI

Jagged arrays are not as universal or powerful in utility as single arrays. Many .NET constructs do not (yet)
know how to access a jagged (and even multidimensional) array. Two good and familiar examples are the
CopyTo and ToArray methods, discussed earlier. You typically need a lot of funky code to get a good
system going against the collection of arrays, and you might be better off just creating an array of objects, as
discussed later in this chapter.

Programming Against Arrays

This section deals with the peculiarities of Visual Basic arrays and demonstrates usage of several important
methods of System.Array and a number of stand−alone keywords and statements, native to the Visual Basic
language, created to make working with arrays easier. The legacy array−handling keywords can be accessed
via the Microsoft.VisualBasic.Information namespace.

First, we need to get data into the arrays before they can be of much use. You can populate the array elements
by referencing the index value that represents the position in the array. This is done as follows:

sAlarms(0) = 14320
sAlarms(1) = 12390
sAlarms(2) = 14870
sAlarms(3) = 14975

Arrays are simple to work with, although they do have their nuances, as we will see shortly. The initial value
of an array is Nothing. In other words, in the sAlarms declaration shown earlier, each element of the
five−element array is Nothing. Referencing the Nothing literal is not impossible, as the following code
shows:

 Programming Against Arrays

382

Public Sub CheckOnNull()
Dim incR As Integer
Dim conD As Boolean = True
Dim AlistIndex(10) As String
 For incR = 0 To UBound(AlistIndex)
 Console.WriteLine("Element {0} = {1}", incR, AlistIndex(incR))
 Next
End Sub

This chunk of code reports the value of each element in the array. Since nothing in the code is assigning
values to the elements then you get nothing. The same routine correctly displays Nothing for Integer
elements as zeros. The output to the console is as follows:

Element 0 =
Element 1 =
Element 2 =
Element 3 =
. . .
Element 10 =

Let's now declare an Integer array and check the results:

Public Sub CheckOnNotNull()
Dim incR As Integer
Dim conD As Boolean = True
Dim AlistIndex(10) As Integer
 For incR = 0 To UBound(AlistIndex)
 Console.WriteLine("Element {0} = {1}", incR, AlistIndex(incR))
 Next
End Sub

The output to the console now shows values:

Element 0 = 0
Element 1 = 1
Element 2 = 2
Element 3 = 3
. . .
Element 10 = 10

Notice that we need to test on the value of UBound to end the Next loop without throwing an exception. This
demonstrates that the array is zero−based (0 to 10). You need to watch this or the method will throw an
out−of−range exception (IndexOutOfRangeException) when it tries to access the nonexistent eleventh
element (see "The UBound Statement" next and the "Array Exceptions" section later in this chapter).

The UBound Statement

To find the upper bound, or size, of an array, we use the UBound statement, a keyword that can be accessed
via the Microsoft.VisualBasic.Information namespace. The syntax is as follows:

UBound(arrayname[, dimension])

The arrayname parameter is the required name of the array, while dimension is an optional parameter, of the
Long data type, representing the dimension of which array you wish to retrieve the upper bound. Use 1 for the
first dimension, 2 for the second dimension, and so on. In the following example, we use UBound to get the

 The UBound Statement

383

array's upper bound to terminate the loop without the chance of throwing an exception:

For incR = 0 To UBound(AlistIndex)
 Console.WriteLine(CStr(AlistIndex(incR)))
Next

By using UBound effectively, we will never get an exception that states we passed the boundary limit of an
array, so our code is less troublesome. An alternative to the UBound keyword is the Length property, which
is a member of System.Array and not a Visual Basic information keyword like UBound.

Note While the Microsoft.VisualBasic.Information namespace also provides
access to the LBound keyword, which was used to declare VB 6 arrays, its
utility is really redundant in .NET because the LBound of an array is now 0.

Use the Length property (and don't forget to add 1) as you do the UBound keyword. The following code
demonstrates this usage:

For intX = 0 To sArray.Length − 1
 Console.WriteLine(CStr(sArray(intx)))
Next

Using either Length or UBound in your code instead of hard−coding the number of elements makes for code
that is easier to maintain. Arrays tend to change, and the following code is a time bomb (the emphasized
value) waiting to destroy your software:

For intX = 0 To 10
 Console.WriteLine(CStr(sArray(intx)))
Next

If you must use a value less than the Length 1 or UBound of the array rather use an enumeration constant, an
Enum value, instead of a magic number, as discussed in Chapter 8. For example:

For intX = 0 To BlockEnum.SecondLimit
 Console.WriteLine(CStr(sArray(intx)))
Next

When or why would you use Length − 1 over UBound? When UBound is no longer supported. Because it
still sits in the classic VB runtime it stands a chance of being discontinued. Until that happens, if it in fact
does, you stand more of a chance of causing off−by−one hell in your code because it's not difficult to forget to
add the 1 after the Length property.

Redeclaring Arrays

Visual Basic .NET supports explicit redeclaration of arrays using a ReDim statement, and thus the ability to
keep expanding the array as needed. The cool aspect of this behavior is that you can preserve the data of the
original array. Essentially, the array can keep growing ad infinitum, as you will see shortly. The ReDim
syntax is as follows:

RedimStatement ::= ReDim [Preserve] RedimClauses+ StatementTerminator

RedimClauses ::=

 RedimClauses |

 Redeclaring Arrays

384

RedimClause, RedimClauses

RedimClause ::= VariableExpression ArrayInitializationModifier

The syntax takes the following arguments:

Preserve An optional keyword that you use if you wish to keep (preserve) existing array data when
expanding the upper limit of the array dimension.

•

Varname Required name of the variable name of the array.•
Size Required size of the new array dimension.•
Type Optional variable data type.•

The array must be initialized before the upper bound can be changed. This means that you must first declare
the array, after which subsequent calls to resize the array can be used with the ReDim statement. The type of
data that the array contains cannot be changed. If the array is declared as String, then you cannot change the
data type of the array to Integer. If you use the ReDim statement to make the array smaller, the elements in
the upper bounds of the array that you eliminate will obviously be gone forever, so be careful when using the
ReDim statement.

In the following example, we have taken the code demonstrated before and increased the array size by one:

Public Sub TestPreserve()
Dim incR As Integer
Dim conD As Boolean = True
Dim AlistIndex(10) As String
 For incR = 0 To UBound(AlistIndex)
 AlistIndex(incR) = Convert.ToString(incR)
 Console.WriteLine("Element {0} = {1}", incR, AlistIndex(incR))
 Next

ReDim Preserve AlistIndex(UBound(AlistIndex) + 5)
 incR = 0
 For incR = 0 To UBound(AlistIndex)
 Console.WriteLine("Element {0} = {1}", incR, AlistIndex(incR))
 Next
End Sub

The new output to the console is as follows:

Element 0 = 0
Element 1 = 1
Element 2 = 2
Element 3 = 3
. . .
Element 10 = 10
Element 11 =
Element 12 =
Element 13 =
Element 14 =
Element 15 =

The following are some rules to follow when resizing arrays:

You cannot change the number of dimensions in the array (refer to the earlier section "Declaring
Multidimensional Arrays").

•

ReDim does not allow you to change an array from one data type to another.•

 Redeclaring Arrays

385

When working with multidimensional arrays, ReDim only lets you extend the UBound of the last
dimension.

•

If you shrink the array, you will lose the data stored in the eliminated elements.•
ReDim is only valid in the implementation space of a method.•

The Erase Statement

The Erase statement releases the instance of an array, essentially "erasing" the array values. If you wish to
zap more than one array, you can pass a comma−delimited list of array names to the Erase statement. The
syntax is as follows:

Erase arraylist

Consider the following example:

Dim animals(5) As String
animals(0) = "Dog"
animals(1) = "Cat"
Erase animals 'Now the array is kaput

The Erase statement is destructive and hardly recoverable. If all you need to do is ditch the values in the array
and still keep the object intact for additional use, use the Clear method of System.Array (defined in IList).
Simply call the Array.Clear method and pass it the array (sans index brackets), the starting index of the
element to clear from, and the ending index of the element to clear. The following code purges the entire
array, setting the values to 0 because the array is of type Integer:

Array.Clear(sAlarms, 0, sAlarms.Length)

In other words, the clearing starts at the LBound and erases every element for the length of the array. The
following example does the same thing:

Array.Clear(sAlarms, 0, UBound(sAlarms))

The IsArray Function

The IsArray function returns a Boolean value indicating whether a variable is an array. The syntax to use the
function is as follows:

IsArray(variablename)

The following is an example:

Dim AlistIndex(10) As String
Dim incR As Integer
Debug.WriteLine(IsArray(AlistIndex)) 'writes "True"
Debug.WriteLine(IsArray(incR)) 'writes "False"

Array Exceptions

There are not too many ways you can screw up code when working with arrays. Table 12−5 lists the
exceptions that can be raised when good arrays turn bad.

 The Erase Statement

386

ArrayTypeMismatchException raises exceptions when the element's data type in the source array cannot be
implicitly converted to the data type in the elements of the target array. (Array covariance provides for the
implicit conversion from one array to another when the arrays are declared to be of the same rank and type.)

Table 12−5: Array Exceptions

Exception Object Purpose

ArrayTypeMismatchException Raised if you attempt to interchange data between arrays
that are not of the same rank and type

IndexOutOfRangeException Raised if you attempt to access an element index value
outside the lower or upper bounds of the array (refer to the
discussion of UBound in the section "The UBound
Statement" in this chapter)

NullReferenceException Raised if you try to reference elements that don't exist or
that have not yet been declared

SafeArrayRankMismatchException (Interop
exception)

Raised when the rank of an unmanaged SAFEARRAY
does not match the rank specified in the managed
signature

SafeArrayTypeMismatchException (Interop
exception)

Raised when the type of an unmanaged SAFEARRAY
does not match the type of the array specified in the
managed signature

Suppose you have an Integer array and a String array. You cannot copy data from an element of one array to
the other because the array data types are different. The following example raises this exception:

Dim sAlarms1() As Object = New String(10) {}
Dim sAlarms2() As Double = New Double(3) {1, 2, 3, 4}
sAlarms1(0) = sAlarms2(3)

The exception message is as follows:

A first chance exception of type 'System.ArrayTypeMismatchException'
occurred in arraystest.exe Additional information: Attempted to
store an element of the incorrect type into the array.

In this code, we are trying to copy a string from a String array to a Double array. It does not work and the
exception is raised, which, if not handled, will result in the termination of your application.

The message field for the preceding exception reports the following: "Attempted to store an element of the
incorrect type into the array." The "bad" code escapes detection if Option Strict is set to Off.

The next array stumbling block arises when you try to access the elements of an array that do not exist. In
other words, you access the array "out of its bounds." This throws the IndexOutOfRangeException.

Looking again at our array sAlarms, consider the following code that generates some bitterness for the Visual
Basic compiler:

Dim sAlarms() As Integer = New Integer() {1, 2, 3, 4, 5}
sAlarms(−1) = 40
sAlarms(5) = 10

 The Erase Statement

387

The first line that throws an exception makes use of an index that is lower than the base of 0 (1). This is not a
common error, because it is obvious that the array's lower bound is not an index value less than 0. But the
second error is more common, because it is not difficult to inadvertently reference an element beyond the
upper bound of the array, especially when you use magic numbers in your code. The array sAlarms has only
five elements (0 to 4), but the index is zero−based, so the upper bound is actually 4 and element 5 does not
exist.

The NullReferenceException is raised when you try to work with an array object that has been declared
without elements. The following code, which escapes detection if Option Explicit is set to Off, will thus not
work unless it is properly constructed and initialized:

Alarms()

To fix it, you need to declare the array with elements (remember, the name and the braces are just a reference
variable to the array object itself. If you need to declare the array now and then provide the length (number of
elements) later, declare the array with one "zero" element and then ReDim the array later to expand it:

ReDim Preserve Alarms(numElements)

Here, numElements represents a variable that sets the new length of the array.

The two SafeArray exceptions are raised when the rank or data types of unmanaged so−called safe arrays
differ from what's expected (the target signatures) in the managed world.

Passing Arrays to Methods

We can easily pass an array as an argument to a method. To accomplish this, you just have to leave the
brackets off the end of the array name when you do the passing. Have a look at the following statement:

SortArray(sAlarms)

This code passes the array sAlarms to the method SortArray. Why do we not need the brackets and the
element Length information? The arrays do not need to schlep such extra baggage when they get passed
around because the array object is "aware" of its own size, and the actual array object remains put. The
Length property holds the size. So, when we pass the array, we implicitly pass the length data as part of the
object's data, because only the reference variable to the array is passed.

Obviously, you cannot simply pass an array to any method that has not defined the array parameter. The
method that is to expect the array needs to make room for the arriving reference. The receiving method's
definition should thus make arrangements for the array in its parameter list, like this:

Sub SortArray(ByRef sAlarms() As Integer)
'do something with the array
End Sub

This code specifies that the SortArray method is to expect an array of type Integer as the parameter. Bear in
mind that arrays, like all objects, get passed by reference (or call by reference), so you are not actually sending
the entire object to the method, just the reference to it. By passing by reference and not by value, we can
"pass" a huge array to the method without issue (refer to Chapter 7 for a discussion on pass by value and pass
by reference).

 Passing Arrays to Methods

388

The latter part of this chapter shows how to pass array references to methods, return array references, and use
the various methods and built−in functions to work with arrays. In fact, without the ability to pass arrays to
methods and return them, we would not be able to do much with our arrays.

Receiving Arrays from Methods

You can receive an array of values from a method call (or the array reference variable). Typically, you pass
the array to some utility method, which sorts or populates the array or does something exciting with the values
in the array. Then the array is returned to your calling method. The following example calls the GetArray
method, which delivers a reference to an array of bytes:

Public Sub PrintByteArray()
 Dim bite As Byte = CByte(54)
 Dim intI As Integer
 Dim ReturnArray() As Byte
 ReturnArray = FixArray (bite)
 For intI = 0 To ReturnArray.GetUpperBound(0)
 Debug.WriteLine("Byte {0}: {1}" intI, ReturnArray(intI))
 Next intI
End Sub

The following function performs the operation and returns the byte array:

Public Function FixArray(ByVal bite As Byte) As Byte()
 Dim newByteArray(2) As Byte
 newByteArray(0) = bite
 newByteArray (1) = bite + bite
 newByteArray (2) = bite + CByte(50)
 Return newByteArray
End Function

You'll find much more information on passing and receiving arrays in the following sections on searching and
sorting.

Searching and Sorting Arrays

The simplest array search algorithm is typically known as a sequential search, because you iterate through
each element in the array, one element at a time in sequence, to find the element that matches what you are
looking for. The following code does exactly that, using a For loop to "iterate" through the array. The
example looks for a specific value in the array and then returns the index value holding the matching variable.

Sub WhatIndex(ByRef array() As Integer, ByVal ArrayVal As Integer)
 Dim intI As Integer
 For intI = 0 To UBound(array)
 If ArrayVal = array(intI) Then
 Console.WriteLine("Found the value {0} at index {1}", _
 ArrayVal, intI)
 End If
 Next intI
End Sub

This method receives the reference of the array to iterate through. It uses the ForNext loop to iterate through
the array until the variable passed to the ArrayVal parameter matches the value of the element in the array.

 Receiving Arrays from Methods

389

Here's how you call it:

Console.WriteLine(WhatIndex(Alarms, 87))

As an alternative, you can instantiate an iterator over your array and loop through it with a MoveNext method.
An iterator that implements IEnumerator is ideal for this job, and since System.Array implements
IEnumerable, we can make an iterator with the GetEnumerator method in the same fashion as we did with
the Stack and Queue classes.

The following code demonstrates the instantiation of an iterator over an array:

Sub WhatIndex(ByRef array() As Integer, ByVal ArrayVal As Integer)
 Try
 Dim index As Integer
 Dim myIterator As System.Collections.IEnumerator = _
 array.GetEnumerator()
 While myIterator.MoveNext()
 index += 1
 If CType(myIterator.Current, Integer) = ArrayVal Then
 Console.WriteLine("Found the value {0} at index {1}", _
 ArrayVal, intI)
 End If
 End While
 Catch E As InvalidOperationException
 Console.WriteLine("An error occurred: {0}", E.Message)
 End Try
End Sub

But you do not really need such elaborate code. The Array class provides a similar "ready made" method that
can return the indexes of both the first and last encounters of the value (plus several variations in between).
Check out the following code:

Public Sub FindIndex()
 Dim IndexFinder() As Integer
 With IndexFinder
 Console.WriteLine(.IndexOf(Alarms, 87))
 End With
End Sub

Can you tell what's cooking here? First, we need a reference variable to the array class. Then, we use the
reference to invoke the IndexOf method.

As for the iterator, you learned earlier that it runs at O(1) so for large arrays it might be a lot more efficient
than the IndexOf method. You should also be aware that IndexOf is defined in IList so varying
implementations of it exist, both custom implementations and framework implementations. Also, as you'll see
exactly in the section "The IndexOf Method" in the next chapter, IndexOf itself may implement an
IEnumerator object to iterate over a collection.

The BinarySearch Method

The BinarySearch method is simple to use. It essentially looks for the first occurrence of the element value
you specify and returns an Integer representing the index value of the element holding the first occurrence of
the value. If the method is unsuccessful, it will return 1 to the caller.

 The BinarySearch Method

390

The following code declares an array of type Double and then searches for the occurrence of 4.0:

Dim sAlarms() As Double = New Double(3) {1.3, 2.5, 3.0, 4.0}
Console.WriteLine("Found at index: {0}", _
sAlarms2.BinarySearch(sAlarms2, 4.0)

The method returns 3 to the caller, which just so happens to be the UBound element of this sAlarms array.
The BinarySearch algorithm can be used for a variation of array search criteria, but you must remember to
sort the array first for the best performance. Here's why: When you perform a binary search, the algorithm
bisects the array it searches and then checks the last value in the first part of the array. If the value found is
less than the search value we are looking for, the algorithm will only search the second part. If it turns out that
the value is more than the search value, then the value we are looking for might be in the first part of the
arrayin which case the second part of the array is ignored. This is why the algorithm is called binary search; it
has nothing to with the binary representation of the value.

The method makes the assumptions just described because it knows that the data in the array is sorted and that
if an item is not in one part of the array, it must be in the other. Thus, only part of the array is searched, which
is why binary search is so fast.

The method is overloaded as follows:

BinarySearch(Array, Object) As Integer
BinarySearch(Array, Object, IComparer) As Integer
BinarySearch(Array, Integer, Integer, Object) As Integer
BinarySearch(Array, Integer, Integer, Object, IComparer) As Integer

While the Array.BinarySearch method is documented to require you to first sort the array, it does not
specify the behavior of the method if it encounters an unsorted array. The following example seeds an array
with values and then sets BinarySearch on it before and after sorting. The results are not surprising. The first
example,

Sub FindMyValue()
 Dim sArray() As Integer = {12, 82, 23, 44, 25, 65, 27}
 Debug.WriteLine(Array.BinarySearch(sArray, 27))
End Sub

writes 2 to the Output window. However, what happens if we first sort the array?

Sub FindMyValue()
 Dim sArray() As Integer = {12, 82, 23, 44, 25, 65, 27}
 Array.Sort(sArray)
 Debug.WriteLine(Array.BinarySearch(sArray, 27))
End Sub

We now get 3 written to the Output window, which is correct.

Results are not only produced faster by an order of magnitude if the array is first sorted, they can also be
relied on. Thus, let's now talk about the important job of sorting arrays. We will return to binary search in the
section "Working with Trees" in Chapter 14.

 The BinarySearch Method

391

The Basics of Sorting Arrays

Most algorithms that use arrays will require the array to be searched for one reason or another. The problem
with the code in the preceding section is that the array we were searching was at first not sortedand you saw
the result. If the value we are looking for turns up at the end of the array, we will have iterated through the
entire array before hitting the match, which means we take longer to get results because the binary search
cannot perform the n/2 operation. If the array is huge, searching it unsorted might give us more than
unpredictable results.

Sequential searching like this will suffice when the size of the data set is small. In other words, the amount of
work a sequential search does is directly proportional to the amount of data to be searched. If you double the
list of items to search, you typically double the amount of time it takes to search the list. To speed up
searching of larger data sets, it becomes more efficient to use a binary search algorithmor an O(logn)
algorithm. But to do a binary search, we must first sort the array.

Search efficiency is greatly increased when the data set we need to search or exploit is sorted. If you have
access to a set of data, it can be sorted independently of the application implementing the searching algorithm.
If not, the data needs to be sorted at run time.

The reason array sorts are so common is that sorting a list of data into ascending or descending order not only
is one of the most often performed tasks in everyday life, it is also one of the most frequently required
operations on computers (and few other data structures can sort and search data as easy as an array).

The Array class provides a simple sorting method, Sort, that you can use to satisfactorily sort an array. The
Sort method is static, so you can use it without having to instantiate an array. The following code
demonstrates calling the Sort method statically and as an instance:

'with the instance method
With sAlarm
 .Sort(sAlarm)
End With
'or with the static method
Array.Sort(sAlarm)

The sorting method comes from the Array collection of methods. Simply write Array.Sort and pass the array
reference variable to the Sort method as an argument. The Sort method is overloaded, so have a look at the
enumeration of methods in the class to find what you need.

The following code sorts an array (emphasized) before returning the index of Integer value 87, as
demonstrated earlier:

Public Function GetIndexOfValue(ByRef myArray() As Integer, ByVal _
 ArrayVal As Integer) As Integer

Array.Sort(myArray)
 Return .IndexOf(myArray, ArrayVal)
 End With
End Function

While the System.Array class provides a number of Sort methods, the following sections demonstrate typical
implementations for the various array−sorting algorithms, such as Bubble Sort and Quicksort. These have
been around a lot longer than .NET and translate very easily to Visual Basic code. Porting these sorts to
Visual Basic provides a terrific opportunity to show off what's possible with .NET, the Array methods, and
built−in functions.

 The Basics of Sorting Arrays

392

As discussed, Array comes preloaded with a version of quicksort, but having access to your own sort code
will be invaluable for many occasions.

Bubble Sort

The bubble sort is widely used to sort small arrays and is very easy to work with. It gets its name from the
idea that the smaller values "bubble" to the top, while the heavier ones sink (which is why it's also known as
"sinking sort"). And if you watch the values move around in your debugger's Locals windows you see why it's
called bubble sort (see the "Debugging With Visual Studio .NET" section in Chapter 17).

What you should see this code produce is as follows: The array sAlarms is initialized to capture the alarm IDs
and descriptions that are pulled from a database or direct feed (I just initialize the array here).

The PrintArray method is called twice to show the array both unsorted and sorted. The bubble sort is called
before the second call to PrintArray to display the sorted list out to the console:

Public Module BubbleTest
Dim Alarms() As Integer = New Integer() {134, 3, 1, 23, 87, 342, 2, 9}

Sub Main()
 PrintArray(Alarms)
 BubbleSort(Alarms)
 PrintArray(Alarms)
 Console.ReadLine()
End Sub

 Public Overloads Sub PrintArray(ByRef Array() As Integer)
 Dim result As String
 Dim intI As Integer
 For intI = 0 To UBound(Array)
 result = CStr(Array(intI))
 Console.WriteLine(result)
 Next intI
 Console.WriteLine("−")
 End Sub

 Public Sub BubbleSort(ByRef Array() As Integer)
 Dim outer, inner As Integer
 For outer = 0 To Array.Length 1
 For innerI = 0 To Array.Length 2
 If (Array(innerI) > Array(innerI + 1)) Then
 Transpose(Array, innerI, innerI + 1)
 End If
 Next innerI
 Next pass
 End Sub

 Public Overloads Sub Transpose(ByRef Array() As Integer, ByVal first _
 As Integer, ByVal second As Integer)
 Dim keep As Integer
 keep = Array(first)
 Array(first) = Array(second)
 Array(second) = keep
 End Sub
End Module

 Bubble Sort

393

The output to the console shows the list of elements of the array unsorted, and then sorted after the array
reference variable is passed through the BubbleSort method. The output is as follows:

134
3
1
23
87
342
2
9
−−−
1
2
3
9
23
87
134
342

In the initializer for the console, I created the array and initialized it with a collection of numbers (the list of
alarms coming out of a queue, popped off a stack or off the back of a serial port). The code used to do this is
as follows:

Dim sAlarms() As Integer = New Integer() {134, 3, 1, 23, 87, 342, 2, 9}

Then the array is passed to the PrintArray method, which prints the values of each element to the console.
The PrintArray method is useful and will save you from having to write the For loop every time you want to
print out the array, or stream the values out to some place like a screen or a file or a remote location. I have
overloaded the method to provide some useful implementations, especially to use an IEnumerator instead of
the ForNext:

Public Overloads Sub PrintArray(ByRef Array() As Integer)
 Dim result As String
 Dim intI As Integer
 For intI = 0 To UBound(sArray)
 result = CStr(sArray(intI))
 Console.WriteLine(result)
 Next I
 Console.WriteLine("−")
End Sub

In the preceding code, we use the For loop to write the random numbers with which the array has been
initialized to the console. This demonstrates that the array is currently unsorted. After generating the array, we
then called the BubbleSort method and passed it the reference of the array to sort. This is achieved using the
following method:

Public Sub BubbleSort(ByRef Array() As Integer)
 Dim outer, inner As Integer
 For outer = 1 To Array.Length − 1
 For inner = 0 To Array.Length 2
 If (Array(inner) > Array(inner + 1)) Then
 Transpose(Array, inner, inner + 1)
 End If
 Next inner
 Next outer

 Bubble Sort

394

End Sub

How does this bubble sort work? Notice that there are two loops, an outer loop and an inner loop. (By the
way, this is pretty standard stuff, and many people use this sort for a small array, or small collections. I
adapted it directly from the C version and several Java versions. I have not seen a C# one yet, but it would
probably be identical to the latter variation just mentioned.) The outer loop controls the number of iterations
or passes through the array. An Integer named outer is declared, and thus the outer For loop is as follows:

For outer = 0 To Array.Length − 1
 'inner For loop in here
Next pass

Upon the first iteration, outer is set to start at 0. Then the loop repeats for the length of the array, determined
by incrementing outer (Next outer) with each pass of the array until outer is equal to the array's Length 1
property (it does not need the final iteration).

For each loop of the outer array, we run the inner loop as follows:

For inner = 0 To Array.Length 2
Next inner

The variable inner is first initialized to 0. Then, with each iteration of the loop, as long as inner is less than
the length of the array minus 2, we do a comparison of each element against the one above it, as shown in the
pseudocode here:

If Array(inner) is greater than Array(inner + 1) then swap them

For example, if Array(inner) is 3 and Array (inner+1) is 2, then we swap them so that 2 comes before 3 in
the array. Often, it pays to actually sketch what's happening with the code, as demonstrated in Figure 12−9, a
technique used by many gurus who believe that the mind is the model of invention.

Figure 12−9: Use a math pad if necessary to "sketch" the actions the sort must take
The method that does the swapping is Transpose, which looks like this:

Public Overloads Sub Transpose(ByRef Array() As Integer, ByVal first _
As Integer, ByVal second As Integer)
 Dim keep As Integer
 keep = Array(first)
 Array(first) = Array(second)
 Array(second) = keep
End Sub

 Bubble Sort

395

The Transpose method shown here gets a reference to the array we are sorting. We also pass into Transpose
the element positions we are going to swap around. It helps to see this without the placeholders in
pseudocode, as follows:

Transpose(The Alarms array, the first element, the second element)

First, we create an Integer variable called keep to hold the value of the first element passed in:

keep = Array(first)

Then, we can assign the second element to the first one, as follows:

Array(first) = Array(second)

Now we give element 2 the value of element 1, as follows:

Array(second) = keep

When the Transform method completes, it returns us to the inner loop, and the new value in the higher
element of the two previous elements is compared to the one above it.

Notice that the Transpose method is separated from the BubbleSort method. Why did we do that when we
could have just as easily included the swapping routines in the BubbleSort method? Two reasons. First, we
are following the rule discussed in Chapter 7 covering the construction of methods: It's better to decompose
the algorithm into separate problem−solving methods. While this is a border line casebecause the method is
small enough to be included in the one methodexpanding the BubbleSort method later becomes more
difficult if the Transpose algorithm is left in (as you will see shortly). Also, the code is more readable and
more maintainable like this. Another thing to consider is that the Transpose method can be useful outside of
the BubbleSort method and can be defined in a sort interface or a utility class containing sorting methods
(loose coupling and high cohesion). There may just be other opportunities to use the method, as the
forthcoming code will demonstrate.

In the following code, a "slick" alternative uses the Xor operator discussed in Chapter 5 to evaluate ordinal
values (Short, Byte, Integer, and Long). This method is an overloaded version of Transpose.

Public Overloads Sub Transpose(ByRef Array() As Integer, ByVal first _
As Integer, ByVal second As Integer)
 Dim keep As Integer
 Array(first) = Array(first) Xor Array(second)
 Array(second) = Array(first) Xor Array(second)
 Array(first) = Array(first) Xor Array(second)
End Sub

A third variation of Transpose pushes the keep variable onto a stack. I mentioned this technique earlier in the
chapter:

Public Overloads Sub Transpose(ByRef Array() As Integer, ByVal first _
As Integer, ByVal second As Integer)
 Dim keep As Stack
 keep.Push(Array(first))
 Array(first) = Array(second)
 Array(second) = keep.Pop
End Sub

 Bubble Sort

396

I have never found that using a stack in this way has any adverse effect over the running time of the sort.
Later, the technique is again used in this book's version of the quicksort algorithm.

The BubbleSort method looks very efficient from a distance, but when you strip it down line by line and
operation by operation, you can see that for a large array, its running time will explode. For small arrays (like
25 elements), it's great and it's fast because we do not have to do any fancy partitioning with the array object.
But we'll need something more efficient for larger data structures, which tend to beg for dissection. Let's see
what happens when the array gets much bigger, as discussed in the following section. The next section
maintains the simplicity of the bubble sort but attempts to keep the size of the arrays to sort as small as
possible.

Partition and Merge

The divide−and−conquer philosophy discussed in Chapter 7 can be applied to large data structures like a large
array. Instead of running BubbleSort for one large array and then running out of "bath water," we can divvy
up the array into smaller arrays, or portions, and then sort the portions separately. After that, we need to merge
the portions back into one large array. Remember, BubbleSort walks through every element in the array, so
BubbleSort on one large array is not efficient. But what if we were to chop the large array into two smaller
ones? The result is an n/2 sort, and if the array is small enough, the running time will still be linear. In
essence, we can now use BubbleSort on two small arrays instead of one large one.

There are two parts to this algorithm. The first part divides a large array into two smaller arrays and then sorts
the subarrays or portions. The second part merges the two sorted subarrays back into one large array.

So how would you divide the array? Since we have access to its Length property that's actually the easy
chore. The following code can be used for the division:

bound = Array.Length \ 2 'bound represents the upper bound of the first part
'or bound is the other part's upper bound
bound = Array.Length 2

What have we here? Firstly, the array is only logically split into two arrays; we still have one array. But when
we make the calls to the BubbleSort method, we first sort up the middle of the array, then we start over again
and sort the second part of the array. Once you run the arrays through the BubbleSort method, you end up
with the two portions of the same array, both sorted in the same call. We can kick off this idea as
demonstrated in the following example:

Public Sub BubbleSort(ByRef array() As Integer)
 Dim outer, inner As Integer
 For outer = outerStart To array.Length \ 2
 For inner = innerStart To array.Length \ 2
 If (array(inner) > array(inner + 1)) Then
 Transpose(array, inner, inner + 1)
 End If
 Next inner
 Next outer

 Dim outerStart As Integer = outer
 Dim innerStart As Integer = inner

 For outer = outerStart To array.Length 2
 For inner = innerStart To array.Length 2
 If (array(inner) > array(inner + 1)) Then
 Transpose2(array, inner, inner + 1)

 Partition and Merge

397

 End If
 Next inner
 Next outer
End Sub

What's cooking here? The BubbleSort now does two sorts in one method. It first sorts the first part of the
array and then it sorts the second part. But before we look at the innards of the method do you notice that the
stack of sorts seems a bit of kludge. The stack of sorts seems inelegant. It is. But trying to combine the two
iterative routines into one iterative routine that still sorts the two parts separately is extremely cumbersome. If
you look at the two separate sorts you will see how the method now lends itself to recursion. As we discussed
on the section on recursion in Chapter 7, there are times when recursion is the best solution (and sometime the
only one) when you need to use divide and conquer techniques to solve a problem.

However, designing recursion can be hairsplitting as well. You need to decide what gets passed to the method
for the first sort and what gets passed for the second sort. Have a look at the following code. You'll notice we
now have to pass variables to the method instead of fixed values. These variables cater to the start and end
points at which to logically partition the array.

Public Overloads Sub BubbleSort(ByRef array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)

(BubbleSort must now be overloaded to cater to the multiple versions of this method we can come up with
(we still preserve the original for simple sorts on small arrays).) The outerStart and innerStart parameters
expect the starting position on the array for both For loops in the method. The outerStart For loops for each
element in the array and the innerStart For loops for the number of comparisons that must be made for each
element. The bound parameter expects the upper bound of the array part to sort to. The recursive method to
sort the two parts can be implemented as follows:

Public Overloads BubbleSort(ByRef array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)

If outerStart >= bound Then
Exit Function

End If
 Dim outer, inner As Integer
 For outer = outerStart To bound
 For inner = innerStart To bound
 If (array(inner) > array(inner + 1)) Then
 Transpose(array, inner, inner + 1)
 End If
 Next inner
 Next outer

BubbleSort(array, outer, inner, array.Length − 2)
End Sub

The recursive call is highlighted in bold. Before we continue, take note of the stopping condition (also in
bold).

If outerStart >= bound Then
 Exit Function
End If

 Partition and Merge

398

If we forget to include a stopping condition the method will explode.

We can now call this method as follows:

Dim sArray() As Integer = {102, 82, 23, 44, 25, 65, 27, _
45, 7, 234, 54, 5, 22, 4, 343, 0, 56}
BubbleSort(sArray, 0, 0, sArray.Length \ 2)

After the first part on the array is sorted the recursive call goes to work on the second part.

As demonstrated in the preceding code, we divided the array into two parts and sorted the elements in the two
parts recursively. Now we have both halves of the array sorted by the BubbleSort method, but we still need to
merge the two sorted halves back into one whole, sorted array.That's the harder part of the algorithm. What do
we know about the results of the recursive partition bubble sort so far? Figure 12−10 illustrated the current
sorted state of the array.

Figure 12−10: The array after it has been partitioned
To merge the two sorted parts, we have to allocate a new temporary array called Temp and copy the sorted
elements into Temp. We can merge into Temp by comparing the value in the first element of part1 with the
first value in the first element of part2. Now the algorithm requires that we keep track of how many times we
copy a value to Temp (call it copytemp), and how many times we copy from part1 and part2, respectively.
Suppose we compare part1(index) and part2(index) and find that part2(index) is less than part1(index). We
must then copy the value of part2(index) to the back of the temporary array and increment copytemp by 1
and part2 by 1.

The pseudocode for the algorithm can thus far be written as follows:

Allocate array temp, Integers copytemp = 0, part1 = 0,
part2 = array.Length \ 2 + 1
While there are uncompared elements in both halves
 if the next element of part1 is less than or equal to
 the next element of part2 then copy the next element
 of part1 to temp, increment copytemp and part1 by 1
 Else Copy the next element of part2 to temp and
 increment copytemp and part2 by 1
End While

The code for the merging process can be implemented as follows:

Public Sub Merge(ByRef array() As Integer)
Dim part1, copytemp As Integer
'get the start of the second part
Dim part2 As Integer = array.Length \ 2 + 1
'a temp array the length of Array−1
Dim Temp(array.Length − 1) As Integer
 While (part2 <= array.Length − 2) And (part1 <= array.Length \ 2)
 If (array(part1) <= array(part2)) Then

 Partition and Merge

399

 Temp(copytemp) = array(part1)
 copytemp += 1
 part1 += 1
 Else
 Temp(copytemp) = array(part2)
 copytemp += 1
 part2 += 1
 End If
 End While
 While (part1 <= array.Length \ 2)
 Temp(copytemp) = array(part1)
 copytemp += 1
 part1 += 1
 End While
 While (part2 <= array.Length − 1)
 Temp(copytemp) = array(part2)
 copytemp += 1
 part2 += 1
 End While
 array = Temp
End Sub

The While loop will continue to process until there are no two items to compare. The best way to refine the
pseudocode and finally translate it into source code is by sketching the arrays and graphically representing
each iteration, comparison process, and copy process element by element. That way, you'll be able to decide
how to code out the math you need to do the job in an algorithm.

The Merge can be called independently or from within the stopping conditional in the BubbleSort method as
follows:

Merge(Alarms)
PrintArray(Alarms)

The results are printed as follows:

0
4
5
7
22
23
25
27
44
45
54
56
65
82
102
234
343
500
−

Yes, there is a lot going on behind the scenes, but to sort the array, we simply pass it by reference to the
Merge method. What this algorithm costs is debatable. One of my objectives is to show you more ways of
handling array sorting. The Merge method is very fast because the parts of the array are already sorted so

 Partition and Merge

400

there is much less iteration.

The speed, however, does not result from the apparent concurrency. Recall the discussion in Chapter 7 on
running time analysis of an algorithm and big−O notation. Running time is not constant and ranges from
linear to quadratic time (and worse) the larger the data set. The effect of the partition ensures the sorts are kept
at O(1) and thus not at O(4). In other words, sorting one large array takes much longer than dividing the array
into smaller bits and then sorting each division, one after the other.

The sort goes faster because we are sorting two smaller arrays instead of one large one. Incidentally, the
Array class is thread−safe, which means that it's not out of the question to put recursive sorts into their own
threads, or solicit the help of a free processor.

While the merge process is very effective, it is also a little resource−intensive and wasteful on massive arrays
that just get partitioned into two large arrays. Surely, there is a better way of sorting an array than creating a
temporary array that you use to hold the elements of the original array. After all, creating the temporary array
means extra computing steps; and then having to put all the values back into the original array seems a little
odd. The bigger the data input, the harder it is to process. Nevertheless, it is a useful method.

One of the reasons to take you through the previous exercise was to show you that one of the basic tenets of
sorting in particular, and computing in general, is to divide larger work units into smaller work units so as to
keep the running time curve from arcing upwards.

As mentioned at the beginning of this section, sorting arrays is a precursor to searching them. Searching is
practically impossible on large arrays if data is unsorted. This is true for searching not only arrays, but also all
types of linear data structures. Try to search an unsorted list of values in a spreadsheet or a database table and
see how hard it is in comparison to searching these structures if they are sorted in ascending or descending
order.

To take the next step in sorting our data structures, we should strive to maintain the good ideas, such as the
divide−and−conquer rule, and toss out the parts that result in extra computing, such as creating unnecessary
extra data structures, which requires more code and more resources.

A good example of such a sorting algorithm is the famous quicksort, discussed next.

Quicksort

The well−known scientist C. A. R. Hoare invented the quicksort algorithm more than 40 years ago (and it's
still running in various forms to this day). The premise of the algorithm is to partition an array into smaller
partitions and then recursively sort the partitions, in a similar fashion to what we have just covered. It is
similar in concept to the partition and merge bubble sort, but the partitioning is a lot more slick because
instead of having to merge two partitions into one at the end of the sort, with quicksort, the end result is a
fully sorted array, and no merging is required. We also do not need to create a temporary array.

The specification of this algorithm is as follows:

Choose an element in the array, which is often called the "pivot."1.
Partition the array at the pivot into two groups.2.
Send the values that are less than the pivot to the one side.3.
Send the values that are greater than the pivot to the other side.4.
Sort each side recursively.5.

 Quicksort

401

The pivot element is exactly thatpivotal. This sort is fast because once a value is known to be less than the
pivot, it does not have to be compared to the values on the other side of the pivot.

This sort is faster than the sorts we coded earlier because we do not have to compare one value against all the
other values in the array. We only have to compare them against n/2 values in the entire arraydivide and
conquer.

Exactly how fast is the quicksort? Taking its best case, we can say that the first pass partitions the array of n
elements into two groups, n/2 each. But it is possible to partition further into three groups, n/3 and so on. The
best case is where the pivot point chosen is a value that should be as close to the middle of the array as
possible, but we'll get back to that after we have coded the algorithm.

Quicksort has been rewritten for nearly every language, and it has been implemented using a variety of
techniques. The .NET Framework architects have also implemented it in C#, and it's a static method you can
call from the Array class. But let's code the algorithm ourselves. Later, you can check out which
implementation of quicksort works faster, the Visual Basic .NET one or the C# one.

To recap, the element that sits at the intersection of the partition is called the pivot element. Once the pivot is
identified, all values in the array less than or equal to the pivot are sent to one side of it, and all values greater
are sent to the other. The partitions are then sorted recursively, and when complete, the entire array is sorted.

The recursive sorting of the partitions is not the difficult part; it's finding the pivot element that is a little more
complex. There are several things we don't know going into this algorithm:

We don't know anything about the array elements and their values. When an array is passed to you for
sorting, you don't get any advanced sorting information, such as the best element to use as the pivot.

•

We don't know where the pivot element may finally end up in the array. It could be in the middle,
which is good, or it could end up close toor ateither end, which actually slows down the sort (and, of
course, that's bad).

•

So, to begin somewhere and without any information, we might as well just pick the first element in the array
and hope that it's possible to move it to an index position that intersects the array as close to its final resting
place as possible. But we still don't know where that might be (incidentally, you can also use the last element
as the pivot). Let's look at another array to sort, represented here by its declaration and "on paper" in Figure
12−11 (it's easier now to represent the array horizontally):

Figure 12−11: The unsorted array
Dim sAlarms() As Integer = {43,3,38,35,83,37,3,6,79,71,5, _
78,46,22,9,1,65,23,60}

This array is unsorted and yields the number 43 in the first element. So, we now need a method that will take
all the numbers in the array less than or equal to 43 and move them to the beginning of the array. However,
because we have chosen the first element as the pivot, we still don't know how far we need to move the less
than or equal to elements to the one end of the array or how far we need to move the greater than elements to
the other end.

The way this problem has been solved over the years is like this: Start at each end of the arrayfrom the
element after the pivot (0) to the other end of the arraycomparing the value of each element with the value of

 Quicksort

402

the pivot element until we find an element value that is less than or equal to the pivot value and one that is
greater than the pivot value. So, we start at the beginning, skipping the first value because it is the pivot, and
stop at the element holding 83.

Now we need to go to the other end of the array and test each element value until we find an element value
that is less than or equal to the pivot value. In our case, we stop at the element holding 23. The two elements
are emphasized in the array example in Figure 12−12.

Figure 12−12: Elements 83 and 23 are the values earmarked for swapping
We need to create two variables to hold the indexes of the two elements, because the next step is to exchange
the two element values. The value 23 is moved to the index of the 83 element, and 83 goes to the index of the
23 element. In other words, the elements swap their values at their index positions in the array. The result is
shown in Figure 12−13.

Figure 12−13: The positions of the elements after the swap
We have to continue with the process, starting from the left and stopping at the element holding 79. On the
right, we keep marching to the left, stopping at 9. We repeat the process, and we note the index positions and
exchange the two element values. We can perform the interchange because we know the index of each
element.

We keep doing this until the march from the left crosses over the march from the right. This point then
becomes known as the array partition intersection, the point at which the array is partitioned for us. The array
ends up as shown in Figure 12−14.

Figure 12−14: The array after all elements are swapped
If we examine the array, we see that on the left side of the intersection, we have elements less than or equal to
the pivot, and on the right of the intersection, we have all the elements greater than the pivot. At this point, the
array is partitioned and the star (*) represents the position for the pivot element. However, we still have not
positioned the pivot at the intersection of the partitions (its final resting place). So, the last piece of the pivot
puzzle is to interchange the last element value of the lesser or equal to values with the pivot. The pivot is now
at the intersection of both partitions, as shown in Figure 12−15.

Figure 12−15: The array after the pivot has been moved to the intersection

 Quicksort

403

Next, we need to write the code to programmatically achieve what we did here, after which we can write the
code to recursively sort each partition. So, the algorithm uses the chosen pivot value to partition the array by
looping through each array index position from the left and from the right, and comparing each index value to
the pivot value.

If the values meet the "change sides" condition, they are swapped; otherwise, they are left alone and the loop
advances the left−side index to the right and the right−side index to the left. It will keep going until both
operations intersect the array and overlap.

As the algorithm loops from left to right and from right to left, the point of the intersection is then used as the
partition point and the location to where we move the pivot's value. The algorithm swaps the value that is less
than or equal to it with the value of the pivot, the value in the first element. Let's begin designing this
algorithm.

Note The array example here provides a best−case scenario, because 43 invariably ends up in the
middle of the array or very close to the middle. A worst−case scenario would be to find the first
element to be sitting at a low index, like 1, or somewhere up near or at the end of the array,
which would result in the pivot not partitioning the array in any useful way for the recursive
sort. So, the worst case is an n1 sort.

We can prep the algorithm as follows:

Integer n is the length of sAlarms.•
Integer pivotChosen is the zero index of sAlarms.•
Integer leftSideIndex is the index of sAlarms from the left.•
Integer rightSideIndex is the index of sAlarms from the right.•
Integer reCall is a holding "cell" for an index value used for swapping.•

With this information, you can create pseudocode and then write the method. The pivot element would be
obtained as follows:

pivotChosen = Alarms(0) 'or Alarms.Length − 1

which, remember, is the arbitrarily chosen pivot.

The lesser or bigger elements are represented as follows:

leftSideIndex = myArray(1)
rightSideIndex = n − 1

The partition methodcalled PartArraywould then work as follows (pseudocode):

While the leftSideIndex is less than the rightSideIndex, and
 While leftSideIndex is not at the end of Array and
 Array(leftSideIndex) is less than or equal to the pivot
 value then increment leftSideIndex.
And
 While the rightSideIndex is greater than or equal to the leftSideIndex,
 and While Array(rightSideIndex) is greater than or equal to the pivot
 value then decrement rightSideIndex.
But
 If (Array(leftSideIndex) > (Arrray(rightSideIndex))
 swap the values of both index positions.

 Quicksort

404

When the preceding code is done swapping, the partition can be made as follows:

1) remember the value at rightSideIndex
2) remember the value at pivotChosen
3) swap the values

This can now be implemented. First we create the array and then pass it to the QuickSort method as follows:

Dim sAlarms() As Integer = {43,3,38,35,83,37,6,79,71,5,78,46,22,9,1,65,23,60}
QuickSort(sAlarms,0,0,0)

This code passes the array and the initial starting positions for the partitioning process. Have a look at the
method's signature:

Public Overloads Sub QuickSort(ByRef Array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)
 Dim outer, inner As Integer
 'get the middle of the array from the pivot returned from QuickPart

If Not (outerStart >= Array.Length − 1) Then
If (bound <= 0) Then

 bound = QuickPart(Array)
 End If
 'sort to follow...
End Sub

This method is also recursive and checks to see that the outerStart parameter is not positioned at the end of
the array, which would indicate the array sort is finished (the first bold emphasized line). Then a conditional is
introduced to determine if the array has already been partitioned (the second bold line). The partition function,
QuickPart, also returns to us the starting position of the second sub−array to sort. QuickPart is implemented
in the following example:

Private Function QuickPart(ByRef myArray() As Integer) As Integer
Dim n As Integer = myArray.Length
'just choose the first element
Dim pivotChosen As Integer = myArray(0)
Dim leftSideIndex As Integer = 1
Dim rightSideIndex As Integer = n 1
'checks for intersection
 While (leftSideIndex < rightSideIndex)
 While ((leftSideIndex < rightSideIndex) And _
 (myArray(leftSideIndex) <= pivotChosen)) 'keep going until false
 leftSideIndex += 1 'increment the left side's index position
 End While
 While (myArray(rightSideIndex) > pivotChosen)
 rightSideIndex −= 1 'decrement the left side's index position
 End While
 If (leftSideIndex < rightSideIndex) Then 'swap sides
 Transpose2(myArray, rightSideIndex, leftSideIndex)
 End If
 End While
 'move pivot to the intersection
 Transpose(myArray, 0, rightSideIndex)
 Return rightSideIndex
End Function

 Quicksort

405

Now let's add the recursive sorting part of the method, which will call itself one more time to sort the second
part of the array:

Public Overloads Sub QuickSort(ByRef Array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)
 Dim outer, inner As Integer
 'get the middle of the array from the pivot returned from QuickPart
 If Not (outerStart >= Array.Length − 1) Then
 If (bound <= 0) Then
 bound = QuickPart(Array)
 End If
 For outer = outerStart To bound
 For inner = innerStart To bound
 If (Array(inner).CompareTo(Array(inner + 1))) > 0 Then
 Transpose(Array, inner, inner + 1)
 End If
 Next inner
 Next outer
 QuickSort(Array, outer, inner, Array.Length − 2)
 End If
End Sub

Naturally, if you were going to package these utilities in a single class you would provide a simple interface
for the client to call QuickSort and not have to specify the various parameters other than the reference
variable of the array to sort.

Notice that in the preceding code the method makes use of the CompareTo method to determine if a value in
the array is greater than, less than, or equal to the value to the right of it. CompareTo returns a value greater
than 0 if the left−hand value is greater than the right−hand value. It returns 0 if the values are equal, and 1 if
the left−hand value is less than the right−hand value.

The QuickPart method works well with a pivot that is chosen from the value sitting in the zeroth index of the
array. But what if that value at the zeroth index turned out to be one of the lowest or one of the highest values
in the array? As mentioned earlier, this would result in little or no improvement in the running time for the
sort. In fact the effort to try and partition an array that cannot be partitioned is added to the increase in time to
sort one large array and the running time might be worse that anticipated.

We will return to sorting again in Chapter 14, demonstrating how we can use the method pointing facility of
the Delegate to replace the recursive call. The code for these sorting examples can be access in the
Vb7cr.ArrayUtils project.

Sorting Strings and Other Objects

The sort methods we have studied so far only sort ordinals, but we all know that, more often than not, we need
to sort through a collection of objects, especially String objects. The sort methods can thus be overloaded as
needed to take different arguments and thus provide different implementations of the sorts.

Like the static Sort method in System.Array your typically overloaded method signatures might accept
objects that implement IComparable interface (you already saw some use of the CompareTo method in the
QuickSort method). These are typically referred to as IComparer objectsString is one. We typically refer to
such arguments as IComparable arguments. See Chapter 15 in the section on "Strings" for more information
comparing String values.

 Sorting Strings and Other Objects

406

Populating Arrays

Inserting values into array elements one value at a time, as demonstrated earlier, can be a bit of a bind. You
can use the optional curly braces to pass a comma−delimited list of values to the array constructor, but that
only works if you know the values at design time, which means they are hard−coded. The following code
demonstrates an alternative that is more elaborate:

Sub ArrayPopulate()
Dim arrayVal(50) As Integer
Dim intI As Integer
 For intI = 0 to UBound(arrayVal)
 arrayVal(intI) = 10
 Next Int
End Sub

However, the preceding method only populates the array with identical values. We can still get a little more
creative, however, by changing the values for every new iteration of the For loop:

Sub ArrayPopulate()
Dim arrayVal(50) As Integer
Dim intI As Integer
 For intI = 0 to UBound(arrayVal)

arrayVal(intI) = intI * 2
 Next intI
End Sub

The preceding code now changes the value (see the highlighted line), so instead of an array filled with the
number 10, the array is now filled as 0, 2, 4, 6, 8, 10 , and so on. It's an improvement, yesbut not much of an
improvement. Often, we need to fill an array with a predetermined range of values, objects, different items,
and so on. So, if we focus on the emphasized line in the preceding code, we should be able to devise the
necessary algorithms to return a list of values, and place each different value into a separate slot in the array.

We can use stacks and queues to copy values to the array, but we are still stuck with the problem of getting
the values to the other data structures in the first place. The source of true random and external data for array
and data−structure, however, comes from files and streams. For example, we can read (line by line) from a
file (such as an e−mail document or a word−processing file) and then load that data into an array or a linked
list.

In Chapter 15, we will look at several classes, such as File, Directory, and Stream, that you can use to open a
text document, parse through each line in the file, and extract the values using various regular expressions.
After scrubbing the data you have in hand, you can then bridge to an array or another type of collection object
and copy the values to it.

Arrays for Objects

Often, you will find a need to work with data in a tabulated format or grid−like structure, like a database table
or a spreadsheet. Of course, you can always access the ADO and ADO.NET libraries and work with data in
recordsets and datasets, but that's not always convenient or even always possible.

 Populating Arrays

407

In a normalized collection of tables, data you need to pull and analyze could be in many tables, even in
different databases. While you can assemble a killer SQL statement with the mother of all joins, and pull the
exact data you need, operating on the data is not always convenient or practical with a standard record or data
set. If you have had some hands−on process control or operations management work, or got your hands greasy
programming OLAP (online analytical processing) cubes, then you know what I mean.

Also, not all data is stored to or retrieved from a database table. A spreadsheet is a good example; the last time
I used Excel, I don't remember saving my spreadsheet to Access or SQL Server. Logs are another good
example of tabulated data that does not always need to be stored in a database. A flat file often suffices and is
a lot cheaper to use as storage.

There are several ways to collect related data in such a way that you can perform complex analyses and
calculations on it. You just need to look at the data structures in this chapter and the next and you see several
alternatives to arrays for collecting objects.

But arrays are a powerful data structures because they provide the most functionality for accessing data in any
random order and for sorting and searching in very powerful ways. First, let's think about a particular need. If
you were an injector engineer and operations manager, you typically would need to collect and analyze data in
myriad ways. For example, you may need to calculate the life of an injector, how long it takes to repair an
injector, how many shifts and assistant engineers you need, and what might be the useful life of an injector
before it begins to burn more fuel than considered normal.

In our Injector object we started building in Chapter 9, we could extract and tabulate five sets of data:

Date The date this injector was placed into service•
Time The time this injector was placed into service•
Temp The average temperature of the injector since startup•
Burnrate The average amount of fuel burned since startup•
Velocity The average velocity we have been traveling at since startup•

This data can be computed and reported on in various ways, but we are studying the data structure to hold the
data, and not operations management. So, don't concern yourself with what we are trying to calculate.

The first solution you might think of to hold this data and have the facility to perform any manner of complex
computation on the data, and still extract it for reports or archiving, is to use five separate arrays for each
variable. The declaration for the collection of arrays would look something like this:

Dim lDate(1000) As Date
Dim lTime(1000) As DateTime
Dim lTemp(1000) As Integer
Dim lRate(1000) As Integer
Dim lFuel(1000) As Integer
Dim logVelocity(1000) As Integer

To reference the data, or load the five "columns" into your report or user interface, you would need to
reference the subscripts of all five arrays at the same time in your method. If you try to iterate through the
array, the method must also be able to work with all six arrays at the same time. Your collection of arrays
would look like the concoction illustrated in Figure 12−16.

 Populating Arrays

408

Figure 12−16: Accessing five arrays at the same subscript at the same time
The method you might create would be a real grizzly. Such a method can get very hairy and impractical when
the length and number of arrays grow. This structure sometimes is called the "parallel array structure," but
you don't need to name it, because such code is not what makes software fun, and you should forget this
approach.

Could a better solution be to declare an array of six dimensions, as demonstrated in the following declaration?
(Careful, this is a trick question.)

Dim InjectorStats As Integer = {New Date(), New DateTime(), _
New Integer(), New Integer(), New Integer(), New Integer()}

You are not going to get very far with the preceding InjectorStats array because of one fundamental
limitation. Arrays are strongly typed, so the other dimensions must also be Integers. Even if you could create
a multidimensional−multitype array, this code is also exactly the definition of "inelegant." Really, it's not
practical either.

This is where you need to put your object−thinking cap on. What if you did not store any of the actual values
in the array and only stored references to objects? After all, that's how arrays of String work. By storing
objects in the array, we only have to collect the reference variables. No injector data is stored in the array.
Instead, we create an object that will contain the five data fields we require. Every reference variable stored in
the array thus becomes a reference to the six data fields.

What do we achieve with this approach? First, we only need a simple one−dimensional array. No parallel
arrays and no multidimensional arrays are needed. Second, the array can hold any object, as long as the
objects are all of the same type. So, we don't have a type mismatch issue with the array, which can continue to
behave in its strongly typed way. Third, the data contained by the actual objects can now be processed and
managed in any sophisticated way you may conceive. Fourth, your algorithm can be easily changed and
adapted. The array of your custom type never needs to change, while the object itself can be extended and
adapted as needs dictate.

The data can also be printed, sent to Crystal Reports and persisted through serialization (see Chapter 15), or
stored in a database or a data mart. When we are finished with the objects, we can leave the garbage collector
to clean up the bits left lying around. Not only is this all possible, but it's one of the most elegant ways to meet
this type of data processing requirement.

First, we need an object that represents a record (like a tuple or row in a database table). We can call this
object Row. While we can declare the container array wherever we need to work with Rows we need to create
a class for the Row object so that Rows can be instantiated as needed (the number of Rows would be limited
to the available memory). The class must have a constructor so that it can be instantiated with the following
syntax:

Dim InjectorRows As New Row

Using object semantics, you can encapsulate six objects as fields of the container object. The first cut of our
class might look like this:

 Populating Arrays

409

Public Class Row

Private ldate As Date
Private ltime As DateTime
Private ltemp As Integer
Private lburn As Integer
Private lfuel As Integer
Private lvelocity As Integer

End Class

You can then access the data in the fields via accessor methods and modify the data via modification methods.
But properties are ideally suited to the public visibility required by the Row object. It's always better to
expose such values via property interfaces. The Row values can remain hidden and secret, yet they can easily
be used via the property interfaces.

The class can then be extended with properties as follows:

Public Class Row

 ' . . .

 Property LogDate() As Date
 Get
 Return ldate
 End Get
 Set(ByVal Value As Date)
 ldate = Value
 End Set
 End Property

 Property LogTime() As DateTime
 Get
 Return ltime
 End Get
 Set(ByVal Value As DateTime)
 ltime = Value
 End Set
 End Property

 Property Temparature() As Decimal
 Get
 Return ltemp
 End Get
 Set(ByVal Value As Decimal)
 ltemp = Value
 End Set
 End Property

 Property BurnRate() As Integer
 Get
 Return BurnRate
 End Get
 Set(ByVal Value As Integer)
 lburn = Value
 End Set
 End Property

 Property Fuel() As Integer
 Get

 Populating Arrays

410

 Return lfuel
 End Get
 Set(ByVal Value As Integer)
 lfuel = Value
 End Set
 End Property

 Property Velocity() As Integer
 Get
 Return lvelocity
 End Get
 Set(ByVal Value As Integer)
 lvelocity = Value
 End Set
 End Property
End Class

With properties we can easily access any other method in the Row classeven to perform a behind−the−scenes
computation. Now all we need to do is to come up with the methods to create the array, create and insert Row
objects into the array, and manage the array. Accessing the Row objects and the Row properties is easy, as
you will see. But first we need to create the structure. In the following class, we create the InjectorStats array
and add Rows to the array. The method caters to capturing data for installment into the "columns" of each row
object:

Class RowArray
 Dim InjectorStats(1000) As Row
 Public Sub AddRows(ByVal rownumber As Integer, _
 ByVal ldate As Date, _
 ByVal ltime As DateTime, _
 ByVal ltemp As Integer, _
 ByVal lburn As Integer, _
 ByVal lfuel As Integer, _
 ByVal lvelocity As Integer)

 InjectorStats(rownumber).LogDate = ldate
 InjectorStats(rownumber).LogTime = ltime
 InjectorStats(rownumber).Temparature = ltemp
 InjectorStats(rownumber).BurnRate = lburn
 InjectorStats(rownumber).Fuel = lfuel
 InjectorStats(rownumber).Velocity = lvelocity
 End Sub
'...
End Class

Notice that the array is declared as type Row. In this declaration, the array is initialized to hold 1000 Rows.
However, just because the array is declared to be of type Row does not mean rows get magically added. You
still need to instantiate the row objects and add them to the array. This can be arranged rather simply with
code resembling the following in the constructor for the RowArray class:

Dim InjectorStats(1000) As Row
Dim newRow As New Row()
Dim count As Integer
Public Sub New()
 MyBase.New()
 While count <= 1000
 InjectorStats(count) = newRow
 count += 1
 End While

 Populating Arrays

411

End Sub

While the size of the array is hard−coded in the above example you can just as easily extend the class with a
handful of methods that allow for variable sizes and even extending the array size as needed. Or once the
array fills up you can overwrite the data in the row, just like your standard Windows event logs.

The following code demonstrates how we can access a Row and change or manipulate the Row data via the
Row object's properties:

Public Sub AddToLog()
 InjectorLogs.AddRows(GetRowNumber, GetDate, _
 GetTime, GetTemp, GetBurn, GetFuel, GetVelocity)
End Sub

With our injector engineer thinking caps on, what else might we need to do with the Row data? Printing the
rows would be helpful, especially to a console opened up over the live injector for real−time monitoring. A
single print method, PreparePrint, can be constructed to perform the assemblage of the data from the Row
object, while another method, PrintData, can be constructed to print the data to a console. Displaying the data
to the console from a row in the InjectorStats is simply a matter of accessing the properties of each Row as
follows:

Public Sub PrintRow(ByVal rownumber As Integer)
 Console.WriteLine(InjectorStats(rownumber).LogDate)
 Console.WriteLine(InjectorStats(rownumber).LogTime)
 Console.WriteLine(InjectorStats(rownumber).Temparature)
 Console.WriteLine(InjectorStats(rownumber).BurnRate)
 Console.WriteLine(InjectorStats(rownumber).Fuel)
 Console.WriteLine(InjectorStats(rownumber).Velocity)
End Sub

which outputs the raw data as shown here:

3/3/2002
3:39:05 PM
1459723
75645
1523688980
888348

Of course you can redirect this data to a hard−copy printer method (which does a nice job of formatting it), to
a report engine, or to other methods to handle whatever form of persistence or presentation is required.

Sorting the data and searching would not be that difficult to do. You would simply sort on a particular
property in a particular Row you make the key field, much like a database table column. In fact you could
override the Row object's ToString field to hold the key value to sort on, which in any event is unused space.

What you now know is that the architecture can easily underpin a graphical cell−like component for
manipulating data, possibly even a construct that can be packaged as a control that can be dropped onto a
form.

Any time you need to work with related data in two or more arrays, you should determine whether a single
array that stores objects might be a better solution. An array of objects also makes for very adaptable and
easily maintainable code, which is precisely what OOP is all about.

 Populating Arrays

412

Hash Tables

A hash table is a data structure that stores a related pair of itemsa key and its partner value. Hash tables work
like arrays and lists (in fact, they are a combination of arrays and lists), and implement sophisticated
mathematicshashing algorithmsto create a highly efficient data structure for storing and retrieving data.

The difference between a hash table and an array, however, is that an array maintains an ordered collection in
which a value is paired with an index number that corresponds to the element in the array that stores the data.
The hash table has no such index value and it is not ordered. You simply send the data you want to retrieve to
the hash table and remember a key that you will use later to get the data back. The following real−world
analogy illustrates the utility of hash tables.

There you are at the TechEd 2004 about to go in to a huge hall to listen to Bill G. talk about Version 8 of
Visual Basic .NET. You have your overcoat with you and you don't feel like schlepping it into the hall. So
you make your way over to the overcoat "keep" and hand it to the person behind the counter. He or she hangs
it along with the other 15,000 overcoats belonging to the other eager developers who came to listen (or get
free breakfast). The person returns with a tag and writes 13,987 on the tag for you.

After you are done getting all fired−up by Bill, you return to the coat keep and hand in your (key) tag. If you
lose the tag you will need to sort through 15,000 overcoats, and that will make you very late for your first
session.

Hash tables are to software engineering what a telescope is to an astronomer, and the implementation of the
Hashtable class in the .NET Framework saves us a lot of time because we do not have to construct our own
hash tables from scratch. The whole reason we have a framework like .NET is to reuse its no−doubt expertly
architectured classes, like the Hashtable.

Investigating every aspect of the construction of a hash table and studying its underpinning science is beyond
the scope of this book. If you are interested in the subject, possibly to provide your own hash table to the
Framework, one of the best places to start is Robert Sedgewick's seminal work, Algorithms in C, Parts 1−4
(Addison−Wesley, 1999). However, a cursory investigation of the hash table is essential to understanding the
practical uses of this simple yet highly practical data structure. Later, we'll also look at implementing custom
hashing algorithms to replace the standard GetHashCode method inherited from Object.

A hash table can be used for any need that you have to associate some datawhich is often a "pointer" to
something more complex stored somewhere elsewith a key that can quickly be looked up. The crux of a hash
table is that the key value is "hashed" to generate a highly efficient search condition (such as an index value)
that can be efficiently accessed in the hash table.This is especially valuable when you have values that are
themselves hard to index, such as the nine−digit U.S. social security number or complex stocking or
cataloging numbers (like the International Standard Book NumberISBN), or when you require indexable
values to be extracted from a combination of values, such as the X and Y coordinates on a grid, or the
coordinates that might represent an object suspended in a multidimensional space. In OOP, hashing is
important because it allows us to represent searchable objects as hashed values.

A value is passed to a hashing algorithm, an implementation of a hash code function in a hash table class,
which returns the hash code to the table. The resulting hash code is then used as an "index" in the hash table
where the associated information is stored. This is demonstrated in Figure 12−17.

 Hash Tables

413

Figure 12−17: The hash code used as the index of the hash table
An analogy of the internal operations of the hash table in the physical world is a modestly sized collection of
mailboxes that typically stands in front of a corporate office park or office complex. To efficiently deliver all
the mail, the post office employee needs only associate a company name with a mailbox number on a lookup
chart. So, for example, all mail for Jacaranda Communications would be placed in mailbox 1, all mail for
Osborne in mailbox 2, and all mail for McGraw−Hill in mailbox 3.

If all the mailboxes were identified by company name instead of by number, and there were 50 companies in
the office park, delivering the mail would take much longer. A post person finds it easier to mentally translate
the company name to a mailbox number when sorting. In other words, when sorting the mail, all letters for
Jacaranda go into one pile, which can be inserted in mailbox 1. This analogy is illustrated in Figure 12−18.

Figure 12−18: Mailboxes are easier to locate with a number
You might say that the name Jacaranda was "hashed" to mailbox "1" to make it easier to find the mailbox. If
the company names were not hashed and instead placed on each mailbox, then looking for the mailbox would
take more time, because numbers are easier to find in a collection than complex strings of characters.

You might also argue that after a long time, the mail person would know the location for a particular mailbox,
and thus it would not matter whether or not the mailbox had identification. But if that person were to call in
sick, the replacement would not be able to deliver anything. He or she would have to read all the names in
order to find the correct mailbox, which is much slower than looking up a number "hashed" out of a company
name.

This hash table is used so often in software applications that it is probably implemented more than most
algorithms. For starters, compiler and run−time environments like the CLR use hash tables all the time to
store data such as method and variable identifiers and so on.

An easily translatable analogy to the world of computers is the generation of a hash value (or hash code) from
a URL key, which is more often than not a string that relates to the complex Web address of a particular page
of information. The URL is associated with an easily identifiable name, like the name of the Web page and
the actual URL, as illustrated in Figure 12−19.

 Hash Tables

414

Figure 12−19: URLs represented by key and value in a hash table
But instead of searching on a string, no matter how simple, the name is hashed to an efficient Integer value,
which becomes the key the hash table uses to look up the URL in the hash table. This is illustrated in Figure
12−19, which shows the associated String identifier of the URL hashed to its new key value.

Hash tables are considerably faster to search than standard binary searches, which require data in an array to
be sorted (otherwise, the binary search will be meaningless). The underlying structure of a hash table has been
implemented over the years in a number of different algorithms. Some implementations are better than others
for certain types of information.

The hashingso−called because the value extracted from the process is a "hash−up" or "scrambling" of
numbers that represent a stringproduces key values that are used to identify the location, or the subscript, of
the hash table.

To avoid the collision of hash values that hash to the same location in the hash table, key values are organized
in so−called buckets that associate the hash value with a list of items that share the key. A technique called
chaining keeps the list of associated values together. The buckets and chains are shown in Figure 12−20.

Figure 12−20: Hash buckets and chains
Why is a hash table, which typically operates at O(1), so much faster to search than a vanilla array? As we
saw earlier in this chapter, in the section "The BinarySearch Method," we literally have to go through every
element of the array to find what we are looking for. The only way to speed up the search is to partition
arrays, sort the partitions, and scrounge for shortcuts, such as eliminating values that do not fall within the
search range.

A hash table, however, is organized in such a way that when you pass it a key to retrieve, it knows exactly
which bucket to look into. In the same way, we do this when we fetch the mail. We don't sift through a pile of
envelopes from 50 companies; we just know to go look in the first mailbox.

In other words, the hash table only has to look through a subset of all the elements, which, for a binary search,
is like not having to first sort and then partition the array, a process that would cut the time to find the element
by an order of magnitude. By and large, you can think of the hash table as having knowledge of a shortcut to
the data, whereas an array only knows the official route.

The Hashtable class is referenced in the System.Collections.Hashtable namespace and implements the
following interfaces: IDictionary, ICollection, IEnumerable, ISerializable, IDeserializationCallback,
ICloneable, IList, and ICollection. Thus, many of the methods (such as GetEnumerator) have been

 Hash Tables

415

discussed before and don't need to be reviewed.

Hashtable's members are listed in Table 12−6.

Table 12−6: The members of Hashtable. The class implements ICollection, IEnumerable, and IList

Class Member Description

Count (p) Retrieves the number of key−and−value pairs contained in the Hashtable

IsFixedSize (p) Retrieves a value indicating whether the Hashtable has a fixed size

IsReadOnly (p) Retrieves a value indicating whether the Hashtable is read−only

IsSynchronized (p) Retrieves a value indicating whether access to the Hashtable is
synchronized (thread−safe)

Item (p) Retrieves or sets the value associated with the specified key. In C#, this
property is the indexer for the Hashtable class

Keys (p) Retrieves an ICollection containing the keys in the Hashtable

SyncRoot (p) Retrieves an object that can be used to synchronize access to the Hashtable

Values (p) Retrieves an ICollection containing the values in the Hashtable

Add Adds an element with the specified key and value into the Hashtable

Clear Removes all elements from the Hashtable

Contains Determines whether the Hashtable contains a specific key

ContainsKey Determines whether the Hashtable contains a specific key

ContainsValue Determines whether the Hashtable contains a specific value

CopyTo Copies the Hashtable elements to a one−dimensional array instance at the
specified index

GetEnumerator Returns an IDictionaryEnumerator that can iterate through the Hashtable

GetHashCode Inherited from Object, it serves as a hash function for a particular type,
suitable for use in hashing algorithms and data structures like a hash table

GetObjectData Implements the ISerializable interface and returns the data needed to
serialize the Hashtable

OnDeserialization Implements the ISerializable interface and raises the deserialization event
when the deserialization is complete

Remove Removes the element with the specified key from the Hashtable

Synchronized Returns a synchronized (thread−safe) wrapper for the Hashtable

Comparer (protected
property)

Retrieves or sets the comparer to use for the Hashtable

hcp (protected property) Retrieves or sets the object that can dispense hash codes

GetHash Returns the hash code for the specified key

KeyEquals Compares a specific object with a specific key in the Hashtable

GetEnumerator Returns an IEnumerator that can iterate through the Hashtable
The following code demonstrates how to instantiate and add elements (car name and accompanying
registration) to a hash table:

Public Module Hasher
 Dim Tablet As Hashtable = New Hashtable()
 Sub Main()

 Hash Tables

416

 AddToTable()
 FindItem("Galant")
 FindKey("BOND007")
 Console.ReadLine()
 End Sub

 Public Sub AddToTable()
 Tablet.Add("GYX 523", "Corrola")
 Tablet.Add("FX1 82A", "Galant")
 Tablet.Add("BOND007", "I386")
 End Sub

 Public Sub FindItem(ByVal item As String)
 If Tablet.ContainsValue(item) Then
 Console.WriteLine("Found {0} in the hashtable.", item)
 End If
 End Sub

 Public Sub FindKey(ByVal key As String)
 If Tablet.ContainsKey(key) Then
 Console.WriteLine("Found {0} in the list.", key)
 End If
 End Sub

End Module

This is pretty straightforward code, and because you are probably an expert on collections you can imagine
how the other methods, such as Remove, work. Hashtable allows you to search and retrieve key−value pairs
on search−by−value and search−by−key. But search−by−value is very slow and thus defeats the reason for
placing the data into the hash tables in the first place. The fast search capability of the hash table is only
available, like retrieving your coat in the earlier example at the beginning of this section, when searching by
keys (so don't lose them).

It's also important to understand that a hash table is only as good as its hashing algorithm. As mentioned in
Chapter 9, the implementation of the GetHashCode method in Object is pretty weak, and if you want to
ensure you receive strong hashes on instances of the same type, you may need to get into the bits of each
object and implement a better hashing algorithm. This is exactly one of the reasons why the Hashtable class
can be inherited, which then allows you to override the GetHashCode and GetHash methods. The other
methods you need to implement in the extended class can be conveniently overloaded or overridden, which is
clearly what the .NET authors of the class intended.

Observations

This has been a long and especially important chapter because it deals with many of the fundamental
processes of computer science, the processing of data. Despite the effort to pound the concepts of
object−oriented software development home, and to highlight its benefits, this chapter also makes clear that
underneath that "O−ness" of the class still lies the raw implementation of our code. It should thus be clear that
the OO model is not just about classes and how they relate to each other, but how methods in classes are
implemented and how that functionality is made available to other objects through interfaces.

We also learned that sequential searching works well when the size of the data set is small. In other words, the
amount of work a sequential search requires is directly proportional to the amount of data to be searched. If
you double the list of items to search, you double and even quadruple the amount of time it takes to search or
sort the list. It is thus important to learn how to divide large sets of data into smaller sets, to keep the running

 Observations

417

time of algorithms as linear as possible.

You also learned that search efficiency is increased when the data set you need to search or exploit is
sortedand you cannot do a binary search on data unless the data set is sorted. If you have access to a set of
data, it can be sorted independently of the application implementing the searching algorithm. If not, the data
needs to be sorted at run time or you need to implement a binary search method that invokes a sort or returns
an error on an unsorted list.

We have discussed a number of important data structures or collections in this chapter, and we could carry on
for another few hundred pages just talking about how to program against them. However, much of what we
have covered in this chapter is applicable to all data structures, and thus you should have no trouble
transferring the concepts and comprehending the implementation of the interfaces that all of these classes
implement.

The material presented here, while critical, is pretty straightforward. Later, we are going to look at some
advanced concepts that also involve arrays and array sorting. For starters, the recursive nature of the sorting
algorithms we looked at in this chapter can be achieved using delegates, the very involved subject of Chapter
14. In that chapter, we will briefly look at alternatives to the recursive calls for implementing both the bubble
sort and the quicksort.

In the next chapter, we will stick with the data structures, to discuss linked lists and trees. In Chapter 14 we
will also investigate iterative and more advanced search methods. However, the theme of the next chapter is
the implementation of patterns such as Bridge, Strategy, State, Composition, and so on.

 Observations

418

Chapter 13: Advanced Design Concepts: Patterns,
Roles, and Relationships

Overview

In Chapters 8, 9, and 10, we covered the core foundation or structural patterns of object−oriented software,
such as interfaces, abstract classes, inheritance, aggregation and composition, and association. In this chapter,
we will look at some advanced concepts in class design and implementation, as we keep these patterns, class
relationships, and class roles in mind.

Our sojourn into these advanced class concepts will be allied with continued treatment of data structures and
algorithms started in the previous chapter. Often class or object theory can become boring because we are
discussing concepts that are at a higher level than code and data. Admittedly the theory is great, but there is
nothing as rewarding as implementing the grand design, getting down to the code that returns results.

Designs on Classes

In Chapter 9, we looked at the key differences between inheritance, association, aggregation, and
composition; here we will investigate some advanced patterns that give us the collateral needed for richer
analysis, design, and depth. I have handpicked the following class design patterns because they have become
the formative patterns in OO and are applicable in the .NET Framework. I discuss other patterns in subsequent
chapters.

Singleton Pattern The creational pattern that describes how to ensure that only one instance of a
class can be activated. All objects that use the singleton instance use the same one.

•

Bridge Pattern The structural pattern that prescribes the de−coupling of the implementation of a
class from its interface so that the two can evolve independently of each other.

•

Strategy Pattern The structural pattern that prescribes the de−coupling of the implementation of a
class from its interface so that algorithms, or any operation or process, can be interchanged.
Algorithm implementation can thus vary independently from the client or consumer objects that need
it. Strategy is very similar to Bridge; however, Strategy is used to interchange implementation at
runtime.

•

State Pattern The behavioral pattern that provides a framework for using an object hierarchy as a
state machineas an OO alternative to constant or variable state data, complex conditional statements,
enumeration constants, and map tables.

•

Composite Pattern The structural pattern that prescribes how classes can be composed (and
aggregated) into tree−like hierarchies.

•

Iterator Pattern The behavioral pattern for a class that provides a way to access the aggregated or
composite elements of objects of a collection (as mentioned in Chapter 12, Microsoft's name for its
iterator−like object is the "enumerator"). This chapter will implement an iterator as an implementation
of The IEnumerator interface as described in the previous chapter (see the "IEnumerator and
IEnumerable" section).

•

Adapter Pattern The structural pattern that prescribes the conversion of an interface to a class into
another interface a client object can use transparently. Adapter, affectionately known as Wrapper, is
discussed at length in Chapter 14.

•

Null Pattern A behavioral pattern providing an alternative to Nothing in Visual Basic .NET (see
Chapter 14, "Iterating over a Tree").

•

Delegate Pattern The Delegate pattern prescribes how to wrap a singleton method signature in a•

419

special class, which is then used as a "pointer" to a method in another class or object. (Chapter 14 is
dedicated to the Delegate pattern).

Singleton

Often in applications you need to instantiate an object (as opposed to a static class) but limit the application to
only one instance of the class. This single instance follows what is commonly referred to in OO circles as the
Singleton pattern. Here are some reasons for implemening a single instance of a class.

Provision of Concurrency, Reentrance, and Safety You can improve the safety of applications by
ensuring that access to an object and its data can only occur through a single controlled interface. The
Singleton class, once instantiated, encapsulates the sole instance of its data and methods so it can
have strict control over who and what access it.

•

Eradication of Global Variables The Singleton pattern may be a better solution than static or shared
variables that tend to pollute an application and make it much harder to maintain and debug. The
Singleton thus provides an alternative to a shared operations class with the benefit of instance
methods.

•

Object−Oriented Alternative of the Class Module The Visual Basic .NET class module is
probably the only construct in Visual Basic .NET that is not object−oriented. You cannot derive from
modules, you cannot inherit with them; all their members are implicitly shared and they offer no
encapsulation or polymorphism (no interface implementation is allowed). You don't need it for
console applications, because a console application can be constructed easily in a standard class. The
module may thus be useful for implementing an operations class, which contains only a pile of static
functions and procedures. But such an operations class can be easily implemented in a standard class,
which is better maintained and managed by explicitly declaring static members, such as
System.Math. The Singleton class provides the value of a global interface channeled to a single
instance of a class and the benefits of dynamic methods and datasuch as being able to use the Me
keyword that allows the object to reference itself, which cannot be done with a module. You can also
easily prevent a Singleton class from instantiation, as described in the "Improved Performance with
Shared Classes and Modules" section in Chapter 9.

•

Replacement of Static Classes Singleton classes provide more flexibility than static classes, which
only offer traditional VB or C++ style class operations to the application (this was described in
Chapter 9 and in the preceding section).

•

Flexibility in Design and Implementation This pattern is very flexible. You can easily change the
Singleton to a "Doubleton" or a "Tripleton" if you need to. The pattern can be preserved as a base or
abstract class providing the ability to extend or subclass the Singleton through inheritance.

•

Session managers, such as in remoting applications, or managers that pool and manage connections to a
database, should not be instantiated more than once or session conflicts will arise. This is also true of objects
that perform specific tasks, such as opening and closing folders to check the contents. In all cases, having
more than one object perform the work can cause object processes to clash with one another. Figure 13−1,
illustrated with the UML class diagram, shows how to design in such a way that only one instance of an object
can be created.

Figure 13−1: The Singleton pattern class structure

 Singleton

420

To create a class that qualifies as a Singleton we must intercept the constructor and prevent its returning the
new instance, while ascertaining that at least one instance of the class is afloat; we then return that instance to
the thread that needs access to the object.

A perfect place to implement this pattern is in our spacecraft's software (see Chapter 9), in which we would
consider the Singleton when we are ready to put our Injector object onto the actual fuel injector system. We
would not want to create two Injector objects and risk having the application access one that starts the
injector and another one that inadvertently closes it down. In any event, why would we want more than one
Injector object when there is only one injector system in the spacecraft?

The simplest way to implement the singleton Injector object is to make its constructor private. Thus, it cannot
be invoked through any public interface. Instead, we create a shared method that tests if the object has already
been instantiated, and if not, it calls the private constructor to create at least one of the objects. The following
code demonstrates this (I have included the base class in this example for clarification):

Public MustInherit Class BaseSingleton
 Dim numOfSingletons As Integer
 Property Number()
 Get
 Return numOfSingletons
 End Get
 Set(ByVal Value)
 numOfSingletons = Value
 End Set
 End Property
End Class

Public NotInheritable Class Singleton
 Inherits BaseSingleton
 Private Shared Singleton As Singleton
 Shared Function GetInstance() As Singleton
 If (Singleton Is Nothing) Then
 Singleton = New Singleton()
 Singleton.Number += 1
 Return Singleton
 End If
 End Function

 Private Sub New()
 MyBase.New()
 End Sub
End Class

Module TestSingleton
 Dim Zingleton As Singleton
 Sub Main()
 Zingleton = Singleton.GetInstance()
 'this outputs "1", the value of numOfSingletons.
 Debug.WriteLine(Zingleton.Number)
 End Sub
End Module

Instead of directly invoking the New method, this code lets us call a custom constructor, GetInstance. This is
a static method that lets us call a non−instance method. Also, by declaring it static with the shared modifier,
there will be only one version of it in your application space, and it thus becomes the global interface to which
all calls to activate the Singleton object will arrive.

 Singleton

421

The GetInstance method goes on to do a few things. First it checks to see if an instance of the object already
exists. It achieves this by testing if the reference variable is connected to an actual object. If not, we can
instantiate it by employing the standard If Then conditional.

Next we increment the Number property to 1 in order to test the number of times the New constructor is
called. Let's create a Singleton object and test if indeed there is only one instance of it. The following code
creates an instance of the Singleton class and tests the value assigned to Number. If Number is higher than
1, then "Houston, we have a problem."

The pattern we have implemented here also lets us declare a reference variable to the Singleton object without
having to use it initially. Actual activation can occur at a later stage in the scheme of things. The following
code accomplishes this:

Public Shared Zingleton As Singleton

This line of code creates the reference variable without having to access the New method, which graphs the
object into memory. Well, as you will recall you can't summon New directly because it is declared Private.
So after the reference variable declaration, we can call the GetInstance method to activate the object as
follows:

Zingleton.GetInstance

As long as you maintain at least one reference to the instance you will not have any trouble. Once the object
goes out of scope it will be garbage collected, and you'll then be able to create a new instance of the object.

Another benefit of the Singleton pattern, as mentioned earlier, is that you can change your implementation to
allow more instances later. You can use the singleton's constructor code to create more instances of the object
if need be. You control this by inserting into the GetInstance method a conditional that increments numbers
to a certain level and then blocks calls to the New constructor when the desired number of instances has been
activated. The forthcoming code shows how to do this:

Public NotInheritable Class Singleton
 Inherits BaseSingleton
 Private Shared Singleton As Singleton
 Shared Function GetInstance() As Singleton
 Singleton = New Singleton()
 Singleton.Number += 1
 If (Singleton.Number >= 2) Then
 Throw New NotSupportedException()
 End If
 Return Singleton
 End If
 End Function

 Private Sub New()
 MyBase.New()
 End Sub
End Class

In essence, the GetInstance constructor defines the policy for activation of the object. By encapsulating the
policy, you can change it as determined by your needspossibly providing many variations of the conditions for
instantiation.

 Singleton

422

A problem you will stumble upon with respect to the number of instances is decrementing the
numOfSingletons value when an object is de−referenced. One solution is to implement Finalize before
putting the object out of its misery, as shown here:

Protected Overrides Sub Finalize()
 Number −= 1
End Sub

You would also need to watch the global shared data if you planned on instantiating pairs or trios of singleton
objects. If you start finding yourself needing more and more instances of the singleton you might just be better
off going with standard object activation.

Child Singletons

Unlike modules and static classes, singleton classes can belong to a hierarchy. You can create the base or
abstract class for a singleton and then extend subclasses to accommodate your application's design. However,
you have to be careful.

The crux of the Singleton pattern is providing a unique interface for client or associate objects to access and
ensuring that only a single instance of the class can be created. As you have seen, this requires you to
"privatize" New and call it via a proxy or secondary constructor (GetInstance) that controls the instance
creation. The problem is that declaring New and modifying Private in the base class will essentially seal the
class and prevent it from being extended as a subclass. The subclass cannot be instantiated because it has no
way back to the parent's constructor, which is blocked by virtue of the Private keyword.

Another issue you have to consider is the shared quasi−constructor, GetInstance. If you implement it in the
base class, you will not be able to override it (although you can shadow it), because it will have been declared
static in the base class. So what's a Singleton−architect to do? Simply implement the Singleton's constructors
in the final class, which you will seal with the final keyword NotInheritable. The final lock−down comes
from using the optional keyword MustInherit in the base class, which kicks out any New methods in the base
class and prevents the class from being instantiated in any event.

The Singleton's heritage was depicted at the beginning of this section showing first the abstract or base class
declared MustInherit and then the child class declared NotInheritable. See the section covering the State
pattern later in this chapter for more examples of the Singleton pattern in use.

Note Be sure to declare the New constructor in the final class, because if you don't, a default
constructor will be automatically provided and Visual Basic will make it publicly accessible.

Bridge

The Bridge pattern is an advanced structural pattern that can be used to alleviate the awkwardness that often
results from the tight coupling of interfaces and implementation in object hierarchies. In Chapter 9 we learned
that although inheritance is a critical component of frameworks, it also promotes tight coupling between
classes in the hierarchy and between the interface and the implementation. Simply inheriting and then
fulfilling the definitions in the base class permanently binds the implementation to that interface. That's not
always nice.

To show inheritance at work, we discussed (in Chapter 9) how to configure a root Injector class
(BaseInjector) and derive classes that can be used in the injection systems of different types of spacecraft,
such as shuttles, cruisers, warships, and strike−craft.

Singleton

423

To recap, the abstract class defines the interface the client objects use (because it is inherited in the child
class), while the concrete or child classes implement the abstraction in varying ways as they deem fit. This is
illustrated in Figure 13−2.

Figure 13−2: Multiple implementations of the abstract parent
The binding or coupling of abstract−class interface and concrete−class implementation is unalterable, which
means you cannot easily provide varying independent implementation without creating clusters of specialized
classes. This is not a desirable trait for an object hierarchysuch as an injector hierarchy, in which all spacecraft
use identical fuel−injector systems. But what if they did not? Suppose we needed to provide injector software
for different systemsone for a Lockheed Martin Mark V shuttle, one for a Boeing Interplanetary cruiser, and
one for an "Earth Alliance" Xion Class battle−craft.

While each specialized class uses the same definitions for its members, they may have to differ in the actual
operations (that is, at the implementation level), and data used. For example, a cruiser may need to respond to
certain levels of sub−light speed differently than a shuttle does. Each injector may require different ratings to
calibrate each respective drive differently at startup. How would you handle the differences?

One solution is to create new specialization subclasses to provide new implementation and calibration. We
would want to keep the method definitions, the signatures, the same. Otherwise, the classes would be harder
to reuse, and the specialization classes would be more cumbersome for clients. If we continued extending the
classes the clients would in fact have to be changed out and recompiled whenever we needed to change or
extend the injector objects. Dynamically switching to different objects at runtime would be impossible
because the client would find itself using an object that might contain methods it has no clue how to call. This
awkwardness known as "nested generalizations" in the industryis shown in Figure 13−3.

Figure 13−3: For each type of spacecraft we need to implement a new subclass (nested generalizations)
Here we see that each subclass implements BaseInjector, so any differences among injector systems need to
be defined and configured in the subclasses. We would need to create separate hierarchies in order to keep
them separate from each other. This is not a practical or elegant way of creating a framework of specialized
classes, because for each new specialization or extension of the abstract class, we couple another subclass to
hierarchy. And as each class needed specialized code and data so would each class become less generic. How
would you then provide the specialization and still keep the classes generic and small in number?

Rather than "clustering" the classes in this fashion, it would be better to de−couple the specialized code in the
child class with the use of a technique called a "bridge." Instead of a single hierarchy that fans out into an
elaborate pyramid of classes that inherit from a common base, you can create separate classes of
implementations and then "bridge" the implementations back to the concrete classes with interfaces. Any
client can access the specialized code using the interface as the so−called bridge. This bridge is shown in
Figure 13−4.

Singleton

424

Figure 13−4: Separate class hierarchies connected to a common root via an interface "bridge"
The base class here is still the root of all immediate specialization classes. However, the specialization classes
don't implement any of the fancier code themselves. Instead they "bridge to" the code in any decoupled
implementation class they needvia the services of the interfaceand clients needn't be the wiser about what
implementation is being accessed.

The ensuing code demonstrates how to de−couple the implementation from the subclasses. Instead of adding
antimatter collision monitoring code into each sub−class, we can provide a separate concrete class that
specializes in the calculations required. This target class can implement a host of algorithms for each type of
space ship in the fleet, and it can continue to be refined and upgraded without ever having to affect the
injector classes that need access to the algorithms. To allow any other class to use the implementation, we
simple de−couple the interface as demonstrated:

Public Class LockheedCruiserRaterImp

 Implements ICollisionRating
 Function RateCollision(ByVal shipType As Integer, _
 ByVal coilSize As Integer) As Integer Implements _
 ICollisionRating.RateCollision
 'rate the collision and returns the rating
 End Function

End Class

Public Interface ICollisionRating
 Function RateCollision(ByVal shipType As Integer, _
 ByVal coilSize As Integer) As Integer
End Interface

A client needs to only instantiate the original specialized sub−class of BaseInjector. It knows nothing about
the classes, as shown above, that will be bridged to for the implementation. When the specialized injector
class is ready to bridge to the specialized "rating" code it can make the bridge as follows:

Public Class CruiserInjector
 Inherits BaseInjector
 Dim ColliderRatesBridge As LockheedCruiserRaterImp
 Dim ColliderRates As ICollisionRating = ColliderRatesBridge
 Dim rating As Integer
 Public Overrides Sub StartInjector()
 rating = ColliderRates.RateCollision(ShipTypeEnum.Cruiser, _
 CoilSizeEnum.CruiserClass)
 warpDrive.Calibrate(rating)
 warpDrive = True
 injectorStatus = "Injector is Online"
 End Sub
End Class

Singleton

425

As you can see, the object providing services to the client simply instantiates the implementation, gets a
reference to the interface to access the implementation and fires away (no pun intended). We can extend this
by providing a simple conditional structure that allows the client to switch to different implementations at
runtime.

A word of warning: be careful not to transpose the implementation and the interface when you attempt to
bridge, otherwise you just end up instantiating the implementation. This may result in an error if the
implementation's constructor cannot be invoked. The following code makes the error of switching the
interface identifier (bold) with the implementation identifier:

Dim ColliderRatesBridge As ICollisionRating
Dim ColliderRates As LockheedCruiserRaterImp = ColliderRatesBridge

To prevent consumers from making this mistake have them invoke a method to make the bridge instead. The
"bridge" method is a function (which may be shared) that returns the implementation as shown in the
following code:

Public Shared Function GetBridge() As LockheedCruiserRaterImp
 Dim CruiserImp As New LockheedCruiserRaterImp()
 Return CruiserImp
End Function

You can now bridge to the implementation using the following declaration:

Dim ColliderRates As ICollisionRating = _
LockheedCruiserRaterImp.GetBridge()

This Bridge pattern is useful in the following circumstances:

You find that the collection of subclasses in a hierarchy is becoming bloated and the hierarchy is
beginning to look like a wide−based pyramid with specialized classes fanning out from left to right.
This nested generalization occurs because you need to provide alternate implementations for the
operations defined in the abstractions.

•

You need to switch or select implementation at runtime without the client or consumer objects being
affected (see the Strategy pattern in the next section).

•

Client code at design time should not have to be changed and in many cases cannot be changed.
Changing the implementation must not impact the clients in any way. This is especially important if
you are shipping product to clients you have no control over.

•

Implementation should be extensible and alterable when you subclass and specialize. By unhinging
the interfaces, more than one implementation can vary independently.

•

Implementation needs to be shared among many objects.•

De−coupling the implementation from a standard−class hierarchy that does not demand access to varying
implementations of specialized code may seem like overkill. However, it can be useful in certain
circumstancesfor example, if you want to provide an implementation that can change in the future and allow
the clients to continue using the class they originally instantiated.

You will also gain control and flexibility in design by being able to delegate when and what implementation
to use in the algorithm. Such a scenario will be introduced to us in the latter part of this chapter, where we will
use the GetEnumerator method to return an implementation of the IEnumerator interface. The example is
much more concrete and a lot less fanciful than the "rating" example shown here for expediency.

Singleton

426

The Bridge pattern also fulfills the promise of multiple inheritanceinheriting implementation from two parent
classes to form a composite specialized implementationbut without the drawbacks that have hounded multiple
inheritance out of OO frameworks like .NET and Java. In Chapters 9 and 10, we alluded to the fact that using
interfaces to bridge to the implementation is one of several examples of how interfaces obviate the need for
multiple inheritance (but be sure you understand interfaces are not a substitute for multiple inheritance).

Also, .NET provides a far more flexible and elegant solution to the dynamic switching of implementation than
C++ does, specifically because the C++ core language does not offer native support for providing
interfacesand for that matter, neither does classic VB. The next pattern takes the use of interfaces to an even
more advanced level.

Strategy

While the Bridge pattern defines a model for interchanging implementations at design time, the Strategy
pattern defines a similar modelde−coupling interface from implementation using interface classesfor
interchanging algorithms and operations at runtime. After implementing and experimenting with Strategy and
Bridge, you'll never think about multiple inheritance again.

Going back to our spacecraft example, suppose that for each increase in the significant percentage of light
speed a craft travels at, different dynamics come into play that require varying treatment from the injector
algorithms for the type or version of warp drive and other factors. At a speed that is more that 50 percent of
light speed, we may need to make certain computations to compensate for the possible effects received from
the disruption of the time−space continuum.

Should the injector instruments and measuring devices pick up certain conditions, we might need to switch to
an alternate algorithm that takes the new dynamics into account. For example, we might change to different
communication protocol, because one may be better suited than another to deal with the new conditions.

The Strategy pattern allows us to configure an application that both accommodates the range of behaviors that
arise at runtime and interchanges algorithms to facilitate the different behaviors. This pattern also obviates the
need for implementing long and complex code in conditional structures and switch statements that vary the
implementation. This is illustrated in Figure 13−5.

Figure 13−5: The Strategy pattern
The following code illustrates how the injector software chooses alternate implementation by accessing a
different interface for each case in a Select Case statement. You can say that each case provides a different
strategy to invoke, depending on the conditions, at runtime.

Public Class CruiserInjector
 Inherits BaseInjector

 Dim ColliderRates As ICollisionRating = _
 LockheedCruiserRaterImp.GetBridge()

 Strategy

427

 Dim compensationLevel As Integer

 'Bridge to speed algorithms
 'handle impulse
 Dim Impulse As IImpulseHandler = _
 LockheedCruiserImpulseHandlerImp.GetBridge
 'handle level one light speed
 Dim PlusOne As ILightPlusOneHandler = _
 LockheedCruiserPlusOneImp.GetBridge
 'handle level two light speed
 Dim PlusTwo As ILightPlusTwoHandler = _
 LockheedCruiserPlusTwoImp.GetBridge

 Public Overrides Sub StartInjector()
 rating = ColliderRates.RateCollision(ShipTypeEnum.Cruiser, _
 CoilSizeEnum.CruiserClass)
 warpDrive.Calibrate(rating)
 warpDrive = True
 warpSpeed = WarpFactorEnum.LightPlusOne

compensationLevel = Compensate(warpSpeed)
 injectorStatus = "Injector is Online"
 End Sub

 Public Function Compensate(ByVal warpspeed As Integer) As Integer
 Select Case warpspeed
 Case 0
 Compensate = Impulse.Compensation(InjectorVerEnum.Class3, _
 ShipTypeEnum.Cruiser)
 Case 1
 Compensate = PlusOne.Compensation(InjectorVerEnum.Class3, _
 ShipTypeEnum.Cruiser)
 Case 2
 Compensate = PlusTwo.Compensation((InjectorVerEnum.Class3, _
 ShipTypeEnum.Cruiser)
 Case 3
 '. . .
 End Select
 End Function
End Class

If the above code is a little too "spaced−out" for you then here is an example you might more easily identify
with. Suppose you need to encrypt an object with one of several possible encryption algorithms. As you
know, the more secure the encryption, the more powerful the algorithm must be. The algorithms that provide
less security typically process quicker than those that provide better security (a weak algorithm may only
work with 16−bit encryption while a very strong one would use 128−bit numbers and higher). You can thus
present a user with the opportunity to decide to encrypt data as quickly as possible or as securely as possible.
The first choice prevents a blockage that may arise in the application, and cause other side effects. The second
choice would use stronger algorithms to produce more secure results, but it would take longer to process.
Here's an example that bridges to a single implementation that contains facilities for all three levels of
encryption (the interface definition is included for clarity):

Public Interface IEncryptionLevel
 Function EncryptLowBit(ByVal obj As Object) As Object
 Function EncryptMediumBit(ByVal obj As Object) As Object
 Function EncryptHighBit(ByVal obj As Object) As Object
End Interface

Public Class Obfuscate
 Dim Cipher As IEncryptionLevel = EncryptionLevelImp.GetBridge

 Strategy

428

 Public Function Encrypt(ByVal level As Integer, ByVal obj As Object) As Object
 Select Case level
 Case 0
 Encrypt = Cipher.EncryptLowBit(obj)
 Case 1
 Encrypt = Cipher.EncryptMediumBit(obj)
 Case 2
 Encrypt = Cipher.EncryptHighBit(obj)
 End Select
 End Function
End Class

Is it not evident that your specialized class need not implement this code at all, and still have access to an
implementation it remains completely disconnected from? Such is the wonder of interfaces . . . and
polymorphism. This technique, or pattern, provides many benefits and is useful in a number of situations. You
should consider using the Strategy pattern in the following circumstances:

You are constructing an application in which a client may need to use one of many algorithms or
implementations behind a single interface at runtime. In other words, your application can call for
numerous variants of the implementation that may be needed by the client.

•

Clients do not need to know about the data and code used in the implementation. By moving the
implementation out to discrete classes in a separate class hierarchy, users are completely isolated from
this data and code. This pattern not only allows clients to function unchanged despite the
interchanging of implementationswhich makes them easier to manage and maintainbut it also hides
the implementation from clients that do not need this information.

•

You need to get rid of client−dependent conditional structures and the related code, thereby
encapsulating the functionality in separate Strategy classes.

•

Inheritance offers the ability to specialize subclasses, yet it also hardwires implementation to the interface,
which results in the same awkwardness described in the earlier Bridge pattern.

Your clients, however, need to be aware of the different strategies available to them, as demonstrated in the
encryption application earlier in this section. So this pattern actually becomes applicable when clients
understand the reasons for the interchanges and can make informed choices. In other words, the variation in
algorithms must be relevant to the client.

One drawback is that Strategy creates more classes than would have been created if the clients had
implemented the different behaviors or algorithms themselves. As a tradeoff, with respect to the latter course,
the client is never independent of the implementation; thus, all clients have to be changed whenever the
algorithms change. The other drawback to not using Strategy is that the clients, which may be implemented by
remote customers in other companies, get access to more implementation knowledge than they need. The
Strategy pattern and Delegate construct share the same objective (see Chapter 14).

State

Regardless of your programming background, you have most likely encountered the need to manage various
states in your application. State affects everything and is relevant everywherenot only in your application.
Here are some program−related examples.

A form or dialog box presents a state so that you can select the correct event or action to match the current
state of the application. For example, data may be in a volatile state; therefore, the user interface should
prompt you to save to a database. It may even block you from doing anything else until the data is saved.

 State

429

Connections have to be managed according to the state they are in at any given time. A database or network
connection may be open, closed, established, listening, receiving, or disconnecting.

Telecommunications and telephony applications are huge state machines that schedule operations according to
the state of many different variables. Such applications are often called state machines. They are used so often
in software solutions that they are part of the first year curriculum of every computer science course.

A PBX tests state and doles out operations accordingly. Lines and stations may be in busy state, off−hook
state, on−hook state, ready state, out−of−service state, or logged−out state. These conditions are usually
represented by enumeration constants.

In procedural programming worlds, state machines are typically managed in long and complex conditional
elements such as IfThen and Else If constructs and Case and Switch blocks. But long conditional statements
that test flags and values are undesirable in both procedure−oriented programming and Object−Oriented
programming, because they make programs hard to read and maintain.

Mapping state transitions in a map table is an outmoded practice, although it is still usedeven in OO circles. If
you recall, we reviewed something similar in the GetMessages example in Chapter 5and we used a map table
in order to not preempt the discussion of classes and objects that began in Chapter 8.

Often programmers set up state machines without thinking ahead to how the application may change in the
future. Thus, they must alter the machine frequently, and as they apply new conditions and operations, the
entire design begins to unravel.

The State pattern lets us drop such conditionals and "lookup" constructs completely. This pattern permits us to
create instances of state objects, or stateful objects, that derive from a hierarchy in which the concrete−state
classes represent the states in the application. This hierarchy is illustrated in Figure 13−6.

Figure 13−6: A hierarchy of state objects for a warp drive
The client object that needs to maintain the state machine does so by maintaining references to the state
objects. Figure 13−7 shows how our ShuttleInjector object references objects of type
BaseDriveStateMachine to determine the applicability of certain operations dependent on the state of the
injector at any given time.

Figure 13−7: The class maintains the current state of the injector at all times by referencing a state object
For example, an injector cannot be placed into warp−ready state unless it has been started, and you would not
want to try and start the warp drive if it has already been started. So the first state the injector would reference
on the warp drive would be DriveStateOff. Our BaseInjector code can thus define the state−aware methods
for all subclasses. For example, before the Start method of a ShuttleInjector object is called, our code should

 State

430

reference the State object and return the current instance. If the instance returned is the DriveStateOff object,
the object itself can respond to events needed by the client before startup, such as the initialization of certain
data and conditions. Upon returning the DriveStateOff instance, the client can then invoke the Start method.
On successful completion of the Start method, the client can reference DriveStateOn object and make it the
current state.

The following code shows the implementation of the InjectorState hierarchy illustrated in Figure 13−7.

Public MustInherit Class BaseDriveStateMachine
 Dim objectNumber As Integer
 Public MustOverride Sub StateHandler()
End Class

Public Class DriveStateOff
 Inherits BaseDriveStateMachine
 Private Shared DriveStateOff As DriveStateOff
 Shared Function GetInstance() As DriveStateOff
 If (DriveStateOff Is Nothing) Then
 DriveStateOff = New DriveStateOff()
 Return DriveStateOff
 End If
 End Function

 Private Sub New()
 MyBase.New()
 End Sub

 Public Overrides Sub StateHandler()
 'add fancy state handling code here
 End Sub
End Class

Public Class DriveStateOn
 Inherits BaseDriveStateMachine
 Private Shared DriveStateOn As DriveStateOn
 Shared Function GetInstance() As DriveStateOn
 If (DriveStateOn Is Nothing) Then
 DriveStateOn = New DriveStateOn()
 Return DriveStateOn
 End If
 End Function

 Private Sub New()
 MyBase.New()
 End Sub

 Public Overrides Sub StateHandler()
 'add fancy state handling code here
 End Sub
End Class

Public Class DriveStateWarpEngaged
 Inherits BaseDriveStateMachine
 Private Shared DriveStateWarpEngaged As DriveStateWarpEngaged
 Shared Function GetInstance() As DriveStateWarpEngaged
 If (DriveStateWarpEngaged Is Nothing) Then
 DriveStateWarpEngaged = New DriveStateWarpEngaged()
 Return DriveStateWarpEngaged
 End If
 End Function

 State

431

 Private Sub New()
 MyBase.New()
 End Sub

 Public Overrides Sub StateHandler()
 'add fancy state handling code here
 End Sub
End Class

Notice that the BaseDriveStateMachine defines an abstract method called StateHandler that will be
overridden and implemented in each subclass. In other words, when the client changes the state to
DriveStateOff, the DriveStateOff's StateHandler method will be activated to perform any necessary
computation, communication, or events.

Pay special attention to the Singleton logic here. Unless you have special reason to create multiple instances
of the state objects, they should be instantiated once and implemented as Singletons. The following code
shows the client ShuttleInjector object using its references to the state machine to make decisions and
process various operations accordingly.

Make note of the ShuttleInjector's StartInjector method. StartInjector starts the state machine and assigns
the State reference variable to the DriveStateOn object. State can then invoke the DriveStateOn object's
StateHandler method. The following code shows the implementation of the StartInjector method.

Imports Vb7cr.Injectors
Imports Vb7cr.ShuttleExceptions
Imports Vb7cr.InjectorStates
Public Class ShuttleInjector
 Inherits BaseInjector
 Dim State As BaseDriveStateMachine
 Private warpSpeed As Integer
 Private warpDrive As Boolean
 Private injectorStatus As String = "Injector is Offline"
 Const C As Integer = 186355
 Dim warpSettings As New WarpFactorEnum()

 Public Overrides Sub StartInjector()
 warpDrive = True
 State = DriveStateOn.GetInstance()
 State.StateHandler()
 injectorStatus = "Injector is Online"
 End Sub
 '. . .
End Class 'ShuttleInjector

This technique, or pattern, provides a number of benefits and is useful in a variety of circumstances:

State−specific behavior can be encapsulated in dedicated objects. As demonstrated with the earlier
patterns, this allows you to vary implementation and state−specific code by merely replacing or
enhancing the State object. New variations can be easily created by extending the BaseState class
and constructing subclasses.

•

The transition to a new state is more explicit, specifically because each State object encapsulates its
own functionality and data. This is a much better idea than working with enumerator values or
constants and large blocks of conditional constructs that are difficult to maintain.

•

The state transitions are also atomic, which means state changes occur by explicitly de−referencing
only one state for another.

•

 State

432

State objects can be shared, as singletons, especially if they do not need to maintain instance data.•
Table value or flag lookup is not nearly as efficient as the State object alternative, in which transition
is effected by a simple method call. Map tables also provide no facility for additional logic, event
processing, or the ability to easily change the representation of the state in the dynamic way the State
object does. Essentially, the table−driven approach defines state, while the State pattern models a
framework for state−specific behavior.

•

The remainder of this chapter will be devoted to a study of the Composite pattern, implementing a base class
for linked lists and trees (collections of nodes), and applied against the .NET Framework's support for
collections.

Linked Lists and Trees

Linked lists and trees are an important alternative data−structure to many of the collections we talked about in
the previous chapter. Most of us hit the array for virtually all data−management constructs needed in a
classwithout considering (or without knowing) other structures that may be more suitable. Linked lists are as
easy to use as arrays and are very efficient structures for storing and accessing collections of data. Insertion
and removal of a list's elements are very fast. Trees are a little more difficult; nevertheless, they are extremely
useful for many types of algorithms.

Linked lists and trees are inherited into OO frameworks (no pun intended) from procedural languages like C
and Pascal. The formulation of these data structures in the OO world is facilitated by the key structural pattern
known as the Composite. This is the first reason for discussing linked lists and trees in this chapter.

Linked lists and trees provide ideal candidates for demonstrating composition of classes and aggregation of
objects. They make an ideal platform for discussing the Composite pattern. The linked lists and trees we are
going to implement contain objectscalled nodesthat demonstrate this capacity. The Node classes are
composed in a container class at design time, and then aggregated to the container object at runtime. The
nodes can hold all types of data; you can easily maintain a list that has some nodes containing Double data,
others with Strings, and some with Longs, as you will see. Strongly typing a linked list or tree is not a
difficult exercise either.

A second reason for examining them here is that we can easily build the classes and instantiate the objects in
an object−oriented framework, such as .NET. Linked lists and trees are perfect constructs for demonstrating
class and object creation and management principles.The third reason for going into linked lists and trees is
that the .NET Framework's base−class library does not include a native linked list or tree class that we can use
or extend (although linked−list implementation is directly employed in some of the classes in the base class
library, such as the structure behind a Delegate that maintains a collection of subscribers to an event). So we
have to do it ourselves. Fortunately, it's very easy.

Note As you saw in Chapter 12, the System.Collections namespace provides classes that can
handle some of the duties of linked lists and trees. However, there are many applications in
which a custom linked list or tree would be the better way to go. In this chapter linked lists
also provide a great OOP learning tool.

Finally, we are going to implement the Iterator pattern (or at least a pattern that closely resembles it) in this
chapter. We will build an iterator to traverse the lists we create by first implementing the IEnumerator
interface provided in the System.Collection namespace. It is worthwhile to investigate incorporating the
"comparer" interfaces into our data structures to facilitate recursive searching and applying the Delegate
pattern for iterating across trees.

 Linked Lists and Trees

433

Where would we use a linked list or a tree, especially a binary tree? It's easy to find uses for these data
structures. Any part of an application or algorithm that needs to maintain a collection of data would benefit
from them. For example, a Web browser might need to maintain a list of Web sites you have visited during a
surfing session.

Also, an accounting system might use a list to manage a roster of items moved from one account to another.
The list would make it easy to reverse debit/credit activity, because every action would be recorded
(periodically persisted) in chronological order.

A shopping cart application presents another opportunity. Every time you place an item into the cart, a node
representing that item can be added to the list and removed when needed. When you see components that
present data sequentially, a linked list is probably being employed behind the scenes. In Chapter 15, I use a
linked list to maintain a collection of noise words and characters to filter out of Index Server searches because
they are a lot lighter than arrays. The linked list also provides a much faster data structure than an array for a
Web−based application.

Is there a place for a linked list or a tree in our spaceship's computer systems? Definitely. The spaceship's
"trajectory console" is one such component. Trajectory software assists us in plotting a course from one point
to another. We also want to collect data on these points in relation to celestial bodies like stars, where we have
already been. A tree is an ideal structure that keeps spreading out. It can be easily traversed and searched.

We could gather data to determine how long it took us to get from one point to the next, and what took place
within the ship at certain times, given certain coordinates. Once we ascertain this, we can project with some
certainty how long the overall journey or individual segments will take (at light speed, of course).
Implementing trees is a much more advanced subject so the remainder of this chapter focuses on the linked
list.

Understanding the Linked List

The basic linked list represents a collection of items in a list−like format where one item is linked to the next
with a linker or a pointer. The links are nested, which provides the backbone for the list. The data and the link
itself are encapsulated in an object that forms the single element or item of the container, otherwise known as
the node.

The list resembles a stack, where nodes enter at one end and pile on top of each other on a last−in, first−out
basis. The difference is that we can add and delete nodes anywhere in the list structure, and we can traverse
the list from one end to the other.

The first node on the listthe first we createdoes not link to anything, because it represents the deepest node in
the collection and there is nothing ahead of it. It is often called the tail node, and it is usually the last one
removed if the nodes are peeled off from the top down. It is customary, though not always necessary, to
maintain a reference to the tail node. Any node added below or in front of the tail node takes its place at the
end.

The second node we create is linked to the first via a linker to the previously inserted node. This pointer is a
reference variable in one node that refers to the next link in the list. For example, when you add a third node
to the collection, it maintains a link to the second item. The illustration provides a graphical representation of
such a linked list.

 Understanding the Linked List

434

In the illustration, the first node in the list, the tail, contains the Integer value 1. It represents the first item in
the list. The last node, currently the head node, contains the Integer 10 and links to a node containing 15.
Every linked list is built in this fashion. When we create the first node at the beginning (if no node precedes
it), we mark the end with an end−of−list symbol. The letter "E" suffices, but in the actual code the link points
to null (Nothing).

Visual Basic, or any other language for that matter, knows nothing about linkers and nodes in lists and trees.
We represent these "concepts" programmatically using classes, objects, and data.

As mentioned earlier, linked lists operate like the standard stack or queue (see Chapter 12). The only
difference is that you can insert new nodesthe dataanywhere in the structure of the linked list by maintaining
references to next and previous nodes. How a node is referenced (last, first, current, previous, next, top, and so
on) depends on the operation you need to perform relative to the current reference, the current position. From
the perspective of the "current node" the node that was created after it is the next node and the node that was
created before it is the previous node. This may be clearer in the illustration.

When you insert, only the neighboring nodes need to change. Inserting is similar to people jostling for
positions in a lunch line. The illustration on the previous page shows this "pushing in" activity.

Removing a node follows the same pattern. You affect only the neighboring links and need to manage the
references on both sides so that you can "plug" the hole that results upon the removal of a node.

Perhaps you are wondering why this is significant, since you can do this with arrays. Furthermore, arrays let
you access an element or subscript value anywhere in the structure by virtue of the index. The specialty of the
linked list, however, is that insertion, removal, and iteration are much faster and less resource−intensive than
array insertion and removal, which indexes the elements for random accessing, sorting, and searching. Linked
lists don't have the overhead associated with managing indexes. You gain speed but lose the benefit of random
access. If you index the linked list, you are only steps away from concocting a custom array.

You cannot simply access any node in a list as you can an indexed element of an array. To remove or insert a
node at a certain position in the list, you need to iterate through the entire sequence, one node at a time. This
scrolling activity is very fast and used mostly to display or print the listand feed data to an array or other data
structure or a stream (see Chapter 15).

Note If you are going to implement linked lists (and trees for that matter), and you expect them to grow big,
don't formally index the structure. Linked lists are typically used for algorithms that don't need random
access to elements. You typically process the roster as a unit. If you need a structure that gives you
random access via an indexed element, use an array (see Chapter 12).

Looking at our examples of lists and trees, we realize that we don't need to sort the items. Furthermore,
sorting would violate the integrity of the list. The list of Web sites recently visited, for example, would be
worthless if you decided to sort it. On the other hand, the nodes of a list are easily accessed, so sorting them
would not be very difficult. It is also quite easy to transfer the data to an array (as we will discover later in this
chapter) and back again to a list.

 Understanding the Linked List

435

Designing a Base−Container Class for Lists (and Trees)

Looking at Figures 13−8 and 13−9, we need to develop the base class from which we can create and maintain
the structures represented in the above figures. To facilitate the class design, we will investigate the
Composite pattern.

Figure 13−8: The BaseNodeCollection's container−class hierarchy
The Composite pattern has been tried and tested over many years and provides us with a model from which to
implement our link−oriented structures. This pattern also specifies how all the Node objects in the list or tree
can or should be consistently manipulated.

Note An interesting observation to make here is that while the Node class in a tree or list container is a
composite class (nested), its instantiation results in the object being easily aggregated to the container
class.

Two key forces drive this pattern. First, we have a container object that becomes a collection of identical
objects (Nodes) that need to be organized in a logical hierarchy (and that hierarchy needs to facilitate
iteration, possibly recursively). Second, it is desirable to limit the number of different child node objects that
make up the composite nodes of the tree. While we should be able to encapsulate any type of data in the
composite nodes, the Node objects should be of the same typeNode. In other words, the list or tree should be
strongly typed.

Strong typing is more than possible because the aggregate Node objects can only be of type Node, so every
composite object created for the type of collection contains identical members and fields. At the same time,
the nodes themselves should have the ability to encapsulate data and functionality of different data types,
which is what makes lists and trees so powerful and useful. Should the implementor require strong typing of
data within the actual node (remember a field in .NET is nothing more than another object, a value type, or a
reference type), then that too is entirely possible. Let's continue creating the collection container and return to
the definition and implementation of the composite node later.

The first task in implementing the Composite pattern is to provide the parent or base container class. The class
should be abstract and inheritable; however, a number of properties and methods can be implemented in the
base class with the potential to be overridden in any child class. This class is the ancestral super−class of all
list and tree structures. There is so little difference between linked list and tree classes, that it makes sense to
"grow" a container framework that specializes in the collection of nodes.

Figure 13−8 illustrates the hierarchy for the container class for linked lists and trees. We shall call this base
class BaseNodeCollection.

The following code illustrates the simple construction of the BaseNodeCollection class:

Imports System
Imports Vb7cr.Exceptions
Public Class BaseNodeCollection
 'IList inherits ICollection and IEnumerable

 Designing a Base−Container Class for Lists (and Trees)

436

 Implements IList
 '. . .
End Class

Note This above code example shows only that it implements IList. IList inherits both ICollection and
IEnumerable so you must implement all three at the same time.

Now that we have the container base class let's get to work constructing the composite Node class.

Implementing the Node

The best way to represent a node in a linked list or tree is to create an object to represent it and aggregate it to
the root container or collection objectin this case, the Node object is encapsulated in the base
BaseNodeCollection class.

An object is more than an ideal facility for a linked list or tree node. Each Node object can contain data fields,
methods, and properties and can be easily referenced from within the confines of the collection container. You
can even create nodes that contain other objects, making the node a multifaceted container. The Node object
maintains its own aggregated objectsthe data represented by the nodeand the linking objects, which point to
other nodes as illustrated in Figure 13−9.

Figure 13−9: A Node object with its aggregated data and link objects
Our implementation of the nodes and the container itself will not be sealed, which gives us the ability to
extend the classes and thus improve on the foundation we have created in version 1.0. Extending the base
class so it can be used for a multi−node tree is the next logical step in the evolution of the
BaseNodeCollection class.

The BaseNodeCollection class provides a perfect scenario for the implementation of nested or inner classes,
aggregation, and composition, as discussed in Chapter 9. You can think of the node as a leaf, the linkers as
branches, and the container class as the trunk. The UML diagram representing this arrangement is illustrated
in Figure 13−10.

Figure 13−10: The Node class is the inner or nested class, and is thus part of the outer BaseNodeCollection
class. Node itself contains objects.
The Node class used to represent a node in the collection can be defined as follows (the outer
BaseNodeCollection class is shown here to provide the composite context):

Public Class BaseNodeCollection
 'carries in ICollection and IEnumerable as part of the hierarchy
 Implements IList
 '. . .

 Implementing the Node

437

 Public Class Node
 Public Data As Object
 Public NodeNext As Node

 Public Sub New()
 MyBase.New()
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("Node({0})", Data)
 End Function
 End Class
End Class

This is the beginning of our Node objectnotice how class Node, the composite, is nested inside
BaseNodeCollection, which is also known as the outer class. But Node itself is also a container. We need to
provide a facility for a linker object and an object to hold the data of the node. While we could easily use the
inherited Node.ToString facility (overridden in the Node class) for Node's data, doing that will limit us to a
single data field, and you'll see later when you extend Node for tree support that one field for data is not
enough.

The composite classes to nest in Node are thus Data and NodeNext, the data field and the target Node to link
to respectively. (The Node can hold characters, fractions, and other forms of data, but for now we'll work with
simple numbers and strings to facilitate your understanding the concepts.)

Note that NodeNext is itself an object of type Node. The Node object, as NodeNext, becomes the "linker"
object that connects each Node to the next. This is what holds a list or tree together. The first node references
the second one, which references the third, and so on. The references form a chain that results in the list or
tree. The UML class diagram for the Node object and its composites can be thus represented by the
illustration.

The Node class declares the following aggregate objects:

Data An object (required) of type Object that represents the data field of Node.•
NodeNext An object of Type Node (required) that represents the next Node in the chain.•

We have now seen how it is possible to create objects that represent nodes of a linked list or tree, which can
be instantiated from the outer container class. The Composite pattern or technique lets us keep the
node−object data private inside the outer class, but the members and data of the inner class can be freely
accessed via instances of Node by the various list−manipulation methods of the outer class. The Node object
is aggregated to the BaseNodeCollection, in the same fashion that a ListBox component is aggregated to a
form. And we thus have the same access to Node from BaseNodeCollection as Form has to ListBox or
Label.

The first node that was created in the collection, which usually becomes the last node removed from it, can't
link or point to any object ahead of it. So its linker must point to Nothing. This can be achieved simply by
specifying Nothing for either the previous node of the object or the next node of the object. This will become
more apparent as we instantiate Node and begin to work with it from the outer class.

 Implementing the Node

438

The Nothing literal discussed in Chapters 4 and 8 suffices to de−reference the reference variable from its
object graph. Thus the following code:

NodeNext = Nothing

serves to cut the link to the next node. NodeNext gets collected, and the current node becomes either the first
node of the list or the leaf node in a tree (the leaf at the end of the branch).

(Using the Null pattern is useful if you have specific business rules for keeping an object alive at the head or
end of a list or tree. A Null object is referenced by NodeNext, but the object does nothing and can simply be a
sterile copy of Object. This technique offers the advantage of being able to upcast the so−called Null object
as soon as you are ready to add a node to the beginning or end of the data structure. You can then add a Null
object to the next node or create a new Null object after you have upcast the existing one.

But how do we reference the various nodes from the parent container? By aggregating the Node class to
BaseNodeCollection. Remember back in Chapter 9 we saw the same technique used to aggregate controls to
a Form class, before they are instantiated and used. Aggregating Node to BaseNodeCollection is done as
follows:

Private CurrentNode As Node
Private NodePrevious As Node
Private LastNode As Node
Private NextNode As Node

The four Node declarations here represent the following roles the nodes play in the list. In other words, each
node can be any referenced as any one of the four positions.

CurrentNode A node that represents the current (cursor) position in a list.•
NodePrevious A node that represents the node before the CurrentNode. In other words,
NodePrevious links to CurrentNode. NodePrevious is thus closer to the tail of the list than
CurrentNode.

•

NextNode A node that comes after CurrentNode. NextNode is thus the node that is closer to the
head than CurrentNode.

•

LastNode The node at the head or end of the list. This node points to Nothing above it (it has no
reference to a NextNode). The second−to−last node in the list is this node's NodePrevious (which is
the earlier created Node object's NodeNext reference).

•

We now have enough in the BaseNodeCollection to begin implementing its methods and properties.

Implementing the Container

The root BaseNodeCollection class defines the various members of the container class for managing the
collection as a unit. The Composite pattern provides the model for defining the members as shown in the class
diagram in Figure 13−11.

Figure 13−11: Implementation of the BaseNodeCollection

 Implementing the Container

439

The following list includes methods and properties defined in IList, ICollection, and IEnumerable. The
interfaces are listed in Chapter 12 because they are implemented in various other collections, such as Array
and Stack.

New A constructor for the BaseNodeCollection object•
Add A method that adds a node to the top of the list•
Clear A method that clears the list•
Contains A method that determines if a node contains the specified data•
CopyTo A method that copies all the data in a linked list to an array•
Count A property that maintains the number of nodes in the collection•
CurrentPosition A property that maintains a reference to the node in focus in a collection•
FindItem A method that applies the CurrentPosition to the node containing the last instance
holding the specified data

•

GetEnumerator A method that gets an IEnumerator object on the specified list•
IndexOf A method that provides a facility to find the first index or location of a particular item or
value in the list

•

Insert A method that inserts a node at a specified location in the list•
Item A property that retrieves or sets the current value of the referenced node•
Last A property that retrieves a reference to the node added last to the list, the head node•
PreviousNode A property that retrieves a reference to the node that comes before the current node•
Remove A method that removes the specified node from the list•
RemoveAt A method that removes the node at the specified location in the list•

If you understand interfaces (Chapters 10), you know that the System.Collection namespace includes three
interfaces that suddenly become relevant in implementing the Composite pattern. Since BaseNodeCollection
is an abstract class, we can elegantly implement IList, ICollection, and IEnumerable in it and convert our
Composite−adherent container into a fully−fledged .NET Framework−aware Collection class. This provides
many advantages, such as accommodating the For Each . . . Next conditional statement (see Chapter 6 for an
introduction to this conditional). (Chapter 12 describes the definitions that the IList, ICollection, and
IEnumerable bring to our abstract class.) We can implement the ICollection as well. By implementing
IEnumerable we are setting ourselves up to implement IEnumerator in our iterator object.

We should start with the essential method of the container class, which is the one that builds our list. We can
thus begin our effort by implementing IList.Add.

The Add Method

The IList.Add method adds nodes to the top of a list. This requires the node pushed down to alter its link
reference to point to the new node as shown in Figure 13−12.

Figure 13−12: Inspecting the objects in the Locals windows during debugging (see Chapter 17) shows the

Implementing the Container

440

linked list in action, the head of the list, the tail, and the body
Recapping, linked lists (and trees) work like push−down stacks (although you can be deep in the structure and
insert at the current node referenced). Nodes are typically added at the beginning and pushed down (or into)
the structure. So, as soon as a new node is added to the head of the list, the first one created becomes the node
farther away from the head. (Later we'll discuss how to insert nodes at the current location in the list using the
Insert method.)

Before we create the definitions for the other methods, let's develop the Add method. There's a good reason
for this: once we have the main method that can effectively add nodes to a BaseNodeCollection object, the
other methods will fall into place to manipulate the structure taking shape.

Don't be afraid to get out a pencil and paper and draw the data construct and the algorithms. The "drawing"
shown in the earlier figures help us visualize the container and determine how to work in it and on the list.
From it we can see that once you have a BaseNodeCollection containing more than two nodes, only the first
and last nodes are easily accessible.

You'll find that once you can add a node to a list, you naturally have a reference to it, and because it's easy to
find the first one, it's just as easy to delete it or add a new one. As you look back at the illustrations and the
class diagrams shown earlier (which make convenient abstractions and models of the actual classes) you will
see the BaseNodeCollection beginning to make sense. The definition for the Add method is as follows:

Method Name: Add The method adds a node to a BaseNodeCollection object•
Method Signature The method takes an argument of type Object, which represents the data
encapsulated in the node

Public Function Add(ByVal obj As Object) As Integer Implements IList.Add

•

Parameters The parameter obj is an instance of Object, which is yet to be cast to a particular type,
or left as is. The obj parameter will be used to represent the data type encapsulated by the node. It is
not the node itself. The return type is an Integer, which is not used here.

•

Precondition The method should first test if a node already exists on the list. It does this by checking
if LastNode references an object that may have already been created or it references Nothing.

•

Postcondition No postcondition•
Exceptions This method may engage operations that throw exceptions. The example code forgoes
exception handling for simplicity at this stage.

•

An implementation of the Add method is as shown in the following code:

Public Function Add(ByVal obj As Object) _
 Dim TopNode As New Node()
 With TopNode
 .Data = obj
 .NodeNext = CType(LastNode, Node)
 If (LastNode Is Nothing) Then
 LastNode = TopNode
 Else
 NextNode = LastNode
 LastNode = TopNode
 End If
 End With
End Function

Let's step through this code. The first statement in the method creates the new Node object called TopNode,
which does not play a role at the class level (which is why it was not mentioned earlier). It immediately places

Implementing the Container

441

the data represented in the obj object into the node (in TopNode.Data). If you look back at the Node class
you'll see where Data comes from. It is one of two composite objects in Node. (Without the Data object there
would be no point to this whole exercise.)

The next line of code converts the composite NodeNext to an object of type Node. NodeNext then gets ready
to play the role of LastNode (the head of the list) as shown here:

.NodeNext = CType(LastNode, Node)

At this point in the method, the data structure looks like the example in the illustration.

Next, a conditional checks to see if a LastNode might already exist, which means that a list may have already
been started. If indeed there is no prior node then LastNode is added as the first node and the list is born. This
it does by making LastNode the TopNode, which is now scoped to the container where everyone can now see
it.

If the conditional test fails the method jumps over the assignment of TopNode and simply adds a new node.
This is done in the following code:

Else
 NextNode = LastNode
 LastNode = TopNode
End If

(The process of adding and removing nodes in the middle of the BaseNodeCollection's structureand how you
navigate itmust still be puzzling. Traversal and iteration will factor into this conversation, which we will
pursue later in this chapter. But first let's implement the other key methods and properties in the base class.)

Before we move on there has to be an important addition to the Add method. We need a facility for keeping
count of how many nodes are manifesting in the containerhow many nodes are currently in the list. This is
achieved by providing an Integer field to BaseNodeCollection as follows:

Private num As Integer

Now every time we add a node to the list we need to increment the number. We can place the code that
achieves this at the end of the method, the last line of code executed upon the successful addition of a node.
This line is shown in the updated Add method in bold:

Public Function Add(ByVal obj As Object) _
Dim TopNode As New Node()
 With TopNode
 .Data = obj
 .NodeNext = CType(LastNode, Node)
 If (LastNode Is Nothing) Then
 LastNode = TopNode
 Else
 NextNode = LastNode

Implementing the Container

442

 LastNode = TopNode
 End If

 num += 1
Return num

 End With
End Function

The num variable plays an important role in the Count property, which is used in several places to report on
the number of nodes in the list. Count is implemented shortly and the role of num will become more
apparent.

The following code shows how to use Add:

Dim CopyList As New BaseNodeCollection()
Dim BigNode As BaseNodeCollection.Node
For Each BigNode In List
 CopyList.Add(BigNode)
Next BigNode

The Clear Method

The IList.Clear method clears all nodes from the list. This is a very easy method to implement. We simply
de−reference the last node and the entire list collapses like a stack of cards. The garbage collector will
conclude that there is no longer an interest in the entire chain and will collect all the objects accordingly.

The definition for the Clear method is as follows:

Method Name: Clear The method clears the reference to a list in BaseNodeCollection•
Method Signature The method takes no arguments

Public Sub Clear() Implements IList.Clear

•

Parameters None•
Precondition None; simply assigning LastNode to Nothing severs the connection to the list•
Postcondition None•
Exceptions None; this method will not throw an exception, even if the list does not exist•

An implementation of the Clear method is as shown in the following code:

Public Sub Clear() Implements IList.Clear
 LastNode = Nothing
End Sub

The Clear method can be called as follows.

List.Clear()

The Contains Method

The IList.Contains checks to see if the specified value is contained in the Data object of the Node.

The definition for the Contains method is as follows:

Method Name: Contains The method checks for the first existence of the specified value and•

Implementing the Container

443

returns True or False representing success or failure respectively. This method uses the IndexOf
method shown later to make the determination.
Method Signature The method takes no arguments.

Public Function Contains(ByVal obj As Object) _
As Boolean Implements IList.Contains

•

Parameters Expects an argument (obj) of type Object•
Precondition None•
Postcondition None•
Exceptions None•

An implementation of the Contains method is as shown in the following code:

Public Function Contains(ByVal obj As Object) _
 As Boolean Implements IList.Contains
 If IndexOf(obj) < 0 Then
 Return False
 Else
 Return True
 End If
End Function

The Contains method can be used as follows:

If Not (List.Contains("buyer")) Then
 SendEmail("The web site is broke")
End If

The CopyTo Method

The ICollection.CopyTo copies the values held in the nodes' Data object to an array. The definition for the
CopyTo method is as follows:

Method Name: CopyTo The method copies the entire list's values to an array.•
Method Signature The method takes two parameters

Public Sub CopyTo(ByVal array As Array, ByVal index As Integer) _
Implements ICollection.CopyTo

•

Parameters This method expects a System.Array argument and an Integer to specify the index in
the array to copy to

•

Precondition The method engages an iterator of type IEnumerator to traverse the list•
Postcondition None; the list is left as CopyTo found it•
Exceptions This method throws an exception of type ArgumentOutOfRangeException when the
index specified does not exist in the array (it is thus outside the bounds of the array). By throwing
exceptions you will test the precondition (instead of using flow−control statements) and allow the
user to handle the exception. The Catch handler also writes the exception's message to the exceptInfo
field which is scoped to BaseNodeCollection.

•

An implementation of the CopyTo method is as shown in the following code:

Public Sub CopyTo(ByVal array As Array, _
 ByVal index As Integer) Implements ICollection.CopyTo
 Try
 Dim myIterator As System.Collections.IEnumerator =_

Implementing the Container

444

 Me.GetEnumerator()
 While myIterator.MoveNext()
 CurrentNode = myIterator.Current()
 array(index) = CurrentNode.Data
 index += 1
 End While
 Catch Except As ArgumentOutOfRangeException
 exceptinfo = Except.Message
 End Try
End Sub

The CopyTo method can be used as follows:

Dim ProcessArray(2000) As Object
List.CopyTo(ProcessArray, 0)

The Count Property

Being able to keep track of the number of items in a collection is very useful. Count is a simple read−only
property that returns the number of nodes in the linked list. The definition for Count comes from the
ICollection interface. The easiest way to implement Count is to have it simply report the current value of the
num variable, which is scoped to the container as discussed earlier. The Add, Insert, and Remove methods
increment and decrement a counter and Count just reports the current value.

Here is its definition:

Property Name: Count The property counts the number of nodes in the collection.•
Property Signature

Public Overridable Overloads ReadOnly Property Count() _
As Integer Implements ICollection.Count

•

Parameters The property returns an Integer•
Precondition None•
Postcondition None•
Exceptions None•

Count can be implemented as follows:

Public Overridable Overloads ReadOnly Property Count() _
 As Integer Implements ICollection.Count
 Get
 Return num
 End Get
End Property

You can use Count with the other methods as follows:

Public Sub InsertNode()
 List.Insert(Count − 1, 100.54)
End Sub

This method inserts the value at the end of the list.

Let's review the stage we are at now. We have the model and code for the container called
BaseNodeCollection. We have also implemented the following BaseNodeCollection members: Add, Clear,

Implementing the Container

445

Contains, CopyTo, and Count. While we can certainly cook up a list we can't do much with it yet. The next
forthcoming group of members to implement will begin to make things a lot more interesting.

The CurrentPosition Property

The CurrentPosition property returns a node that is currently in focus, the so−called CurrentNode. While
CurrentNode is referenced internally the purpose of this property is to allow a node to be referenced from the
public interface to BaseNodeCollection. Later you will see that the iterator uses this property to traverse the
list because it is implemented externally and works with an external reference the BaseNodeCollection.
CurrentPosition and similar public properties allow the iterator to find its way to the list.

The definition for the CurrentPosition Property is as follows:

Property Name: CurrentPosition The property specifies the CurrentPosition•
Property Signatures The property takes no arguments to its Get method and an object of type Node
to its Set method. It returns the CurrentNode object

Property CurrentPosition() As Node
Set(ByVal Value As Node)

•

Parameters The Set method expects an argument of type Node•
Precondition None•
Postcondition None•
Exceptions None•

An implementation of the CurrentPosition property is as shown in the following code:

Property CurrentPosition() As Node
 Get
 Return CurrentNode
 End Get
 Set(ByVal Value As Node)
 CurrentNode = Value
 End Set
End Property

This property is used by the iterator, or any external object, to specify the node considered to be at the current
position during traversal.

The Find Item Method

The FindItem method is a custom method that makes the node at the specified location in the list the
CurrentNode. The CurrentNode can then be referenced by any other methods and properties as needed. The
definition for this method is as follows:

Method Name: FindItem The method makes the node at the specified location the CurrentNode
object, returned by the CurrentPosition property

•

Method Signature The method takes a single argument of type Integer as an index value
representing the node number in the list

Private Sub FindItem(ByVal nodeIndex As Integer)

•

Parameters Expects an argument of type Integer•
Precondition Checks first to see if the provided argument is outside the bounds of the list•
Postcondition None•

Implementing the Container

446

Exceptions This method throws an exception of type ArgumentOutOfRangeException when the
index specified does not exist in the list (it is thus outside the bounds of the structurethat is, below
zero and higher than Count). The Catch handler also writes the exception's message to the
exceptInfo field which is scoped to BaseNodeCollection.

•

An implementation of the FindItem method is as shown in the following code:

Private Sub FindItem(ByVal nodeIndex As Integer)
 Try
 If (nodeIndex < 0 Or nodeIndex > Count) Then
 Throw New ArgumentOutOfRangeException()
 End If
 Dim myIterator As System.Collections.IEnumerator = _
 Me.GetEnumerator()
 Dim intI As Integer = −1
 While intI < nodeIndex
 myIterator.MoveNext()
 CurrentNode = myIterator.Current()
 intI += 1
 End While
 Catch Except As ArgumentOutOfRangeException
 exceptinfo = Except.Message
 End Try
End Sub

This method requires a little more explanation. If the nodeIndex parameter is valid the first step required is to
bridge an iterator object to the list. This is achieved in the following lines of code:

Dim myIterator As System.Collections.IEnumerator = _
 Me.GetEnumerator()

The nifty thing about this code is that it uses the Me "handle" to send a message to the current
BaseNodeCollection object's GetEnumerator method. GetEnumerator is implemented to support
instantiating the IEnumerator object. (The discussion of the GetEnumerator is coming up next.)

The next job of the method is easy. Once we have the iterator (of type IEnumerator) we can simply enter the
list at the head, and iterate over the list until we arrive at the nth node specified by the nodeIndex parameter.

The iterator itself has a handle on the node it lands on via the IEnumerator's current method (you will see
how this works when we tackle the implementation of the iterator object with IEnumerator later in this
chapter).

The GetEnumerator Method

As mentioned, we will implement an iterator that supports the .NET IEnumerator interface towards the end
of this chapter, so this discussion of the IEnumerable.GetEnumerator method may seem a little premature.
However, GetEnumerator is required by all methods that seek a handle to the list in order to traverse it (and
do other things to it). We use an iterator extensively from within BaseNodeCollection (allowing the container
to work on its own list) but we also need to implement it to support the likes of external constructs, such as
For Each . . . Next, which will not work without a GetEnumerator implemented in the target object. For
Each . . . Next, as discussed in Chapter 6, essentially uses our custom iterator to loop up the list, but it needs
GetEnumerator to bridge to the iterator. Later on in this chapter you will see how this all comes together like
peas in a pod.

Implementing the Container

447

Here is the definition of GetEnumerator:

Method Name: GetEnumerator The method returns an instance of an iterator that implements
IEnumerator

•

Method Signature

Public Function GetEnumerator() As IEnumerator Implements _
 Enumerable.GetEnumerator

•

Parameters The method returns an instance of an IEnumerator•
Precondition The method must first instantiate an IEnumerator (our iterator)•
Postcondition None•
Exceptions None•

GetEnumerator can be implemented as follows:

Public Function GetEnumerator() As IEnumerator Implements _
 Enumerable.GetEnumerator
 Dim iterator As New Iterator(Me)
 Return iterator
End Function

This is not a difficult method but it requires one critical item to make it work. It needs to pass a reference to
this object (Me) to the iterator's constructor. The iterator will then use the reference to bridge to the current
BaseNodeCollection object to be "iterated." It may help to see this from inside the iterator. The following
codes show the receiving end of the instantiation call to the Iterator's New method.

Public Sub New(ByRef list As BaseNodeCollection)
 MyBase.New()
 workList = list
End Sub

An object of type BaseNodeCollection is passed to the constructor, which assigns it to its workList variable.
The iterator can then get to work on the workList, which is connected by reference to the target
BaseNodeCollection object.

The IndexOf Method

The IList.IndexOf method is implemented to provide a facility to find the first index or location of a
particular item or value in the list. This method requires some String comparison work because we have to
iterate through the list and compare that data in each Data object to the object passed as an argument
specifying the value to search for.

Here is the definition of IndexOf:

Method Name: IndexOf The method provides a facility to find the first index or location of a
particular item

•

Method Signature

Private Function IndexOf(ByVal obj As Object) _
As Integer Implements IList.IndexOf

•

Parameters The method takes an object representing the value or item to find in the list. It returns
the index of the first node that has data matching the value specified

•

Precondition None•

Implementing the Container

448

Postcondition None•
Exceptions This method throws an exception of type NodeNotFoundException which is raised
when the method compares every node in the list and comes up empty handed. The Catch handler
also writes the exception's message to the exceptInfo field, which is scoped to BaseNodeCollection.

•

IndexOf can be implemented as follows:

Private Function IndexOf(ByVal obj As Object) _
 As Integer Implements IList.IndexOf
 Dim intI As Integer = −1
 Dim Nodal As New Node()
 Nodal.Data = obj
 Dim myIterator As System.Collections.IEnumerator _
 = Me.GetEnumerator()
 While myIterator.MoveNext()
 CurrentNode = myIterator.Current()
 intI += 1
 Try
 If (String.Compare(CurrentNode.Data, Nodal.Data) = 0) Then
 Return intI
 End If
 Catch E As NodeNotFoundException
 Return 1
 End Try
 End While
 Return 1
End Function

This method uses the String.Compare method to compare the value of the obj parameter with
CurrentNode.Data. The obj parameter is, however, first assigned to the Data object in a node, so that we
don't run into type mismatch incompatibility problems during the comparison.

The Insert Method

The IList.Insert method is one of the more challenging methods to implement because it requires jostling
around nodes in the middle of a list. The interface specifies that you must pass in an Integer that represents a
position on the list somewhere and the data to insert into the list. The application of the data to the list is pretty
straightforward because once you are fixed on a position in the list and have successfully inserted a new Node
object into the list, you can simply copy the data to the node's Data composite.

Here is the definition of Insert:

Method Name: Insert The method inserts a new node in the list or collection and copies the
specified data to the new node

•

Method Signature

Public Sub Insert(ByVal index As Integer, _
 ByVal obj As Object) Implements IList.Insert

•

Parameters The method takes an Integer representing the position in the list to insert the new node,
and an object encapsulating the data for the new node

•

Precondition Checks first to see if the provided index argument is not outside the bounds of the list•
Postcondition None•
Exceptions This method throws an exception of type ArgumentOutOfRange Exception when the
index specified does not exist in the list (it is thus outside the bounds of the structurethat is, less than

•

Implementing the Container

449

zero and higher than Count). The Catch handler also writes the exception's message to the
exceptInfo field, which is scoped to BaseNodeCollection.

Insert can be implemented as follows:

Public Sub Insert(ByVal index As Integer, _
 ByVal obj As Object) Implements IList.Insert
 Try
 If (index < 0 Or index >= Count) Then
 Throw New ArgumentOutOfRangeException()
 End If
 Dim myIterator As System.Collections.IEnumerator _
 = Me.GetEnumerator()
 Dim intI As Integer
 While intI < index
 myIterator.MoveNext()
 intI += 1
 End While
 Dim NewNode As New Node()
 Dim JostleNode As New Node()
 NewNode.Data = obj
 JostleNode = CurrentNode.NodeNext
 CurrentNode.NodeNext = NewNode
 NewNode.NodeNext = JostleNode
 num += 1
 Catch Except As ArgumentOutOfRangeException
 exceptinfo = Except.Message
 End Try
End Sub

Once Insert has checked that the location to insert to is kosher it can call on the services of the iterator and
run over to the desired location. The location can be anywhere in the list, including the node after the tail
node, the first node position, and anywhere in between head and tail. The important part of this method is the
code required for jostling the nodes around to accommodate the insert. It is represented in the following
section:

Dim NewNode As New Node()
Dim JostleNode As New Node()
NewNode.Data = obj
JostleNode = CurrentNode.NodeNext
CurrentNode.NodeNext = NewNode
NewNode.NodeNext = JostleNode
num += 1

This code creates two new nodes; one is called the NewNode and one is called JostleNode. The data passed
to the method is first copied to the NewNode's Data object, so once that part is done the data−transfer part is
out of our way.

The next job of the method is to make the node that bears the honor of the CurrentNode link point to the
JostleNode. This is achieved by assigning JostleNode to CurrentNode.NodeNext. Then we point
CurrentNode.NodeNext to the NewNode, which brings the new data into the list. Finally,
NewNode.NodeNext is assigned to JostleNode, so that we don't lose the rest of the list. This may be clearer if
represented graphically as shown in Figure 13−13.

Implementing the Container

450

Figure 13−13: The shuffling of nodes that takes place when you insert into a list
The Insert method can be used as follows:

Public Sub InsertNode()
 List.Insert(0, "Start")
End Sub

The Item Property

The IList.Item property retrieves or sets the value in the referenced node. This is an easy property to
implement because it merely references the CurrentNode object and retrieves or changes the data in
CurrentNode.Data.

The definition for the Item property is as follows:

Property Name: Item The property sets or returns the data in CurrentNode.Data•
Property Signatures The property takes arguments to both Set and Get methods

Public Property Item(ByVal nodeIndex As Integer) _
 As Object Implements IList.Item
Set(ByVal Value As Object)

•

Parameters The Get method expects an Integer representing the position in the list to iterate to. The
Set method expects an object representing the data to install in the target's Data object

•

Precondition None•
Postcondition None•
Exceptions None•

An implementation of the Item property is as shown in the following code:

Public Property Item(ByVal nodeIndex As Integer) _
 As Object Implements IList.Item
 Get
 FindItem(nodeIndex)
 Return CurrentNode
 End Get
 Set(ByVal Value As Object)
 CurrentNode.Data = Value
 End Set
End Property

The Composite pattern also defines a method that returns the data of a node. The pattern calls it GetChild.
GetChild and IList.Item do the same thing. From within BaseNodeCollection, we can vary operations that
return one of several items, such as the data in Data, information about the current state, or any other
information you care to program into the Node object.

Implementing the Container

451

If you are a stickler for formality you can change the name of Item to GetChild because interface
implementation allows you to change the name of the identifier.

The Item method can be used as follows:

List.Item(3).Data = "oh no"

The Last Property

The Last property is a custom property that returns the node currently assigned to LastNode. The LastNode
is essentially the head of the list.

The definition for the Last property is as follows:

Property Name: Last The property returns the LastNode object.•
Property Signatures

ReadOnly Property Last() As Node

•

Parameters Returns an object of type Node, which is the current node assigned LastNode•
Precondition None•
Postcondition None•
Exceptions None•

An implementation of the Last property is as shown in the following code:

ReadOnly Property Last() As Node
 Get
 Return LastNode
 End Get
End Property

The PreviousNode Property

The Previous property is a custom property that returns the node currently assigned to NodePrevious.

The definition for the PreviousNode property is as follows:

Property Name: PreviousNode The property returns the NodePrevious object•
Property Signatures

ReadOnly Property PreviousNode() As Node

•

Parameters Returns an object of type Node, which is the current node assigned NodePrevious•
Precondition None•
Postcondition None•
Exceptions None•

An implementation of the PreviousNode property is as shown in the following code:

Property PreviousNode() As Node
 Get
 Return NodePrevious
 End Get
 Set(ByVal Value As Node)

Implementing the Container

452

 NodePrevious = Value
 End Set
End Property

The Remove Method

Last of the tricky methods to implement are IList.Remove and IList.RemoveAt. The two methods are closely
related, as you will see. The interface does not specify that you need to provide a location (an index value) in
the list for the target of the Remove method. Instead, an additional IList.RemoveAt is defined for that. This
method is simply passed an object representing the data in the Node to be removed.

Now, because the interface is a contract you can't simply change the signature willy−nilly. That means that we
have to provide an implementation behind the interface that deals with the fact that the client is just going to
send data to the interface and you are expected to find the first element or node holding that matches the data
received. Then you remove the node returned on the first hit. It would have been much easier if the method
accepted an object of type Node for removal because we could just remove the node assigned CurrentNode,
instead of needing to go look for that first node containing the data to delete.

With the support we already have for searching and iterating over the list, finding the first instance of the node
holding the specified data is not that difficult. There is a bit of jostling to do but the Remove method's jostling
is similar to the jostling we needed to do in the Add method. Consider the following definition for Remove:

Method Name: Remove The method removes a node from the list container. The implementor can
only remove the first node holding data destined for removal. If there are more nodes containing the
same data you will have to recall the method to remove the remaining nodes.

•

Method Signature
Public Sub Remove(ByVal node As Object) Implements IList.Remove

•

Parameters The method takes an argument of type Object representing the data in the node that will
be removed

•

Precondition The method checks the location of the first node representing the data to be removed•
Postcondition No postcondition•
Exceptions This method throws two exceptions. It will throw an exception of type
ArgumentOutOfRangeException when the index specified does not exist in the list (it is thus
outside the bounds of the structurethat is, less than zero and higher than Count). The Catch handler
also writes the exception's message to the exceptInfo field, which is scoped to BaseNodeCollection.
It will also throw an exception of type NodeNotFoundException if the index is 1, indicative of a
search turning up negative and returning 1.

•

We can implement Remove as follows:

Public Sub Remove(ByVal node As Object) Implements IList.Remove
 Dim index As Integer = IndexOf(node)
 Try
 If (Count <= 0) Then
 Throw New ArgumentOutOfRangeException()
 ElseIf (index = −1) Then
 Throw New NodeNotFoundException()
 'what if the target is at the tail of the list
 ElseIf (index = Me.Count − 1) Then
 RemoveFirst
 Return
 'what if the target is at the head of the list
 ElseIf index = 0 Then
 RemoveLast()

Implementing the Container

453

 Return
 Else 'what if the target is anywhere in the list
 RemoveInBetween
 Return
 End If
 Catch ArgExcept As ArgumentOutOfRangeException
 exceptinfo = ArgExcept.Message
 Catch NodeExcept As NodeNotFoundException
 exceptinfo = NodeExcept.Message
 End Try
End Sub

There are three possible remove options. You can remove the node in the tail position, the so−called tail node.
You can remove the node in the head position, the so−called head node (or LastNode). And you can remove a
node from anywhere in between the tail and head positions.

Once the Remove method knows the location of the node to remove it can call one of three methods to
perform the snip. These methods are listed as follows:

Private Function RemoveLast() As Object
 FindItem(0)
 Try
 If (CurrentNode Is Nothing) Then
 Throw New NodeNotFoundException()
 Else
 LastNode = CurrentNode.NodeNext
 CurrentNode = Nothing
 CurrentNode = LastNode
 num −= 1
 End If
 Catch NodeExcept As NodeNotFoundException
 exceptinfo = NodeExcept.Message
 End Try
End Function

Private Sub RemoveFirst()
 NodePrevious.NodeNext = Nothing
 num −= 1
End Function

Private Sub RemoveInBetween()
 NodePrevious.NodeNext = CurrentNode.NodeNext
 CurrentNode = NodePrevious
 NodePrevious = Nothing
 num −= 1
End Sub

As you can see from this code, the removal process is simply a matter of de−referencing the referenced node.
Because Nothing cuts the node loose, the garbage collector can come around and reclaim the resources that
the "dead" object consumed. Also notice that we need to decrement num or count will no longer be accurate.

Remove is typically used as follows:

List.Remove("Mr Noble")

Implementing the Container

454

The RemoveAt

The IList.RemoveAt method is a variation of the IList.Remove method that can take an Integer to represent
the location in the list to remove the node from. This method simply chases up an iterator to land on the node
to remove. It makes the target node the CurrentNode and then one of either RemoveFirst, RemoveLast, or
RemoveInBetween.

Consider the following definition for RemoveAt:

Method Name: Remove The method removes a node from the list container at the specifed location.•
Method Signature
Public Sub RemoveAt(ByVal index As Integer) Implements IList.RemoveAt

•

Parameters The method takes an argument of type Object representing the data in the node that will
be removed

•

Precondition The method checks the location of the first node representing the data to be removed•
Postcondition No postcondition•
Exceptions This method throws two exceptions. It will throw an exception of type
ArgumentOutOfRangeException when the index specified does not exist in the list (it is thus
outside the bounds of the structurethat is, below zero and higher than Count). The Catch handler also
writes the exception's message to the exceptInfo field, which is scoped to BaseNodeCollection. It
will also throw an exception of type NodeNotFoundException if the index is 1, indicative of a search
turning up negative and returning 1.

•

We can implement RemoveAt as follows:

Public Sub RemoveAt(ByVal index As Integer)_
 Implements IList.RemoveAt
 If (index < 0 Or index >= Count) Then
 Throw New ArgumentOutOfRangeException()
 End If
 If (index = Me.Count − 1) Then
 RemoveFirst()
 Return
 'what if the target is at the end of the list
 ElseIf index = 0 Then
 RemoveLast()
 Return
 Else 'what if the target is somewhere between first and last
 Dim myIterator As System.Collections.IEnumerator = Me.GetEnumerator()
 Dim intI As Integer
 While intI < index
 myIterator.MoveNext()
 intI += 1
 End While
 RemoveInBetween()
 End If
 Catch ArgExcept As ArgumentOutOfRangeException
 exceptinfo = ArgExcept.Message
 Catch NodeExcept As NodeNotFoundException
 exceptinfo = NodeExcept.Message
 End Try
End Sub

RemoveAt is typically used as follows:

List.RemoveAt(0)

Implementing the Container

455

Implementing the Iterator

IEnumerator's implementation provides the base functionality needed for an iteratora device that moves
from one object to the next in a collection. IEnumerable is the proxy interface given the taskthrough
exposing of a single member, a methodof returning an iterator (enumerator) for the target collection. The
following list describes the interfaces' members and the utility derived from their implementation:

Reset Moves the iterator back to its starting position, just before the first node. Calling MoveNext
places the iterator at the first position

•

Current A property that returns the current node (the one the iterator is positioned at). We can use
this property to assign CurrentNode

•

MoveNext Moves the iterator to the next node in the list•

While you can implement and work with IEnumerator aloneforgoing implementation of
IEnumerableimplementing the GetEnumerator method in your collection is a convenient way to access an
IEnumerator without having to permanently couple it to any particular collection object as you can see in the
forthcoming sections. Incidentally, the enumerator interfaces are also used to create an iterator that can "walk"
a collection of XMLNode objects.

The Iterator class can be composed in BaseNodeCollection but there is not much point to doing so. Unlike
the Node class, which is part and parcel of a list or tree container, the iterator (or enumerator) is independent
enough to stand on its own in a separate class that is implemented at the same level as the
BaseNodeCollection class. This will allow you to target the iterator class at other collections because the
methods of the Iterator class are simple enough to use with a variety of collection objects that employ Node
objects as the elements of their collections.

The following represents the base Iterator class.

Imports Nodals.BaseNodeCollection
Imports Vb7cr
Public Class Iterator
 Implements IEnumerator

 Private Position As Node
 Private Previous As Node
 Private workList As BaseNodeCollection
 Private iteratorInfo As String

 Public Sub New(ByRef list As BaseNodeCollection)
 MyBase.New()
 workList = list
 Reset()
 End Sub

 Public Sub Reset() Implements IEnumerator.Reset
 workList.CurrentPosition = Nothing
 End Sub

 Function MoveNext() As Boolean Implements IEnumerator.MoveNext
 Try
 If workList.Last Is Nothing Then
 Throw New NodeNotFoundException()
 End If
 If (workList.CurrentPosition Is Nothing) Then
 workList.CurrentPosition = workList.Last

 Implementing the Iterator

456

 Return True
 Else
 If (workList.CurrentPosition.NodeNext Is Nothing) Then
 Reset()
 Return False
 End If
 workList.PreviousNode = workList.CurrentPosition
 workList.CurrentPosition =_
 workList.CurrentPosition.NodeNext
 Return True
 End If
 Catch NExcept As NodeNotFoundException
 iteratorInfo = "No nodes exist in this container."
 End Try
 End Function

 Public ReadOnly Property Current() _
 As Object Implements IEnumerator.Current
 Get
 Return workList.CurrentPosition
 End Get
 End Property
End Class

The MoveNext method is the workhorse of this class. With its reference to an instance of
BaseNodeCollection, which it receives upon instantiation via its New constructor, it traverses the list by
shuffling the nodes into different positionsthe previous node is assigned to the current position and the current
node is assigned to the next position and so on.

The Reset method is implemented very simply. It just causes the iterator to lose its place in the list. The next
time you make a call to MoveNext, the iterator is forced to start from the beginning again. The IEnumerator
interface specifies that IEnumerator objects typically scroll in one direction. The iterator shown here starts at
the head of the list and proceeds to the tail, going from the last node that was added to the list to the first node
that was addedas if the list of nodes is a stack. The current version of the iterator does not support backward
scrolling.

Reset is also called in the constructor so that the iterator is automatically reset whenever New is called.

The last member implemented here is the Current property. It simply returns the Node object assigned to the
CurrentPosition. Note that CurrentPosition and CurrentNode both refer to the same thing, only
CurrentPosition is the BaseNodeCollection property that accesses the data from the internal and private
CurrentNode variable.

Note The formal Iterator pattern specifies a CurrentItem method as well as a Next method that is the
equivalent of MoveNext. It also supports indexing, which can be easily implemented but is not really a
necessity.

The following code demonstrates the iterator at work. The method PrintNodesDemo1 makes an iterator using
the BaseNodeCollection's GetEnumerator method, while PrintNodeDemo2 does the same thing using the
For Each . . . Next construct.

Module LinkedListDemo

 Dim List As New BaseNodeCollection()

 Sub Main()

 Implementing the Iterator

457

 List.Add("I")
 List.Add("just")
 List.Add("love")
 List.Add("OOP")
 List.Add("with")
 List.Add("VB.NET")
 PrintNodesDemo1()
 PrintNodesDemo2()
 End Sub

 Public Sub PrintNodesDemo1()
 Dim myIterator As System.Collections.IEnumerator = _
 List.GetEnumerator()
 While myIterator.MoveNext()
 Console.WriteLine(myIterator.Current.Data.ToString)
 End While
 End Sub

 Public Sub PrintNodesDemo2()
 Dim element As BaseNodeCollection.Node
 For Each element In List
 Console.WriteLine(element.Data)
 Next
 End Sub
End Module

The printout to the console for both cases shown in the code is as follows:

I
just
love
OOP
with
VB.NET

Note The code for the BaseNodeCollection, Iterator, and Node classes can be found in the Nodals project in
the Vb7cr solution.

Observations

This chapter extended our discussion of data structures and provided us with some interesting code. But most
of all, it showed what's possible with a pure object−oriented language like Visual Basic .NET. We saw many
scenarios creating linked lists wherein objects and their interfaces are aggregated into container classes after
they have been first defined as composite classes. We also looked at how Visual Basic can adoptand then run
withmany of the formal patterns that have emerged to assist OO design and development over the years. Some
of these patterns could be represented with classic VB. However, it is the native support for interfaces,
polymorphism, encapsulation, and inheritance that makes all of the patterns adopted by languages such as
Java and C++ more than applicable to Visual Basic .NET and the .NET Framework.

We are going to take this further in the next chapter, where we'll look at patterns for adapting interfaces,
delegations, and delegates, as well as some advanced uses of interfaces.

 Observations

458

Chapter 14: Advanced Interface Patterns: Adapters,
Delegates, and Events

Overview

I have already devoted a significant portion of this book to the subject of implementation inheritance
(genericity), composition, and bridging. In the last four chapters, I examined interface implementation
extensively. Now I will concentrate on advanced interface patterns, which underpin the .NET Delegate
construct and the .NET event model.

A number of years ago, I found that Adapter classes and interfaces, Wrapper interfaces, and Delegates were
some of the hardest concepts to understand (for all OO students, especially Java and Visual J++
programmers). The .NET Delegate construct is vitally important to .NET programming, in particular, and OO,
in general; yet, interfaces and Delegates cause more concern for .NET programmers than any other facet of
this extensive framework. Therefore, it is critical for us to acquire a thorough understanding of this material.

Many who don't understand how Delegates work have incorrectly attributed a magical status to them. In truth,
Delegates are a very simple construct that derives from well−conceived patterns that the OO industry has
provided for more than half a decade. No Harry Potter analogy needs to be interjected into discussions of
them, as you will see in this chapter. Once you master Delegates, they will come to represent your most
powerful toolalongside interfaces and inheritancefor programming polymorphism.

You know that interfaces and Delegates are now fully implemented in the Visual Basic language. But, if you
can't use their sophisticated utilityregardless of your programming knowledgeyou will not make it to the
software−development majors. This chapter is probably the most important one to understand entirelyfor
beginning and experienced programmers alike. I hope you will ponder this information until you have
completely absorbed it.

Interfaces have nothing to do with the implementation inheritance pattern, per se (the principal subject of
Chapter 9), but they do have everything to do with polymorphism. .NET interfaces can be completely
de−coupled from any of their implementations. Thus, the implementation can be varied on the back end, while
the interfaces can be adapted on the front endwithout the two ends being any the wiser. I talked about this de−
coupling in earlier chapters, but I did not discuss adapting the interfaces of concrete classes. I will discuss this
subject in the current chapter.

If you understood the concepts behind interfaces presented in the previous chapters, especially Chapter 10,
and realized why the interface architecture of the .NET Framework is so important, then you'll quickly grasp
the idea behind interface adaptation, delegation and the Delegate class, and events. Delegates, in fact, are the
implementation of a fundamental design pattern that provides the highest form of class de−coupling and class
cohesion in a framework. They allow highly sophisticated designs to be applied to .NET applications, and
they underpin not only the .NET event model discussed here, but the entire framework itself.

This chapter may be somewhat controversial and is written in a style that evokes some emotiona technique
that I hope will not only inspire you to read through complex concepts, but also help you to retain them. I am
also seeking to promote debate and further your thinking regarding design, code, and choice of constructs to
suit your purpose.

However, to grasp how Delegates work, it is essential to have an unshakable foundation in interfaces, in
general, and interface adaptation, in particular, as well as in the concept of wrapping. Thus, the subject of

459

delegation is allied to the subject of adaptationthe technique whereby you adapt an interface so that another
object can use it.

Wrapping is the part where an additional class may be needed to translate messages, marshal calls, or convert
data−types between clients and servers. The formal pattern names are "Adapter," "Wrapper," and
"Delegation." The following short list places these terms in their relevant contexts:

Receiver or Server The object or class that contains the implementation and a domain−specific
interface. It is the final destination (the implementation of a method) of the call message of a Sender
or Client (unless an overriding method intervenes). The Receiver is shown in the following
illustration, on the receiving end of the method call (from whence it came does not matter).

•

Sender or Client The object or class that has an interest in the services or implementation of the
Reciever or Server. The Sender is represented here.

•

Adapter A concrete class or an interface that adapts the interface of a Receiver. Often it may be
necessary to do more that adapt interfaces, and an Adapter may have to provide additional
functionality to allow access to the Receiver. Often referred to as a Wrapper, it may need to contain
code that marshals calls and converts data−types. Thus, it accomplishes much more than simply
adapting interfaces. Inner classes, or derivatives of a Receiver, can also play the role of an Adapter
or Wrapper (as shown in Figure 14−1). They may also redirect calls to overriding or varying
implementation.

Figure 14−1: The Adapter class or object adapts the interface of a Receiver

•

Adaptee The interface to an Adapter, which is exposed to clients. An Adapter (or, less likely, a
Receiver) may provide "pluggable" support by "implementing" an Adaptee interface (as shown in
Figure 14−2). The implementation of interfaces such as ICollection and IEnumerable, discussed in

•

 Chapter 14: Advanced Interface Patterns: Adapters, Delegates, and Events

460

the previous chapters, are examples of "pluggable" support.

Figure 14−2: The Adaptee is the interface to an Adapter
Delegate A sophisticated name for a sophisticated Adaptee, which is also a complex and specialized
construct in the .NET Framework. However, on the surface it is really nothing more than a specialized
interface pointing to a single method at the Receiver. The interrupted method calls from Sender to
Delegate and from Delegate to Receiveras illustrated in the illustrationindicate the method call may
arrive at the interface indirectly (perhaps from an event in the case of the Delegate interface, and from
an Adapter in the case of the Receiver).

Note We will add the event definitions to our list later, once we have sorted out these issues.

•

The next two sections probe the Adapter and Wrapper patterns. You will learn along the way that Adapter
interfaces and classes also provide a viable event model, which many programmers vociferously defend. In
fact, adapters underpin the Java− Swing event modelone that can certainly be applied to .NET programming
and especially to Visual Basic .NET.

Adapters and Wrappers

The Adapter patternwhich is also known as the Wrapper patternconverts the interface of a class or an object,
however coupled, into an interface that clients expect or can use. Adapter and Wrapper classes may make
use of Adaptee interfaces to let otherwise incompatible classes and objectsincluding those written in different
languages work together or interoperate.

For the benefit of clients, you can adapt the interfaces of classes and objects written in the same language. It is
the easiest level of adaptation you can implement. You can also adapt interfaces written in other languages
that are part of a framework. It is very common in the .NET Framework to allow implementation to be
"pluggable" into any languagea practice I will discuss shortly. This intermediate level is a little harder, but it
will be something you might find yourself doing often.

Finally, you can adapt interfaces of classes that are neither written in the same language nor part of the same
framework. These include the classes of independent software−development kits, those of libraries and
components, and any class or object that was not otherwise intended for the class or consumer−objects for
which they are being adapted. This third level of adaptation is the most complex and most difficult, requiring
conversion of data−types and tricky call−marshaling. It necessitates the mettle of an experienced "wrapper"
programmer who understands implicitly the source and target languages and the development environments.

 Adapters and Wrappers

461

A good example of the last level of adaptation is the wrapping of COM interfaces for access by .NET code.
This is the interoperation support that provides access to the COM home world, which is still very much
developer Prime in Microsoft's part of the galaxy. COM and .NET are as different from each other as coffee is
from couscous. COM codeCOM objects and componentsare written in unmanaged languages, such as VB 6,
Delphi, Visual J++ (not Java), and (primarily) C++, and their interfaces are registered with the operating
system. The .NET components, however, are written in the managed .NET languages like Visual Basic .NET,
Visual C# .NET, or Visual J# .NET (pidgin Java for the .NET Framework). As you know, .NET interfaces are
not registered with the operating system, and they are executed by the CLR, as directed by metadata.

Essentially, COM objects run in one reality while .NET objects run in another. The two realities are parallel in
the Windows universe, so you need to connect them via a "wormhole." On each side of the wormhole, you
need to adapt the star−gate or jump− gate interfaces, so that the other side can come through in one piece. On
the COM side, you'll provide .NET−callable interfaces that .NET clients can understand; on the .NET side,
you have COM−callable interfaces for COM clients.

With all the investment in COM code still very much at large, it was incumbent upon Microsoft to create
adapter and/or wrapper layers for its valuable COM objects. After all, COM is still Microsoft's bread and
butter, as Corolla is for Toyota. Regardless of the fanfare surrounding .NET, there are literally millions of
COM objects afloat, which means we can't discount COM for a very long time.

Consider the ".NET" server technology the company sells. It is primarily composed of COM bits. A favorite
example is Index Server, whose COM object is typically programmed against classic ASP pages and
VBScript; however, the rapid adoption of Visual Basic .NET and ASP.NET requires that Index Server's
objects be exposed to ASP.NET codewhich is programmed in Visual Basic .NET (or any .NET language).
This requires wrapper classes specifically aimed at the Index Server's COM interfaces. The next section
demonstrates accessing Index Server from ASP.NET to illustrate the seamless integration and interoperation
of .NET and the COM world.

Another good example is Commerce Server. By and large Commerce Server is nothing more than a
comprehensive collection of COM objects. So without adaptation and wrapping of its COM interfaces, it is
practically off limits to .NET. Adapter interfaces or Wrappers thus allow Microsoft's flagship e−commerce
product to be accessible to its .NET brainchildren. I'll discuss this interop next.

Interface Adaptation in ActionCOM− .NET Interop

"COM−.NET interop" is accomplished via the .NET Framework's callable wrappers for achieving
interoperability between COM servers and .NET clients, and COM clients and .NET servers.

The wrapper class that provides access to COM is called a Runtime Callable Wrapper (RCW), and it allows
your .NET objects to interoperate with COM servers as if they were .NET managed types. Adaptation is
needed because .NET objects cannot call COM directly; they don't know how. The classes "wrap" the COM
objects, which are activated (instantiated) in the standard way and programmed against in the manner I've
outlined in the past chapters.

To expose a .NET object to a COM client, the CLR conversely provides a COM Callable Wrapper (CCW)
that adapts the interface of a managed object. This adaptation in the other direction is necessary because COM
objects do not know how to reference .NET objects directly. The COM clients and .NET clients thus use the
wrappers as a proxy into each other's worlds as shown in Figure 14−3.

 Interface Adaptation in ActionCOM− .NET Interop

462

Figure 14−3: Bridging the .NET (managed) reality to COM
The primary function of the wrappers is to marshal calls between .NET and COM. Manual adaptation, as
mentioned earlier, is not an easy task, even for the most accomplished programmer. In the mid−1990s, it took
a solo programmer with experience many weeks to adapt ADO (Active Data Objects) interfaces for Borland's
Delphi. The CLR adapts COM's ADO in about ten seconds (of course Microsoft took a lot longer to get this
level of automatic adaptation down pat).

The CLR makes the adaptations for you by automatically generating the wrapper interfaces. It creates a single
RCW for each COM object. And by being totally de−coupled, the interface can be referenced by a .NET class
or objectirrespective of the number of references that may exist on the COM object.

The code on the following page uses the adaptation of Index Server's COM API, which goes by the unusual
name of Cisso (meaning unknown). Essentially, the wrapper allows any number of .NET clients to instantiate
the "Interop.Cisso" adapter interface. Your applications are unaware that the object behind the interface is
really a COM object.

This ASP.NET code accesses the Index Server COM components and ADO components with very little effort
(and brings the legacy database objects into the modern word of .NET data access):

Public Function SearchWithCisso(ByRef searchString As String, _
 ByRef rankBase As Integer, _
 ByRef catalog As String, _
 ByRef sortorder As String, _
 ByRef columns As String) As DataSet
 Try
 Dim myDA As OleDbDataAdapter = New OleDbDataAdapter()
 Dim myDS As DataSet = New DataSet()
 'This call passes the user's search string to a method
 'that prepares it for submission to Index Server
 cissoQuery.Query = PrepareSearchString(searchString)
 cissoQuery.Catalog = catalog
 cissoQuery.SortBy = sortorder
 cissoQuery.Columns = columns
 cissoQuery.MaxRecords = rankBase
 cissoQueryRS = cissoQuery.CreateRecordset("nonsequential")
 adoRS = cissoQueryRS
 myDA.Fill(myDS, adoRS, "Results")
 Return myDS

 Interface Adaptation in ActionCOM− .NET Interop

463

 'no need to close the recordset as required by ADO
 'because the GC does this for us
 'cissoQueryRS.Close()
 'adoRS.Close()
 Catch Except As Exception
 Console.WriteLine(Except.Message)
 End Try
End Function

Conversely, when you adapt a .NET server interface for a COM client, the runtime creates a single managed
CCW for it. Any number of COM clients can reference this interface. As Figure 14−4 shows, multiple COM
clients can hold a reference to the CCW that exposes the adapted (essentially new) interface. Figure 14−4
portrays how both COM and .NET clients can reference the same managed object simultaneously.

Figure 14−4: Bridging the COM (unmanaged) reality to .NET
The primary purpose of these adapter interfaces (interfaced with IAdaptee in the figures) is to marshal calls
between managed and unmanaged code. CCWs also control the identity and lifetime of the managed objects
they wrap.

While .NET objects are allocated on the garbage−collected heap, which enables the runtime to move them
around in memory as necessary, the CLR allocates memory for the CCW from a non−collected heapas
standard value−types do. This makes it possible for COM clients to reference the wrapper interfaces as they
do standard COM objects. Essentially, the COM clients can count the references they have on the CCW
objects directly. Thus, when the COM client's count on the CCW reaches zero, it releases its reference on the
wrapper, which de−references the managed object. The CLR disposes of the reference while the GC collects
the object as part of its normal garbage−collection cycle.

From the .NET client's perspective in accessing a COM object, the CLR creates an assembly infused with
metadata collected from the COM object's type library. The CLR thus instantiates the COM object being
called and produces a wrapper interface for that object. The wrapper maintains a cache of interface pointers on
its COM object and releases its reference to it when the RCW is no longer needed. At this point, the runtime
invokes standard garbage collection on the wrapper.

These adapter constructs (the RCW and the CCW) marshal various things: the data between managed and
unmanaged code, as well as method arguments and method return values. They also translate the data between
the two worlds whenever differing representations are passed through their interfaces. For example, when a
.NET client passes a String in an argument to the CCW, the wrapper converts the String to a BSTR type (a

 Interface Adaptation in ActionCOM− .NET Interop

464

32−bit pointer to the character data) that the COM object understands. BSTRs are thus converted to Strings
when the data comes back from the COM world. String−like data usually requires conversion while other
types, such as a 4−byte Integer, require none.

The classes that wrap COM objects expose the COM interfaces to the .NET clients transparently and allow the
COM objects to access components as if they were .NET objects. Wrapping takes into account all the
HRESULTS, return values, reference counting, and other COM ingredients.

In the next chapter I examine another "wrap"the File System Object for files and folders (otherwise known as
FSO), and the Index Server COM object. These COM objects were cooked up long before the .NET
Framework arrived on the menu of development options, yet they partner well with .NET. So, if you have any
investment in unmanaged code exposed as COM objects, they are automatically available to .NET clients.

If you have an investment in unmanaged code that you want to expose to .NET, and the code is not exposed as
COM objects, then you have three choices. First, you could rewrite your code in Visual Basic .NET, which
would probably be too time−consuming and expensive. Second, you could create a new custom interop layer
for your code, an alternative that is less expensive than the first option but still a complex undertaking. Third,
you could create the necessary COM−type libraries for the code (with a tool like Visual J++). The latter would
require the least effort and expense, and it is preferable to expose the unmanaged code with COM interfaces
rather than rewrite it for .NET.

Note We must remember that adding interoperability impacts performance, no matter how unnoticeable it
may be. It is best to try to work with the classes in the .NET base−class library and leave COM interop
to your "out−of−options" situations, if only to get used to using the native classes.

Taking unmanaged code interface adaptation further is beyond the scope of this book. However, we do need
to determine how to adapt classes within our operating framework. In other words, let's first ascertain what it
means to adapt .NET interfaces for use by other .NET classes and objects. This will put us on the road to
understanding Delegates and events.

The Adapter Pattern in .NET

The Adapter pattern prescribes how an Adapter class or object adapts an interface that clients will be able to
use and couples it with a Receiver's interface that the clients do not know how to use. For the record, the
original implementation in the Receiver does not need to be known by the clients and it can varywhich is
polymorphism in all its magnificent glory (see the related Bridge and Strategy patterns in the last chapter).

Objects and classes can receive messages either directly or indirectly. The following illustration first shows
the normal process of sending the call message directly to an object with which it knows how to
communicateby direct reference to a class or an object.

When a client object needs to call a method in the server objectbut it cannot call the method directly, as it
normally would in an association or instantiation context between the two objectsit makes the call by way of
an Adapter or a proxy. The message may be sent to the Adaptee or Delegate, which provides an interface. In
Figure 14−5, the Sender sends a method call to an interface and has no knowledge, or desire to have

 The Adapter Pattern in .NET

465

knowledge, of how that interface gets to the operative codethe code in the Receiverbehind that method call.
The Sender typically delegates the actual call to the Adaptee, or Delegate.

Figure 14−5: An Adapter is able to act as the interface to the Receiver object on behalf of a client that cannot
call the Receiver object directly
The Adapter classes can, of course, do a lot more than just delegate method calls, as I discussed in the interop
section. They can check arguments, throw exceptions, and include support from other [imported] classes. The
Adapter class can be as sophisticated as it needs to be. Remember that the client need not know the Adapter
exists.

When you implement the standard Receiver objects, you do not design or construct code to cater to the
indirect arrival of call messages. But you can build in support for indirection with pluggable interfaces.

The level of adapting the Adapter class needs to provide can range from simply implementing a single
interface to supporting a highly sophisticated set of operations in the Receiver classpossibly even
re−implementing the methods of the Receiver so that the Adaptee can reference the new functionality. Also,
the amount of work depends on the difference between the Adapter's interface and the Receiver's interface.

When adapting classes, the Adapter class may either inherit the implementation of the Receiver class, or it
can be composed as an inner, composite, class of the Receiver via the Composite pattern. Figure 14−6
illustrates how this latter option differs from the adaptation scenario in Figure 14−5.

Figure 14−6: The Adapter object is a subclass or inner (composite) class of the Adaptee
In other words, we say the Adapter class can commit to the Adaptee class by gaining full access to the
Receiver's operations through inheritance or by virtue of being a composite or inner class. This of course
prevents the Adapter nested in the Receiver class from adapting child classes. Additional Adapter classes
will be needed to cooperate with child classes and adapt them.

When inheriting from the Receiver, your Adapter class has the additional benefit of being able to override
the parent implementation. An inner or nested class can also inherit from its parent and still implement the
interface the client needs to access.

 The Adapter Pattern in .NET

466

The Composite adapter implementation is illustrated in the following code:

Public Class Trajectory

 Private Rock As Asteroid
 Private RockLoc As Coordinates

 Private Shared Function CurrentRocLoc() As Coordinates
 'no one other than adapter can call this method
 Return RockLoc
 End Function

 Public Class TrajectoryAdapter

 Public Function RetrRocLoc() As Coordinates
 'calls the outer's private shared method
 Return CurrentRocLoc()
 End Function

 End Class

End Class

The following code in the TrajectorConsole (the Sender) can access the necessary data via the Adapter's
method.

Imports Vb7cr.Trajectory
Public Class TrajectoryConsole

 Dim FindRoc As TrajectoryAdapter
 Public Sub ObtainRocHeading()
 Plot(FindRoc.RetrRocLoc())
 End Sub

End Class

In the following example the de−coupling is turned up another notch with the adding of an Adaptee interface
to the scenario (and a lot more code in the process).

Public Class Trajectory

 Private Rock As Asteroid
 Private RockLoc As Coordinates

 Private Shared Function CurrentRocLoc() As Coordinates
 'Only the adapter can call this method
 Return RockLoc
 End Function

 Public Class TrajectoryAdapter
 Implements IRocLoc

 Public Function RetrRocLoc() _
 As Integer Implements IRocLoc.RetrRocLoc

 'calls the outer's private shared method
 Return CurrentRocLoc()

 End Function

 The Adapter Pattern in .NET

467

 End Class 'TrajectoryAdapter
End Class 'Trajectory

The Interface contains the singleton method reference.

Public Interface IRocLoc
 Function RetrRocLoc() As Coordinates
End Interface

And the Sender stays the same.

Inports Vb7cr.Trajectory
Public Class TrajectoryConsole
 Dim FindRoc As TrajectoryAdapter
 Dim GetRoc As IRocLoc = FindRoc
 Public Sub ObtainRocHeading()
 Plot(GetRoc.RetrRocLoc())
 End Sub
End Class

What does the Adapter pattern achieve?

The Sender and the Receiver remain completely disinterested in each other's existence. It's not a
matter of loose coupling; there is no coupling at all because the Sender has no way of accessing the
private data and methods of the Receiver. In the above examples the TrajectoryConsole makes a
reference to the Adapter, which it delegates to. If the Adapter implements an Adaptee interface then
the de−coupling becomes more radical because only the implemented method of the Adaptee can be
called at the Adapter. In both cases the Adapter makes a private, privileged call to the Receiver,
where the ultimate implementation lies, which handles the call.

•

Method indirection. The "contra−indication" for this loose coupling scenario is that more complexity
is added to the application, and it thus becomes a lot more difficult to understand. So all good
adaptation needs to be accompanied by clear documentation and diagrams.

•

The ability to use an existing class or object whose interface is not suitable for the clientsuch as
referencing COM from .NET applications.

•

The ability to create a class that can be used by a wide number of clients local to the framework and
even foreign to it. Providing good interface, Adaptee support, and pluggable interfaces will help your
class become as widely distributed as possible.

•

The ability to adapt the original interface of a parent through the multiple implementation of more
than one interface. This lets you use any existing subclasses of the parent without having to create an
adapter for each subclass.

•

The ability to provide an event model in which one or multiple Receiver objects, given the alias of
Listener, can receive the event communications initiated at the Sender.

•

The consequences of adapting an object differ from those of adapting a class. A single Adapter object can be
engineered to collaborate with many Adapter objects, including the other Adapters of subclasses of the
parent Receiver.

The downside of adapting the object rather than the class is that you lose the ability to override easily. In order
to override the Receiver's methods, you will need to create a child−class of the Receiver and make this
derived/composite class the Adapter instead. This also works around the issue of having to share (make
static) the method in the Receiver, which may not always be convenient or desirable.

 The Adapter Pattern in .NET

468

The following code now throws inheritance into the mix. It shows the Sender object calling the method via
the Adaptee's interface but it no longer needs to reference the outer Receiver method. With inheritance we
now get more de−coupling with respect to the Receiver. The Adapter object, however, may then reference
the parent Receiver's operations, or it can decide to override the parent.

Public Class Trajectory

 Protected Overridable Function CurrentRocLoc() As Coordinates
 Return CurrentRocLoc
 End Function

 Public Class TrajectoryAdapter
 Inherits Trajectory
 Implements IRocLoc
 Protected Overrides Function CurrentRocLoc() As Coordinates
 'extended method
 'or call to base method
 Return MyBase.CurrentRocLoc
 End Function

 Public Function NewRetrRocLoc() As Integer _
 Implements IRocLoc.RetrRocLoc
 'calls the overriden method
 Return CurrentRocLoc()
 End Function
 End Class
End Class

The Adaptee interface and the Sender do not need to change.

Note We can use the MyClass keyword in the Adapter to alternate between using the overridden method or
using the original method in the parent class. The MyBase keyword also comes into the picture here.

Its is also easy to add additional listeners to the picture by "registering" them with the sender. This can be
done as follows:

Imports Vb7cr.Trajectory
Public Class TrajectoryConsole

 Dim GetRoc As IRocLoc = New TrajectoryAdapter()
 Dim GetRoc2 As IRocLoc2 = New TrajectoryAdapter()
ShuttleTrajectory.TrajectoryAdapter()

 Public Sub ObtainRocHeading()
 PlotNearSide(GetRoc.RetrRocLoc())
 PlotFarSide(GetRoc2.RetrRocLoc())
 End Sub

End Class

There are also various ways using the flexibility of interfaces and the Adapters for the Sender to choose how
the call should be handled. It can pass the reference from the Receiver to a quasi−constructor or initializer in
the Adaptee or Adapter and the Adapter can make the decision (via a formal parameter list). The Adapter
might also choose to implement additional methods. And in the case of newer or alternate versions of the
Adapter methods the Adaptee interface can inherit another Adaptee. The latter example is shown in the
following code:

 The Adapter Pattern in .NET

469

Public Interface IRocLoc
 Function OldRetrRocLoc() As Coordinates
End Interface

Public Interface IRocLoc2
 Inherits IRocLoc
 Function RetrRocLoc() As Coordinates
End Interface

Public Class TrajectoryConsole
 Dim GetRoc As IRocLoc2 = New Trajectory.TrajectoryAdapter()
 Public Sub ObtainRocHeading()
 GetRoc.RetrRocLoc()
 GetRoc.OldRetrRocLoc()
 End Sub
End Class

The second method uses the Composite−class pattern in which the Adapter is nested in the Receiver. The
Adapter can be automatically instantiated with the Receiver and exposed via its interface. The Adapter
object is instantiated at the same time the Receiver is. This latter approach to delegation and adaptation is
used by Java as its event−handling model, which we will now investigate.

The Adapter Pattern Event Model

This pattern is effective, but it is also the subject of much debate. It has also caused much attrition between
Sun and Microsoft for a number of years. First, let's discuss the concept of an event model. No matter whether
you use Adapter classes or a Delegate, the actual model follows similar processes. So this discussion will
apply to the Delegate Event Model discussed later.

Events are triggered by occurrences in a Sender objectsuch as a user clicking a button, which is an event in a
button object, or a message arriving via email, which is an event in an object that downloads email. When an
event is "fired" or "raised" by the Sender, the Sender hopes that a single object, or many objects, which are
called "listeners," will ultimately receive the notification.

Listening basically means that the objects have been provided the facility to be on the receiving end of an
event message. That facility is afforded by the Adapterand the possible intervention of an Adaptee, which
the Adapter implementsor by a Delegate. Thus, the event model is no different from the communication
processes described in the above section on Adapters and portrayed in Figures 14−5 and 14−6 (and the earlier
UML figures in this chapter).

When the Listener forwards the message, the Receiver is supposed to do something with it. Some receivers
may make a sound in response to an event; others may change a background color; others may set in motion a
highly complex chain of events that returns datasuch as the result of a computationback to the Sender at the
"event horizon."

The architecture set up with Adaptees and Delegates dictates that the source of the event and the final place
where it is handled are completely separate from each other. As explained, an event can be handled in several
separate Receiver classes.

In the following example we simulate a simple event. (Trapping mouse clicks and keyboard events are a little
too complex to show here, because they require getting into the message pumps of the Windows sub−system.
That is handled automatically for us, as discussed later.) This code raises an event when a condition is met
inside a loop; as soon as an asteroid moves into a zone that is being monitored by the space crafts' trajectory

 The Adapter Pattern Event Model

470

systems it sends a message to an event handler.

Public Class TrajectoryConsole

 Dim GetRoc As IRocLoc2 = New Trajectory.TrajectoryAdapter()
 Public Sub ObtainRocHeading()
 GetRoc.RetrRocLoc()
 End Sub

 Public Sub WatchForRock()
 While Trajectory.MaintenanceState = MaintenanceState.Enabled
 If Not GetRoc.RetrRocLoc > RocLocations.Collision Then
 OnRockRedAlert()
 End If
 End While
 End Sub

 Public Sub OnRockRedAlert()
 Navigation.AlterCourse(GetRoc.RetrRocLoc)
 End Sub
End Class

It is possible in the above model to allow more than one Listener and Receiver to respond to the event. We
simply have to "register" additional listener interfaces with the event−handler method, or we can bridge the
same interface to multiple adapter classes that implement the interface.

This is the Adapter Event Model, albeit a very simple version of it. For starters, registering the additional
Listener in the event is a tedious process when done manually, as shown here. A better solution would be to
create a special collection object that can maintain a list of Adaptee interfaces. (This is in fact what is done in
Java implementations coupled to several other features of the language that exploit the Adapter/Interface
model, such as the ability to declare anonymous inner classes.) Such an object would implement Add and
Remove methods to handle the registration and de−registration of the listeners. The .NET Delegate provides
such a facility, as we will see later.

Of course, you need formal event objects that are able to trap mouse clicks, keyboards events, and the events
generated by various system servicessuch as closing a window, or changing the property of a form.
Fortunately, we don't need to code our own event objects. The .NET Framework has provided the .NET Event
construct for our event− raising needs.

Finally, this model uses the services of composite Adapters (the listeners), via the proxy of Adaptee
interfaces, to reference the functionality of the Receiver or Respondent object or class. Composite or inner
classes are used because they have exclusive, privileged access to the methods of the Receiver; they may also
override the Receiver's methods and provide other means of sophisticated handling.

Delegates use the AddressOf operator or the Delegate class Invoke method to dynamically reference the
Receiver's method at runtime. The Delegate Event Model is discussed later in this chapter. Delegates,
Adapters, and Adaptees are not only useful with events or event−driven scenarios, but they also have their
place in general delegation patterns, as the following section illustrates.

Delegation: Please Help Me!

We all suffer at work and at home because we fail to delegate. Frequently, we need to delegate because we
have too much to do, but we should also delegate when someone else can do a better job than we can at the

 Delegation: Please Help Me!

471

present time.

That's the human aspect of delegation, and many programmers need to learn how to delegate properly. But,
they also need to know when to delegate operations to the methods of other objects. Many times a problem
simply calls for a client class or object to delegate additional or alternative execution and processing to
another method in another class. In order for the delegate to do its work properly and return the result, a client
should never be coupled to the server. Inheritance has been so hyped over the years that many programmers
write code as if they believed there were no alternative in object−oriented software engineering. But classes
that inherit one−from−the−other are tightly coupled one−to−the−other. Inheritance, as we discussed in
previous chapters, is used to build class hierarchies. But, there are many times when problem domains do not
qualify for implementation inheritance, or the problems or limitations simply should not be addressed through
inheritance.

If you were experimenting with a new breed of dog, the last thing you would think of doing is bringing a cat
into the gene pool. But at the code level, thinking in terms of "dogs" and "cats" is not always possible, and
often you're tempted to inherit or extend a class just to get some of the fur provided in the parent into your
implementation.

While inheritance patterns promote reuse and extension of classes, delegation patterns promote using an
uncoupled (not necessarily unrelated) object's functionality. In other words, the class or object that needs
functionality calls the other object's method directly, or indirectly, rather than inherit that functionality.

You may now feel like saying "Hold it. First, what's the fuss about Delegates and delegation? My classes can
call the methods of other classes anyway. Second, what do interfaces have to do with any of this?" You are
right to question the logic on both scores. However, Delegates add a lot more spice to the recipe. This will
become clearer as we progress.

Inheritance captures the is−a−kind−of relationships that couple classes. The relationships between the classes
are static and rigid in naturenot to mention very niche or vertically oriented in scope. Delegation patterns
instead capture the importance of the is−a−role played by relationships. Delegated objects can play multiple
roles for other objects. Their methods can be used for multiple roles and called by any classes that need the
functionalityeven if indirect and especially if the client has no idea where the implementation actually resides.
This is what we want in an event model, where event listeners remain disconnected from the objects that
cause and raise events. Listeners can be delegated the task of responding to eventsfrom more than one raucous
object.

One of the most important differences between delegation and inheritance is that a Delegate or an interface is
a means of accessing varying functionality at runtime, while inheritance is set up at design time. The same is
true of the standard direct method call, the message sent from one object to another. Before we look at
delegation in detail, let's first understand why inheritance is not always the panacea it is often thought to be.

The class Canine represents an object that contains properties representative of the genus Canidae. A good
example of these properties is that all canines howl, especially at a full moon, so the Canine class would
define a Howl method. From the Canine class, we can inherit the wild and domestic canines, Wolves and
Dogs. From Wolves, we can derive Foxes, Wolves, and Jackals, because they all share common traits. From
Dogs we can derive Greyhound, Labrador, Akita, and Pomeranian among others.

It thus seems logical that to create a new class derived from Dogs you can simply inherit from the parent. This
serves the purpose of ensuring that all member classes in the Dog hierarchy gain access to common
functionality. For example, all Dog classes inherit the ClimbOnLap method, even 150−pound Akitas. It's not
usual for big dogs to activate the ClimbOnLap desire, but the inclination is still there.

 Delegation: Please Help Me!

472

So far so good, but what if your classes now need to perform different roles. What if your inherited class of
Dog needs to instantiate a dog that leads the blind, rescues people in the mountains, tracks escaped convicts,
watches over property, or does police work. There are so many roles that a dog can perform, that to represent
them all by inheritance would require you to create hundreds if not thousands of subclasses. As in nature, it's
not so simple to inherit what another has taken years to accomplish. As kids we delegate to our parents what
we cannot yet achieve ourselves.

In the case of doggy software, you need to delegate the behavior and role (functionality) to another object. So,
we create a class called LeadBlind and define methods in it that can be used by objects to process the color of
traffic lightsProcessGreen, ProcessRed, ProcessYellow.

And it doesn't stop there. While all dogs have an affinity for the human lap, all dogs can play different roles.
The class LeadBlind may in fact be too specific. Many different breeds of dogs lead the blind, and the same
breeds are often trained to perform cadaver worklooking for body partsdo rescue work, help with rehab, track
animals, track people, or recover objects. It might then make sense to design an object called MedServices
that encapsulates similar methods all dogs can use. The dogs that need to play roles that are medical in nature
can then delegate to the methods in the MedServices class.

Inheritance is great if you need to makes sure that all your Dog objects can inherit the Bark method from the
base class as shown in Figure 14−7.

Figure 14−7: Class Dog begets subclasses Labrador, GermanShepherd, and Collie; all require the BARK
method
Figure 14−11, however, represents different Dogs (classes) using medical−rescue classes. The Dogs delegate
the medical−rescue operations to the MedServices class. The difference between nature and software
programming is that we can make MedServices available to any Dog that needs it. Every Dog can play the
role of a medical rescue Dog by simply accessing medical−rescue operations. In the flesh, dogs need to be
trained to perform medical rescue; they don't just adapt overnight. In code, using the object delegated the job
of providing the medical−services method allows each class of Dog to access the delegate MedServices'
operations without having to inherit anything from the MedServices class. This is illustrated in Figure 14−8.

 Delegation: Please Help Me!

473

Figure 14−8: Various subclasses of Dog can delegate to the MedServices class when they need operations
that help them to play the roles of medical−rescue dogs
Delegation is thus simply a means of reusing or accessing a class' behavior by allowing clients to delegate to
ita technique often referred to as indirection, because the method call, or message as they say in
Smalltalkville, bounces off redirecting constructs, such as event−raising methods. The client needing help is
the delegator, and it calls to the delegate class for access to its methods, for a value. But only the delegate
decides how it will process the request and how it returns data, if at all.

The dividing line, thus, between inheritance and delegation takes us back to Chapter 1's discussion of
coupling vs. uncoupling, and the relationships among classes, interfaces, and implementation. Inheritance and
delegation both have their strengths and weaknesses. What we lose in one we make up in the other. In short,
programming without one or the other is like trying to climb a ladder that has every alternate rung missing.

It takes practice and a keen eye for design to see how inheritance and delegation should evolve in your models
at the design stage and in code at the code−construction stage. The dynamism of our software can easily be
crippled, because the very dynamic access we require on the one hand becomes blocked or restricted by the
OO foundation we want on the other hand.

What other problems cannot be (easily) solved by inheritance? We have seen over the past few chapters
(especially Chapter 7) that method calls are made either statically to static (shared) methods, or dynamically
to instance methods. These standard method calls have the following limitations:

Methods complete synchronously. Method A calls method B and then waits for method B to
complete. Method B completes and then returns to A, with or without a value. But there are many
situations in which dynamism of software requires that the calling method continues to execute code
while the called method B goes off and does its own thing, returning later with values for A, or
returning with nothing at all. The problem with synchronous completion is that you can never invoke
a method anonymously. And if you can't invoke anonymously, then you can't put your software at the
control of the user. Requirement: Asynchronous and anonymous methods calls for event handling.
We will demonstrate this ability of Delegates in this chapter, in the section on "Delegates vs.
Function Pointers."

•

There is no way to obtain clean access to a singleton method, anonymously or not. You still have to
reference the entire class that the static method resides in or instantiate the entire object and all its data
just to call a single instance method. The problem is exacerbated by certain interface implementation,
because you cannot implement a single methodyou are required to implement the entire interface. To
look at it crudely, that's like having your nagging in−laws with you whenever you want to spend some
time alone with your spouse. The so−called function pointer, or rather method pointer, has thus
become a desirable construct in OO software. But function pointers are not object−oriented, nor can
they be easily couched in OO terms. Requirement: Function pointersor, more correctly, method
pointersin acceptable object semantics.

•

Private methods cannot be called from the external interface of the class, nor can private data be
accessed. There are very good reasons to keep data, as well as certain methods and properties, private

•

 Delegation: Please Help Me!

474

all the time. The problem is you can't expose and hide these members at will, so an implementation
that may require access to a private method or data some of the time will force you to keep the
method and data public all of the time. Clearly, that's not a desirable situation; public data is bad for
reentrance, threading, maintenance, quality control, and security. Requirement: Privileged (Friend)
access to private data and methods.
There is no way to easily change or vary the operationsthe client calls to alternate functionalitythat
ensue after a method is called at runtime. A flexible architecture lets you change the implementation
behind an interface or allows the Receiver and the Sender to be related indirectly by way of the
Delegateyet they remain totally disconnected at the same time. The polymorphism is also
deterministic; the operation is chosen at the behest of the caller. Requirement: Changing the method
implementation at runtime.

•

There is no way to asynchronously invoke multiple methods on the same method callnot only as a
chain but also with each method call concurrent and disconnected from the next. This is clearly a
requirement for event−driven programs, where a single event becomes the interest of numerous
event−handling methods listening for that event. Requirement: multicast method calls.

•

Forget about inheritance helping you. You can't simply inherit from a parent just to access implementation.
Every time you extend a class, you lose your only inheritance ticket for that class (and we will not go into the
problem of multiple inheritance again here). Furthermore, you still do not gain access to the singleton method,
nor are you able to easily vary its implementation at runtime. In fact, your problem is now much worse if you
inherit implementation. You now have numerous methods you might not need cluttering up the class. There is
nothing worse than a class full of overloaded and overridden methods you are not using. An example of code
clutter is the following non−implemented class:

Public Overrides Sub PatheticMethod()
'...to be implemented when we have a reason
End Sub

So, you could consider the interface route and implement the method in the class that needs the operations. As
fantastic as interfaces are, they have a major drawback: you are forced to implement every method and all the
additional words that go with interface implementation. That's a lot of work in exchange for access to one
method (even if all you do is re−declare the method without implementing it); and, if you just implement
singleton−method interfaces, you end up with a lot of classes.

The Adapter route, while powerful, has one major drawback. It is coupled to the Receiver. This means that it
is impossible to entice a class that implements a sophisticated method into the role of Receiver. If the source
or ownership of the class in not within reach you have no way of infiltrating an Adapter into the class as a
composite unless you are allowed to inherit from the intended Receiver.

So what are your options? Well, there are two design patterns that are possible in OO languages: Adapter
classes and a special Delegate class that can directly reference the entry point of a method in the Receiver.
The former is the prodigal child of the Java event model; the latter is the prodigal child of the Microsoft event
model (which, it can be argued, is largely the Borland Delphi brainchild). Both patterns can be implemented
in Visual Basic .NET, and that's exactly what we will do. We looked at the Interface/ Adapter model. Now
let's have a look at the Delegate model.

Delegates

What is a Delegate? A Delegate is a class that maintains a reference to a single method in an Adapter or a
Receiver class.

 Delegates

475

Delegates are not newmany Visual J++ developers proved the architecture much to the displeasure of Sun. In
fact, the Delegate architecture was a principal reason why Visual J++ developers became the seemingly
cast−away orphans in the bitter Java custody battle between Sun and Microsoft.

Delegate implementation is now key to event−driven software in .NET, and you need an unshakable
knowledge of Delegate modeling and construction to effectively program against the .NET event model.
Delegates are essential in many areas, especially in creating components and controls. You can program
against various event models in a multitude of ways, but the Delegate architecture for event−driven software
has proven to be one of the most powerful and elegant architectures you will work with in the .NET
Framework.

Officially, .NET Delegates have their roots in Microsoft Visual J++ 6.0 (circa 1998), and ultimately they are
borrowed from the Object Pascal/Delphi bound method call architecture (circa 1994). The pattern provides a
powerful software construct that many non−object−oriented languagessuch as C, Pascal, and Modulahave
achieved with function pointers. Unlike function pointers, Delegates are couched in object−oriented
semantics; in essence, they are reference types that can call shared and instance methods of other classes. The
idea of pointers in an OO language conjures up the image in many minds of code that requires a greater than
160 IQ to master; yet, Delegates are type−safe and secure. Also, function pointers can only reference static
functions; standard include files or class operations. Delegates can reference both static and instance methods.

In the same fashion in which the Delegate class is defined in the Visual J++ com.ms .lang.Delegate
namespace, the .NET Framework defines its Delegate declaration in the System.Delegate namespace. As we
discussed in the earlier section on the Adapter pattern, Delegates are objects existing for the purpose of
directly calling the methods of other objects.

The illustration shows how an instance of a Delegate binds to a method in the Adapter or Receiver class. To
the Delegate, which is a sophisticated Adaptee that has been liberated from its surrogate Receiver, both an
intervening Adapter's and the Receiver's interfaces and methods are callable entities.

How does the client invoke the Delegate? Earlier we saw how a Client or Sender communicates through the
native interface that has an implementation relationship with the Adapter class. We also saw how the Sender
can invoke varying implementations through the interface by passing arguments to the Adapter's methods.
Well, lo and beholda Delegate works in much the same way. The big difference is that the Delegate class (the
interface) and the Adapter's call to the Receiver are represented in the same constructthe Delegate class.

Note In case you were wondering, Delegates are allocated on the heap as shown in Chapter 2, Figure 2−1.
This brings their efficiency (as a type of method pointer) into question, as discussed later in this chapter.

Like Adapter classes, in fact more so, Delegates do not need to know or care about the classes or the objects
they referencethe Adapter or Receiver. They can vary their calls to any object at runtime, which satisfies a
desire we expressed earlier. What matters is that the signature of the Adapter's method matches the signature
of the method definition prescribed in the Delegate. As in the interface−implementation relationship, the
Delegate definition must match the Adapter's definition. This pattern renders Delegates ideally suited for
"anonymous" invocation. Furthermore, a Delegate is much more powerful than an inner−class Adapter
because its construct is specialized to this task, while the interface is not (an argument that Sun claims is
irrelevant).

 Delegates

476

While you can certainly use Adapter classes and interfaces for delegation and event invocation, Delegates are
the .NET (or rather Microsoft) way, and the following section explores their every aspect so you can work
effectively with them.

Understanding Delegates

The best way to get up to speed with Delegates is to understand how they are declared, instantiated, and
invoked. Since we cannot instantiate anything before we declare it, let's start with Delegate declaration.

Declaring the Delegate

The Delegate is declared using the following syntax for Sub methods:

[<attrlist>] [Public | Private | Protected | Friend | Protected Friend] _

[Shadows] Delegate [Sub] name [([arglist])]

which results in the following code:

'double sniff action for tracking dogs
Delegate Sub Sniff(ByVal Cloth As Clothing, _
 ByVal Sock As Clothing)

and the following syntax for Function methods:

[<attrlist>] [Public | Private | Protected | Friend | Protected Friend] _

[Shadows] Delegate [Function] name [([arglist])]

which results in the following actions:

'mouse catching action
Delegate Function CatchMouse(ByVal Cheddar As Cheese) As Mouse

These lines can be placed in your class along with the standard type−declarations. You can also declare them
deeper into your classes, nearer to the code that uses them.

As you can see, while the Delegate is a reference−type, it is not defined like a standard reference type, value
type, or even like an interface. You can only define the Delegate and bind it (or point) to a single method
signature in the Receiver. You cannot encapsulate the method between any Delegate/End Delegate construct,
such as the Interface/End Interface keywords.

You should understand that you do not create a Delegate class in the way you create a standard class. You use
it more like one of the built in types, albeit with the ability to specify the method signature you intend to
invoke. Think of it like the Double value type that you can access for its Epsilon value, and so on.

While the Delegate class is the base−class for Delegate types, and multicast Delegates, only Visual Basic can
explicitly derive from itin the same way it instantiates the built in types and Arrays. In other words, is not
permissible to derive a new type from a Delegate type. The Delegate class itself is an abstract class; but only
the system can use it as a type from which to derive Delegate types.

 Understanding Delegates

477

Early Bound Delegate Declares

There are two ways to instantiate the Delegate in your code: through early−bound or late−bound semantics.
You can forward declare the Delegate (early−bound) in your code via its internal or protected instantiation
semantics using New with the AddressOf operator. Or you can use the CreateDelegate method of the
System.Delegate class (which is a late−bound construct). Lets first deal with the early bound syntax.

The following example revisits the earlier Trajectory example where we used Adapter classes to handle the
method calls. In the following example we have the choice of preserving the hidden method in the Receiver
or we can continue to reference an inner Adapter object. For the sake of simplicity let's forgo the inner
Adapter class and make the Receiver's method public.

Public Class Trajectory

 Private Rock As Asteroid
 Private RockLoc As Coordinates

 Public Function CurrentRocLoc() As Coordinates
 Return CurrentRocLoc
 End Function
End Class

Now we create our Delegate early as shown in the following code:

Delegate Function GetRocLoc() As Coordinates

This Delegate does not have to be declared in any class. It can stand on its own or it can be placed near the
point of reference as shown in the following code along with a second Delegate that invokes a laser beam.

Public Class TrajectoryConsole

 Delegate Function GetRocLoc() As Coordinates
 Dim Traj As New Trajectory()
 Dim GetRocDel As GetRocLoc = AddressOf Traj.CurrentRocLoc
 Dim Plot As New CoordinateObject

 Public Sub ObtainRocHeading()
 Plot = GetRocDel()
 End Sub

 Public Sub WatchForRock()
 While Trajectory.MaintenanceState = MaintenanceState.Enabled
 ObtainRocHeading
 If Not GetRoc.RetrRocLoc > RocLocations.Collision Then
 OnRockRedAlert()
 End If
 End While
 End Sub

 Public Sub OnRockRedAlert()
 Navigation.AlterCourse(GetRoc.RetrRocLoc)
 End Sub
End Class

In this code the TrajectoryConsole declares GetRocLoc, which is used to delegate to the Trajectory class
for navigation. The declaration is as follows:

 Early Bound Delegate Declares

478

Delegate Function GetRocLoc() As Coordinates

The Delegate is triggered in the While loop that keep checking for asteroid positions by simply calling the
GetRocDel. That's really all there is to using the early bound Delegate. The alternative syntax for early bound
declaration is as follows:

Dim GetRocDel As GetRocLoc
GetRocDel = New GetRocLoc(AddressOf Traj.CurrentRocLoc)

or

Dim GetRocDel As New GetRocLoc(AddressOf Traj.CurrentRocLoc)

which is the same thing as

Dim GetRocDel As GetRocLoc = AddressOf Traj.CurrentRocLoc

Late Bound Delegate Declares

With all early bound declaration (such as method referencing, object and type declarations, and variable
referencing) the compiler has the advantage of being able to check that it can support the desired operations at
runtime. You have the same advantage when declaring Delegates early as well. The compiler checks that the
Delegate has exposed the method reference legally (such as providing the correct return type), and that the
method can be called.

When you declare the Delegate late you lose this advantage of apriori knowledge about the constructs that are
going to be invoked. In particular you lose the advantage of knowing if the Sender method's arguments are
going to be accepted by the Receiver method's parameter list. But late binding is important and would make
many advanced programming needs difficult to cater to. In this regard the Framework also supports late
declared or late bound Delegates, which are supported by the Visual Basic .NET compiler.

Declaring a late bound Delegate requires you to declare the Delegate class as we did before. However, the
reference variable of the Delegate when declared points to nothing and does nothing; it's gutless until runtime,
when the variable's reference is cast up to the Delegate. After the cast we can invoke the Delegate as we do in
the early bound semantics.

The late bound route is taken using the CreateDelegate method, which should be very familiar to
programmers who have programmed against COM and ActiveX components. This syntax is as follows:

Function CreateDelegate(_
 ByVal type As Type, _
 ByVal method As MethodInfo _
) As Delegate

The method is overloaded to allow you the following options:

CreateDelegate(Type, MethodInfo) This method creates Delegates for static or shared methods
only. These are methods that belong to static classes rather than instances (objects). The Type
parameter expects an argument identifying the type of the Delegate to create. The MethodInfo
parameter expects an argument describing the method the Delegate encapsulates.

•

CreateDelegate(Type, Object, String) This method creates a Delegate of the specified type that
represents the particular instance method to invoke on the specified class instance. The Type

•

 Late Bound Delegate Declares

479

parameter represents the type of Delegate to create, the Object parameter represents the class
instance on which the method is invoked, and the String parameter represents the name of the
instance method that the Delegate is to represent.
CreateDelegate(Type, Type, String) This method creates a Delegate of the specified type that
represents a static method in a specified class. The first Type parameter represents the type of
Delegate to create, and the second Type parameter represents the type representing the class that
implements the method. The String parameter represents the name of the static method that the
Delegate is to represent.

•

CreateDelegate(Type, Object, String, Boolean) This method creates a Delegate of the specified
type that represents the specified instance method to invoke on the specified class instance with the
specified case−sensitivity. The Type parameter represents the type of Delegate to create, the Object
parameter represents the Receiver class instance on which method is invoked, the String parameter
represents the name of the instance method that the Delegate references, and the Boolean parameter
represents True or False, indicating whether to ignore the case when comparing the name of the
method.

•

The following version of the TrajectoryConsole application makes use of the late bound semantics. First we
cook up the Delegate as we did before.

Delegate Function GetRocLoc(ByVal some As Integer) As Coordinates

Then we set up the late bound declarations in the Sender object as shown in the following code.

Public Class TrajectorConsole

 Dim Traj As New Trajectory()
 Dim GetRocDel As GetRocLoc
 Dim Traj As New Trajectory()

 Public Sub ObtainRocHeading(ByVal opt As Integer)
 Try
 Select Case Option
 Case 0
 GetRocDel = CType(CreateDelegate(GetType(GetRocLoc), _
 Traj, "CurrentRocLoc"), GetRocLoc)
 GetRocDel.Invoke(Asteroids.AlphaAsteroid)
 Case 1
 GetRocDel = CType(CreateDelegate(GetType(GetRocLoc), _
 Traj, "AltCurrentRocLoc"), GetRocLoc)
 GetRocDel.Invoke(Asteroids.BravoAsteroid)
 Case 2
 GetRocDel = CType(CreateDelegate(GetType(GetRocLoc), _
 Traj, "PortCurrentRocLoc"), GetRocLoc)
 GetRocDel.Invoke(Asteroid.CharlieAsteroid)
 Case Else
 GetRocDel = CType(CreateDelegate(GetType(GetRocLoc), _
 Traj, "StarboardCurrentRocLoc"), GetRocLoc)
 GetRocDel.Invoke(Asteroids.ZuluAsteroid)
 End Select
 End Try
 End Sub
End Class

The utility you get from the late declares is evident in the example here where a Select Case statement block
is used to upcast the Delegate variable at exactly the time it is needed. What's the beef? As you can see you
can vary which method gets called in the Trajectory object.

 Late Bound Delegate Declares

480

When you go the early bound route you commit the Delegate to a method and you can't change that at
runtime. While you get a lot of power by being able to vary method calls like this, which reminds us a lot of
the Strategy pattern demonstrated in the last chapter, the technique is dangerous. Why? There is no way the
compiler can know in advance if the method being referenced actually exists. If you make a mistake in your
code a call to a non−existent method can do some serious damage. In the case of the Trajectory programmer,
the spaceship would turn to port and collide with the asteroid (well, you will only make that mistake once).

Sorting Data with Delegates

Let's get down to business. The captain wants a sorted list of every asteroid that has passed us over the last
few days. Not a problem: the last 50,000 asteroids we passed since moving to warp five were dumped to a
huge XML file just this morning. So we only need to serialize that file into an array and then sort it. Looks
like a fast partitioned bubble sort or a quicksort will do the trick.

Chapter 12 presented an example of a partitioned bubble sort algorithm in Visual Basic .NET. The idea was
that bubble sort could be sped up by n/2 operations if we just chopped the array into partitions and then
recursively sorted the partitions. We won't go into the specification again, but let's look at the code again.

Public Overloads BubbleSort(ByRef array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)

If outerStart >= bound Then
Exit Function

End If
 Dim outer, inner As Integer
 For outer = outerStart To bound
 For inner = innerStart To bound
 If (array(inner) > array(inner + 1)) Then
 Transpose(array, inner, inner + 1)
 End If
 Next inner
 Next outer

BubbleSort(array, outer, inner, array.Length − 2)
End Sub

If you examine this method you'll see that the sort divides the array into two and then recursively sorts the two
parts. On a big array this doubles the rate of BubbleSort sorts. The more you partition the array the more you
speed up the sort. The big problem with this algorithm is that the recursion is very tricky. This is not a
complex method but the more recursive calls we make the harder it is to factor the recursion. A complex
method demanding recursion can take a long time to get right.

Also remember the If Then conditional, which acts as the stopping condition for the recursion. Without it the
method would recur until the arrow of time turns around and comes back because the recursive call (the last
line in the method in bold) gets recalled repeatedly. So we need something to knock the continuing cycle,
short of a huge exception when the method runs out of variables or flies out of the bounds of the array.

I would also hate to try and obviate the recursion using some iterative construct, like a While loop. You'll
succeed only in pulling your hair out.

But we can easily and very elegantly replace the recursion and the iteration with two or more Delegates with
astonishing ease. Implementing this with Delegates was achieved in a fraction of the time it took to factor out
the recursive elements. And we get the benefit of dropping the stopping condition. Now look at the same

 Sorting Data with Delegates

481

method sans the recursion:

Public Overloads BubbleSort(ByRef array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)
 Dim outer, inner As Integer
 For outer = outerStart To bound
 For inner = innerStart To bound
 If (array(inner) > array(inner + 1)) Then
 Transpose(array, inner, inner + 1)
 End If
 Next inner
 Next outer
End Sub

There are no more recursive calls and no more stopping condition. But take note of the method that calls this
BubbleSort method.

Public Class ArrayUtils

 Delegate Sub DoubleSortDel1(ByRef array() As Integer, _
 ByVal outer As Integer, _
 ByVal inner As Integer, _
 ByVal bound As Integer)
 Dim dblSort1 As DoubleSortDel1 = AddressOf Queuer.BubbleSort

 Public Sub PartitionSort(ByRef Array() As Integer)
 dblSort1(Array, 0, 0, Array.Length \ 2)
 dblSort1(Array, Array.Length \ 2 + 1, Array.Length \ 2 + 1, Array.Length − 2)
 Merge(mergearray)
 End Sub
End Class

The PartitionSort method almost concurrently sorts the two parts of the single array using the two Delegates.
The first Delegate sorts the first half and the second Delegate sorts the second half. Lastly, the independent
call to the Merge method combines the partitions into one array.

The QuickSort method has a lot more potential for implementing Delegates. First, the QuickSort with
recursive calls and areas can be replaced with delegate calls called out in bold:

Public Overloads Sub QuickSort(ByRef Array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)
 Dim outer, inner As Integer

If Not (outerStart >= Array.Length − 1) Then
If (bound <= 0) Then

bound = QuickPart(Array)
End If

 For outer = outerStart To bound
 For inner = innerStart To bound
 If (Array(inner).CompareTo(Array(inner + 1))) > 0 Then

Transpose(Array, inner, inner + 1)
 End If
 Next inner
 Next outer

QuickSort(Array, outer, inner, Array.Length − 2)

 Sorting Data with Delegates

482

 End If
End Sub

We can nix the first conditional and the call to partition the array via the QuickPart method. We can simply
call QuickPart from the method asking for the sort because we are not dependent on variables and values to
control a stopping condition or for arguments in the recursive calls.

There is also potential to make late bound method calls to different Transpose methods. I implemented the
Transpose three different ways. The first uses simple variable shuffling, the second makes use of a Stack
object, which is great for juggling objects, and a third makes use of the XOr operator to transpose numbers.
Here a Delegate can be created for each choice of Transpose method.

But, most important, we can drop the recursion in this method as well. Have a look at the revised code now:

Public Overloads Sub QuickSort(ByRef Array() As Integer, _
 ByVal outerStart As Integer, _
 ByVal innerStart As Integer, _
 ByVal bound As Integer)
 Dim outer, inner As Integer
 For outer = outerStart To bound
 For inner = innerStart To bound
 If (Array(inner).CompareTo(Array(inner + 1))) > 0 Then
 Transpose(Array, inner, inner + 1)
 End If
 Next inner
 Next outer
End Sub

And the call to the Delegates is as follows:

Delegate Sub QSortDel(ByRef array() As Integer, _
 ByVal outer As Integer, _
 ByVal inner As Integer, _
 ByVal bound As Integer) _
Dim QSortD1 As QSortDel = AddressOf Queuer.QuickSortD

Public Sub KwikSortDel(ByRef Array() As Integer)
 Dim bound As Integer = QuickPart(Array)
 QSortD1(Array, 0, 0, bound)
 QSortD1(Array, bound, bound, Array.Length − 2)
End Sub

Remember, there are three simple steps in defining and using the Delegate:

Declare the Delegate. A Delegate is declared in the class that needs to use it as follows:

Public Delegate Compare(ByRef Obj1 As Integer, ByRef Obj2 as
Integer) As Integer

1.

Instantiate the Delegate. Delegates are created using CreateDelegate for late−binding as follows:

GetRocDel = CType(CreateDelegate(GetType(GetRocLoc), _
Traj, "CurrentRocLoc"), GetRocLoc)

And for early−binding as follows:

Dim QSortD1 As QSortDel = AddressOf Queuer.QuickSortD

2.

 Sorting Data with Delegates

483

Invoke the Delegate. Delegates are invoked using the Invoke method as follows:

SorterDelegate.Invoke()

or simply calling the method.

IsGreaterThan.Invoke(IntArray(j),(MaxVal))

3.

Remembering the three steps will help you successfully incorporate Delegates (and Adapter classes for that
matter) into your code. Let's now extend this and investigate how Delegates underpin the .NET Framework
event model.

Multicast Delegates

Delegates contain members that provide their necessary invocation servicesthe operations that call the method
in the target classes or objects. A Delegate can call one method, in which case its invocation list stores only
one method reference. This is known as a singlecast, unicast, or noncombinable Delegate.

A Delegate that invokes a list of method references is a multicast Delegate. A Delegate that invokes a
collection of methods is known as a multicast Delegate; that is, the method calls or invocations are
combinable. If a Delegate only has one method reference, one method to invoke, it is known as a singlecast,
or noncombinable, Delegate. By combining we mean the operations invoked by the multicast calls are
combined into a collection of operations. You combine Delegates using the Delegate.Combine as shown in
the following code:

QSortDeld3 = CType(System.Delegate.Combine_
(QSortDeld1, QSortDeld3), QSortDeld1)

The reason behind calling on the CType method is that the method that does the combining must be cast up to
the same type of the Delegates being combined. If you don't make the CType call a type−mismatch exception
is thrown.

The entire invocation list is ordered like an array, and each element of the list contains exactly one of the
methods invoked by the Delegate. There can be duplicate method references in the list, and each method is
called once for each reference. The Delegate also invokes the methods in the order in which they appear in the
list, and the Delegate will attempt the invocation each time it is activated.

To evaluate the invocation list at any time, you can call the GetInvocationList method on the Delegate. This
method call returns an array which will either contain one method reference of a singlecast (noncombinable)
Delegate or more than one method reference in an array representing a multicast (combinable) Delegate. The
following code demonstrates the creation of the multicast Delegate that combines the two calls we made to
the QuickSort method in the previous section.

Note The internal structure of the invocation list is that of a linked list. But the method returns the
list in an array for convenience.

Sub Fire Twice
 Dim QSortDel1, QSortDel2, QSortDel3 As QSortDel
 QSortDel1 = AddressOf P1
 QSortDel2 = AddressOf P2

 'Now you create QSortDel3, a cast of QSortDel1 and QSortDel2

 Multicast Delegates

484

 QSortDel3 = CType(System.Delegate.Combine(QSortDel1, QSortDel2), QSortDel1)
 QSortDel3 'Invokes the method call from P1 and P2

End Sub

You can call the third Delegate's GetInvocationList method, which returns an array of references to you.
You can then inspect the array list of method references by simply iterating and displaying the contents of the
array to the console.

Delegates are immutable, so once you create them and populate the invocation list, you can't change it.
Changing invocation order can only be done by creating a new Delegate.

The Delegate class also contains methods for combining operations. In other words, you can take one
Delegate and combine its invocation list with that of another. This action, performed with the Combine
method, does not change the current Delegate. Instead, it returns a new Delegate with the combined
operations of the two original ones. The Remove method performs the opposite of Combine; it returns a new
Delegate with the invocation list of one of the Delegates removed. Combine returns null if one of the
Delegate's lists is devoid of method references. In this case, the Delegate is returned unchanged when the
combining or removing operation does not affect anything.

Delegates return values to their clients when the referenced method signature returns a value. For example,
when the method to invoke is a function, or a result type, the Delegate returns the value it receives from the
Delegatee or Receiver class.

Naturally, multicast methods cannot return values from multiple invocations of function methods; thus,
multicast Delegates are declared as Sub Delegates. However, when the signature of a method includes a
parameter that is passed by reference, its final value is the result of every method in the list executing
sequentially and updating the parameter's value.

Any one of the methods in either the unicast or multicast Delegate can throw an exception. When an
exception occurs, the method stops executing and the exception is passed back to the caller of the Delegate.
The remaining methods in the list are not invoked, even if you catch and successfully handle the exception.

Note .NET compilers provide two additional methods to the Delegate for asynchronous programming, and
callback operations: BeginInvoke and EndInvoke.

The .NET Framework Event Model: Delegates and Events

Using Delegates in an event model is also not a new idea. Windows−bound Java programmers encountered
them in the Windows Foundation Classes and used them to wire up events in applications created with Visual
J++.

Delegates are used to bridge the listeners for events (the Receiver objects we have been discussing) to the
events in the Sender object or client. As soon as something happens in the client the Delegate is invoked and
it calls the method it is pointing to in the Receiver object. That's all there is to this event model. Besides
several constructs that make wiring and plumbing the event system in your application easier, there is nothing
more to the .NET event model than what we have already covered in this chapter. But let's look at the event
constructs a little closer.

Suppose my Trajectory application needs to constantly monitor space for an asteroid threatening the ship and
suddenly one comes into a critical proximity. The software can fire an event that collects the necessary data

 The .NET Framework Event Model: Delegates and Events

485

regarding the coordinates of the asteroid and can pass this information to the Delegate. The Delegate then
invokes the method in the weapons systems represented by the Weapons class and fires a laser at the
approaching asteroid. To cater to this algorithm, the application could expose an AsteroidEnter event or the
applications could simply invoke the Delegate object.

The class that encapsulates the events maintains the current state of the application, possibly by implementing
a state machine, as discussed in the previous chapter. The states provide key information about each event and
the operating mode of the application. So in "scanning" or "sensing" mode the application watches for that
pesky asteroid and as soon as the closest one returns threatening data the event is fired. The following code is
doing exactly what I have just described:

Public Class Trajectory

 Dim TrajState As New TrajectoryState
 Dim aSensors As New AsteroidSensors()

 Public Function CurrentRocLoc(ByVal ast As Asteroids) As Coordinates
 CurrentRocLoc = aSensors.RetrieveAlpha()
 Return CurrentRocLoc
 End Function

 ReadOnly Property IsEnabled() As Boolean
 Get
 Return TrajState.CurrentState
 End Get
 End Property
End Class

Public Class WeaponsArray

 Public Sub FireAsteroidLaser(ByVal roc As Asteroid, _
 ByVal loc As Coordinates)
 'code not implemented until laser gun meets
 'universal standards
 Console.WriteLine("Firing Laser")
 End Sub

End Class

Delegate Function GetRocLoc(ByVal roc As Asteroids) As Coordinates

Public Module TrajectorConsole
 Dim Traj As New Trajectory()
 Dim Weps As New WeaponsArray()
 Dim RocLoc As New Coordinates()
 Dim Roc As New Asteroid()

 Dim GetRocDel As GetRocLoc = AddressOf Traj.CurrentRocLoc
 Delegate Sub FireLaser(ByVal roc As Asteroid, ByVal loc As Coordinates)
 Dim FireIt As FireLaser = AddressOf Weps.FireAsteroidLaser
 Public Event AsteroidEnter As FireLaser

 Public Function ObtainRocHeading() As Coordinates
 RocLoc = GetRocDel(Asteroids.AlphaAsteroid)
 End Function Public Sub WatchForRock()
 While Traj.IsEnabled
 ObtainRocHeading()
 If Not (RocLoc.X And RocLoc.Y) > AlertEnum.StandDown Then
 'Or FireIt(Roc, RocLoc)

 The .NET Framework Event Model: Delegates and Events

486

 RaiseEvent AsteroidEnter(Roc, RocLoc)
 'Or OnRockRedAlert
 End If
 End While
 End Sub

 Public Sub Main()
 WatchForRock()
 Console.ReadLine()
 End Sub

 Protected Sub OnRockRedAlert()
 RaiseEvent AsteroidEnter(Roc, RocLoc)
 End Sub

End Module

Looking closely at this code, you will notice the constructs that provide the event functionality. Two
Delegates are created as follows:

Delegate Function GetRocLoc(ByVal roc As Asteroids) As Coordinates
Delegate Sub FireLaser(ByVal roc As Asteroid, ByVal loc As Coordinates)

The first Delegate you'll remember from our earlier discussion introducing Delegates. It merely fires on a
regular basis checking on the movement of asteroids. The second Delegate (FireLaser) will be triggered in
the "event of" the GetRocLoc Delegate returning that dangerous information. The following method in the
code is wired up to the two Delegates as follows:

Public Sub WatchForRock()
 While Traj.IsEnabled
 ObtainRocHeading()
 If Not (RocLoc.X And RocLoc.Y) > AlertEnum.StandDown Then
 'Or FireIt(Roc, RocLoc)
 RaiseEvent AsteroidEnter(Roc, RocLoc)
 'Or OnRockRedAlert
 End If
 End While
End Sub

The call to ObtainRocHeading brings back data about the coordinates of the asteroid. It continues to check
until the IsEnabled state of the Trajectory application is disabled. As long as the application is enabled it
will continue to invoke the Delegate and determine if the current location of the asteroid calculates to a sum
that is higher than the StandDown alert. As soon as it computes lower than StandDown the event will trigger
the Delegate.

The event construct is declared as follows:

Public Event AsteroidEnter As FireLaser

All it does is bind to the FireLaser delegate. But where does it get the parameters needed by the Delegatethe
asteroid it is aimed at (out of a list of millions) and its current coordinates. The parameter list is provided at
the point the event is raised, using the RaiseEvent keyword. That code is as follows:

RaiseEvent AsteroidEnter(Roc, RocLoc)

 The .NET Framework Event Model: Delegates and Events

487

You will also see from the earlier example that the above code does exactly the same thing as the following
code:

FireIt(Roc, RocLoc)

As soon as RaiseEvent is invoked the Delegate calls the Receiver, passes in the coordinates and the name of
the asteroid to zap and that rock is history.

There are a number of other classes that flesh out this event model. First, an information class is defined to
hold any data you need to pass to the Receiver. This would be useful for the other users of the Weapons
class, like the Weapons Officer or a database. This can be any class derived from EventArgs, a framework
class you must inherit from. While you have no direct control over the EventArgs base−class, you can
nevertheless override certain functionality from it. This code provides an example of such specialization in
this class:

Public Class LaserEventArgs
 Inherits EventArgs
 Public ReadOnly Property Information () As String
 ' ...
 End Property
 ' ...
End Class

Second, you can also name the Delegate with event handling semanticstypically by suffixing the identifier
with the words EventHandler, as in AsteroidSightedEvent Handler. The so−called EventHandler works
like any Delegate discussed earlier, so don't be confused when you see it littered all over your GUI
applications. It can be unicast or multicast, and it encapsulates the reference (binds) to a method or methods in
the EventArgs specialization. The following code provides an example of an event− handler Delegate for the
Trajectory application:

Public Delegate Sub AsteroidEnterEventHandler(sender As Object, _
 e As LaserEventArgs)

If you do not need to provide data to the target of the Delegate, you can simply use the default event Delegate
provided by the framework at System.EventHandler as follows:

Public Event NoDataEventHandler As EventHandler

This serves the purpose of simply binding the occurrence to the no−data event handler.

Third, an event is defined in the client code using the Event keyword and this syntax:

[<attrlist>] [Public | Private | Protected | Friend | Protected Friend] _

[Shadows] Event eventname[(arglist)] _

[Implements interfacename.interfaceeventname]

Fourth, you should also provide a methodpreferably prefixed with the word On, as in OnAsteroidEnterthat
raises the event in your application. This makes it easier to understand what's going on in the application,
although at times it seems to be a waste to move the RaiseEvent statement to another method, possibly far
way from the point it was raised. Using On is not required, but this style helps distinguish event methods in
your code and helps render your applications easier to follow and maintain. Calling the OnAsteroidEnter or

 The .NET Framework Event Model: Delegates and Events

488

OnAsteroidExit method (from the client class or an inner−state object) starts the "chain of events" by first
invoking the Delegate. Here is an example:

Protected Sub OnRockRedAlert()
 RaiseEvent AsteroidEnter(Roc, RocLoc)
End Sub

Notice that the method raising the event is modified with the Protected keyword. Although not essential, I
recommend this to allow derived classes to override the event without attaching a Delegate to it. When
deriving from a parent class that implements the event, the derived class must always call the method in the
parent class that raises it (MyBase.OnEvent). This ensures that Delegates defined in the base−class receive
the event.

Getting Ready to Wire−up: The Event Model in a Nutshell

Let's summarize the event model or pattern preferred for .NET applications:

An event Delegate is constructed in your client class (or a proxy) as follows:

Delegate Function GetRocLoc(ByVal roc As Asteroids) As Coordinates

or

Public Delegate Sub EventNameEventHandler(sender As Object, _
e As EventNameEventArgs)

If you simply need to make something happen and do not need to send data about the source or the
event, you can use a simplified no−return Delegate as follows:

Public Delegate Sub EventNameEventHandler()

Remember, however, that the Delegate's method signature and the signature of the target method
must match.

1.

Your client class (or a proxy) defines an event as follows:

Public Event AsteroidEnter As FireLases

or

Public Event EventName As EventNameEventHandler

which bridges the event to the Delegate.

2.

Your client class (or a proxy) implements a method that is activated to raise the event. This method
signature should use the On prefix as follows:

Public Sub OnAsteroidEnter()

3.

The class or object that handles the event (the target object) derives from the EventArgs base−class.
In this class, you will code methods that respond to the Delegate invocation. They will perform an
action either with or without data (source of the event or event information or both), and they may
even return data to the Delegate.

4.

 Getting Ready to Wire−up: The Event Model in a Nutshell

489

At this juncture, it makes sense to stop and ask if such an elaborate delegation construct is necessary, since
.NET provides incredible native support for interfaces. This next section tackles the case of (Adapter)
Interface vs. Delegate.

Delegate Events vs. Adapter Events

Delegates and interfaces are similar, because they both allow an interface to be completely separated from an
implementation. Interfaces let you vary the implementation that can be accessed via a compatible de−coupled
interface. A Delegate specifies the signature of a method in the same semantic terms as an interface. In this
regard, programmers can write methodsthat is, provide implementationthat can be seamlessly coupled with
the Delegate interface.

If you think about it, interfaces and Delegates do the same thing. Thus, if .NET has interfaces, why does it
also need Delegates? There has been bitter debate on the subject in OO circles for many years. Let's
investigate the differences for ourselves, starting first with interfaces.

Interfaces may be limited in their utility for several reasons:

Classes can only implement an interface once.•
Name collisions between interfaces can preclude a class from implementing multiple interfaces. This
is one of the reasons multiple inheritance is not available in .NET.

•

Interfaces are public, and their members are public. You cannot expose the members via any other
access level. This is not a limiting factor for interfaces. If the members were not publicly visible, they
would not be able to function as interfaces. However, it may be a limitation in a delegation or
event−generating scenario.

•

To overcome these limitations and to allow a Receiver's or Target's methods to be accessed in a delegation
arrangement, we nest an Adapter interface as an inner or composite interface class in a Receiver, or in a
descendent of a Receiver. An Adapter composite provides a number of benefits in a delegation arrangement.
However, often a container such as a form is the source of many events. A form may employ multiple controls
and components. It may have many buttons, combo boxes, lists, timers, multiples text boxes, and multiple
labels.

Thus, if you employ an interface−based event or interfaced− based delegation model, a typical form may
require dozens of Adapter implementations one for every event or delegation instance. The result is an
explosion of Adapters. This may have a negative impact on performance, though in most cases this would not
be too noticeable. But the bigger issue is that it requires you to be doing a lot of implementation and interface
management. In a lengthy application, this could mean managing hundreds of interfaces to accommodate an
extensive event−driven solution.

Delegates are easier to manage for the following reasons:

First, there is no such thing as a "name collision" in the employment of Delegates. As long as a
method's signature matches the signature in the Delegate, and a return type matches the return type of
the Delegate, you can call its method anything you like.

•

Second, while Delegates can't invoke the private members of Receiver objects, it is still possible to
invoke friends or the public methods of Adapters.

•

Third, classes can implement as many methods as needed, and the Receiver objects need no special
constructs, such as composite adapter−interfaces, to expose the methods to an event model. Wiring up

•

 Delegate Events vs. Adapter Events

490

the events to the Receiver becomes nothing more than pointing the Delegate to the address of the
Receiver's method.
Fourth, a lot less code is required to implement Delegates.•

In addition, Delegates tolerate unhandled eventswhich is a common occurrence better than interfaces, because
they wrap a single method. In an interface event−based system, a message is still sent to an interface that
impacts the receiver, even if the event is unhandled. While Delegates also set messages in motion, the speed
and size penalty for the unhandled events is much less than it would be for sending a call to an interface.

To handle even one event, the Receiver must still implement the entire event− interface, and the Sender must
still raise all of the events in an event interface, whether or not the Receiver has been equipped to handle
them. Delegates can't bind method calls if there are no methods in the Receiver to bind; thus, the case of the
missing event handler is not possible in a Delegate event model. Even if a method is not implemented in the
Receiver, there is still zero cost or impact upon the Receiver, because no adapter needs to be resident.

The Delegate event model and the delegation model are easier to implement, because it's easier to discover
the facilities of Receiver objects and their inclination to handle events. And, most important, Receiver
implementors, the programmers, need no extra effort and code in order to offer their classes and objects for
event handling. A receiver also requires no special action to register listener status with the construct that
marshals the event−handler calls, such as aggregation in an Adaptee class. Delegates register listener
interests implicitly in the method reference itself.

In this regard, Delegates are able to intrinsically support multicast scenarios. Creating and managing multicast
events requires little more than the combination of Delegate references, as described earlier. The same task in
interface−based event systems is difficult, time−consuming, and error−prone. In short, Delegates make
event−wiring easy.

However, the Interface/Adapter event model has some advantages over the Delegates, not only for events but
to support general Adapter pattern algorithms. The following arguments against Delegates have been offered
up by the anti−Delegate community ever since they were introduced in Visual J++:

Bound−method references add complexity to the type system. This is not really a complexity cost for
the programmer but more of a concern for the type− system architects. However, the bound−method
call wrap in the Delegate construct is a special case in what is otherwise a pure object−oriented
framework, in which classes do everything and are everything. A Delegate is thus a new type that
needs special treatment by the type system.

•

While Delegates are technically classes, the semantics and language needed to implement them is
cryptic and complex, even though less code is required in comparison to Adapter−interface
construction. While interface bridging and interface−member referencing are more difficult than
simple object−member referencing, it is still easier to construct the interface reference code than the
Delegate reference code.

•

Delegates are not very expressive and do nothing else but reference a method call. They cannot
implement groups of operations or contain state or be expanded in any way. In many respects, they
are nothing but function pointers, which are undesirable in an OO framework.

•

The argument against Delegates is that the reference to a single method can just as easily be provided in a
more simple fashion using a single member Adapter object. Adapters obviously require additional code and
some incorporation into the Receiver code. As an example of the Adapter interface model, you can compare
sorting with Adapters pattern as I did with the Delegates earlier in this chapter.

 Delegate Events vs. Adapter Events

491

Having implemented both models in this chapter we can arrive at a conclusion that the .NET Framework is
flexible enough to accommodate both event models. In some scenarios, adapter interfaces are a better fit,
while in other instances Delegates do a better job. Claiming that Delegates detract from the OO'ness of .NET
is a matter of personal conviction. Delegate syntax and semantics do not detract from the overall OO
semantics of .NET programming at all.

An explosion of interfaces does not impact the application any more than an explosion of Delegates does.
There can be problems, however, with the overhead of the additional adapter classes in an extensive
event−driven application. The additional code adds upa situation that is alleviated with a method pointer,
which doesn't impact the Receiver in any way.

Delegates, like Adapter classes, are more useful for event processing. For example, you might want an object
that raises events to be able to call different event handlers under different circumstances. Unfortunately, the
object−raising events cannot know ahead of time which event handler is managing a specific event. Visual
Basic .NET lets you dynamically associate event handlers with events by creating a Delegate for you when
you use the AddHandler statement. At runtime, the Delegate forwards calls to the appropriate event handler.

Although you can create your own Delegates, in most cases Visual Basic .NET automatically generates the
Delegate and takes care of the details for you. For example, an Event statement implicitly defines a Delegate
class named EventName .EventHandler as a nested class of the class containing the Event statementand
with the same signature as the event. The AddressOf statement implicitly creates an instance of a Delegate.

Delegates vs. Function Pointers

Since Delegates are a form of method pointer, it is useful to compare them to function pointers. It can be said
that Delegates address many of the scenarios addressed by function pointers. The latter do not belong in
.NET, just as they do not belong in any true OO framework. The additional effort to protect the
object−orientation, type safety, and security of the runtime would not be worth the effort. But for interest's
sake, and to enable us to understand Delegates more, let's see how Delegates differ from C++−style function
pointers.

Delegates are object−oriented Delegates are classes, and while they wrap a call to a method they
still behave like objects. C++ function pointers are not classes and have no relationship at all with the
C++ object−oriented constructs.

•

Delegates are type safe The .NET type system and the CLR enforce type safety of Delegates. To be
encapsulated by a Delegate, the method reference must precisely match the Delegate in number of
arguments, type of arguments, and return types. While the method names can differ, if the signatures
do not coincide, the Delegate cannot be instantiated. Traditional function pointers on the other hand
undergo no such safety checks. You can easily crash a system if you cast incorrectly. The power and
flexibility you have with function pointers thus carries a price, as C/C++ programmers have
discovered for years. Even the most experienced C++ programmers need to walk on eggshells when
working with function pointers. In short, Delegates do not let you "muck" with your code.

•

Delegates are secure The CLR and type system ensure both the safety of Delegates and that they
behave according to the requirements of the security system. In other words, Delegates cannot gain
access to code they are not entitled to mix with. C++−style function pointers do not work within a
trust− based security system and cannot be adopted into a distributed software model like the .NET
Framework, in which everything revolves around secure programming.

•

 Delegates vs. Function Pointers

492

Observations

When it invented, or refined, the Delegate construct for VJ++, Microsoft proposed the Delegate solution not
as an alternative to interfaces, but rather as an alternative in the Java event model and to promote the loose
coupling between classes in event− handling scenarios, which also set the stage for an elegant anonymous
invocation model. Sun refused to accept the proposal to include Delegates in Java, but Microsoft went ahead
anyway and built Delegate support into the Windows Foundation Classes (WFC)the precursor to the .NET
Framework class libraryan issue that had the phones at Sun's lawyers ringing off the hook.

As a result, Delegates could only be used in software that ran on Microsoft's JVM, which was unacceptable to
Sun because it, essentially, violated the "write once, run everywhere" philosophy and many other "rules"
Microsoft had apparently disobeyed. So now you have Visual J++ Delegates in the .NET Framework, "write
once, run on every Windows." I have been a Java fan for years, and still am, but I find Delegates so powerful
and elegant that it's difficult to see why Sun had such a nervous breakdown over them.

The beauty of .NET is that no matter what you believe, both Event models can be adopted with relative ease.
While Delegates will be the recommended route for wiring events, Visual Basic .NET's support for native
interfaces and the relative ease with which you can construct adapters lets you work with both. That's an
amazing amount of power, don't you think?

As for the Asteroid/Trajectory application you can inspect it further in the source code that comes with this
book. It is included in the Vb7cr.Asteroids project.

 Observations

493

Chapter 15: Data Processing and I/O

Overview

This chapter deals with Visual Basic .NET's and the .NET Framework's text, character, and binary data
processing abilities, as well as the I/O support for streams. We also introduce the regular expression classes
and file operations and get acquainted with the extensive support for XML. Data processing and I/O
represents the largest chapter in this book (and in most programming books) because it represents the most
common task any programmer will be required to perform, from simply reading a command−line argument to
loading a data warehouse with a hundred million bytes of information.

The discussion of files and streams also provides extensive examples of managing files and folders, streaming
data to and from objects (serialization), and more. Much of the code examples were extracted from a utility
called Indexworks, which tests classes I built to work against Microsoft Index Server. These include examples
that write noise words (words to strip out of search phrases that Web surfers submit) to a noise words file that
is loaded into an array or a linked list in the objects that send queries to Index Server.

The last section in this chapter "Serialization with XML" demonstrates providing XML serialization support
for the linked list and node objects we worked on in Chapter 13. It follows after a long discussion on file I/O
and demonstrates how to serialize the entire linked list and its node out to a file on the hard disk. It will show
how, when starting the application, the entire linked list object and its data nodes can be reconstituted back
into the application for immediate use.

Data Processing

Many languages are judged by their ability to manipulate and manage text and characters. Visual Basic .NET
is no exception. The reason is simple: Without this fundamental ability, we would be unable to process data
and represent it to our users, store it in databases, or print it to documents. There is hardly an application or
algorithm that does not require the facilities for some form of text or character manipulation. We write text to
the console, to dialog boxes, to event logs, and to the Debug Output window. We capture text from user input,
such as reading a character from the console. We break text apart, interpret it, clean it up, and send it back to
the screen, to databases, to files, to printers, to e−mail and pagers, and to remote devices.

In today's highly distributed world, text is king. The days of jumping through hoops and eating fire to get
binary objects from one point on a network to another have been put behind us with the advent of XML, a
sophisticated metadata framework for describing individual elements represented as text. Nowadays, all forms
of data, including data destined only for computer consumption, travels with the elements that describe it.
This so−called metadata, couched in XML tags, has turned text into the universal language of computing. As
long as a receiver can read the XML (using an XML parser or method that reads XML tags) and can support
what the text requires, it will know what to do with it.

In the not too distant past, sending a simple string from a VB application to a Java application or a Delphi
application (or vice versa) was akin to cracking a coconut with a crayon. Each language would encode and
encapsulate its text in a form that other applications could not easily translate. Strings wrapped in various
codes needed to be unwrapped or translateda process akin to the translation of English between a Mississippi
maiden out on a first date with a soccer freak from Liverpool. XML, the universal translator, changes all that.

The .NET Framework provides the power of text and character manipulation and processing in the form of
several classes that have an exceptional assortment of features for you to use. In particular, we will look at the

494

following namespaces and their respective classes:

System.String The class that represents an immutable series of characters represented in the value of
the String reference object. This is the base String storage and manipulation object, a type that
behaves and is constructed like a fixed array of characters. The String's members provide you with
the tools to operate on a series of characters in every conceivable way. Because the String's value is
immutable, changes to the String are stored in its clone or copy, which then becomes the new String.

•

System.Text A namespace that encapsulates classes like StringBuilder, which is a mutable series of
characters. Unlike String, it lets you add to and change the original value, in chunks or one character
at a time. The StringBuilder class is a powerful utility. You saw it in action in Chapter 5, in the
"Shifting Bits" section. We discuss it in more detail in this chapter.

•

System.Text.RegularExpressions A namespace that represents classes for creating and processing
regular expressions. Regular expressions provide a powerful, flexible, and efficient model for
processing text.

•

System.IO An extensive namespace that encapsulates classes for all manner of file operations, IO,
.NET's support for streams, and so on. It also caters to readers and writers, where methods such as
Read, Write, ReadLine, and WriteLine originate.

•

System.Xml A namespace that represents the core XML processing classes. Specifically, we are
going to discuss the XML classes that provide core XML text reading and writing functionality. The
specifics of XML constructs and concepts such as documents, schemas, paths, and transformations are
beyond the scope of this book (in fact, .NET's support for XML is so extensive that it is probably
beyond the scope of any book).

•

Let's start with the construct we are probably the most familiar with, the String class.

Working with Strings

Instantiating and initializing a String object is easy in Visual Basic .NET. The Framework provides an
immutable string−handling class, which is found at the System.String namespace. While String is a reference
type, it behaves a lot like one of the fundamental data types, such as Decimal or Integer, common in the
non−OOP environments. When you need an instance of String, you do not need to provide the New keyword
because you do not have access to the constructor of the object.

There have been many examples of creating and initializing String objects in this book, so if you've been
reading the chapters in sequence, no doubt you already know how to declare and use an instance of String
with an initial value. The following code instantiates the String object and initializes its value field
(ToString) with a string:

Dim Str As String = "TestString, TestString 1, 2, 3"

The String class is an immutable type, which means that any operations performed on the String return a
newseemly modifiedversion of the String rather than the original instance. By making String an immutable
type, it can be very efficient to work with. We'll look at the StringBuilder class later in this chapter when we
explore working with mutable string−like structures. You can also easily convert the String object to objects
of other fundamental types, such as Char and Byte. (Refer to Chapter 4 for more information on conversion.)

 Working with Strings

495

Members of the String Class

Let's look at the members of the String class before we start using them in our example applications. Table
15−1 lists the important methods, minus most of the methods inherited from Object.

Clone

This member is inherited as it is in all the .NET types, but it is especially useful in the String class. It lets you
declare a new object and then clone another object to it bit for bit. You then end up with two identical copies
of the String. You can then work with the new object in place of the cloned one. The following code
demonstrates the cloning of a String object:

Dim sText, sTextDisplay As String
Dim sClone As Object
sText = "hello world"
sClone = sText.Clone()
sTextDisplay = sClone.ToString()
Console.WriteLine("Result: {0}", sTextDisplay)

Table 15−1: String Manipulation Methods and Properties (Several are Static)

What You Need to Do Method or Property to Use

Get the Char at a specific index in the String Char (p)

Get the length of the String Length (p)

Compare two Strings Compare (s), CompareOrdinal (s)

Compare a target String to a source String CompareTo

Join source String to target String Concat (s)

Copy source String object to target String Copy (s)

Clone the source String Clone

Copy characters into an array CopyTo

Test the beginning and ends of Strings EndsWith, StartsWith

Format numeric Strings Format (s)

Get the index location of characters in a String IndexOf, LastIndexOf, LastIndexOfAny

Insert sub−Strings into a String Insert

Obtain a reference to a String Intern (s), IsInterned (s)

Manipulate sub−Strings Join, Split (s)

Pad Strings with additional characters PadLeft, PadRight

Remove characters from a String Remove

Replace characters in a String Replace

Isolate a sub−String from a String SubString

Trim characters from the beginning and ends of Strings Trim, TrimEnd, TrimStart

Copy the characters in the String to a Unicode character arrayToCharArray

Covert all characters in the String to lowercase ToLower

Return the value of the String object ToString

Convert all the characters in the String to uppercase ToUpper

 Members of the String Class

496

Compare

The Compare method lets you compare two String object values to each other. This static method returns 0
for a match and 1 for no match, indicating the equality, or not, of the two values (see Table 15−1). The syntax
is as follows:

String.Compare(StrA, StrB)

Consider the following code:

Dim sText, sNewText, sTextDisplay As String
Dim num As Integer
sNewText = "hello world"
sTextDisplay = "hello world"
num = sText.Compare(sNewText, sTextDisplay)
Console.WriteLine("Result: {0}", CStr(num))

The Strings are equal and the output to the console is

Result: 0

You also do not always need to call an instance method because a lot of methods provided by the String class
are static. Here's an example:

num = String.Compare(sNewText, sTextDisplay)

In Table 15−1 the static methods are denoted with the "(s)" symbol.

This fast method can tell you whether or not you have a match of values. You can ignore the reason for the
mismatch. You can also use the CompareTo method to test for actual equality of the object's values. Table
15−2 lists the return values and their meanings for the Compare method.

Table 15−2: Compare Method's Return Codes

If the Ordinal Returned Is Then

Negative ordinal strS is less than strT

0 strS and strT are equal

Positive ordinal strS is greater than strT
A similar method in the String object is CompareOrdinal. This member compares the String object without
regard for language or culture. The following line

n = sText.CompareOrdinal(sNewText, sTextDisplay)

returns the same three result ordinals as the Compare method.

CompareTo

The CompareTo method is similar to the preceding comparison method, but instead of taking two String
objects as parameters, the method compares the String parameter to the owner of the method. Consider the
following code:

 Compare

497

Dim sText1, sText2 As String
Dim num As Integer
sText1 = "hello human"
sText2 = "hello human"
num = sText1.CompareTo(sText2)
Console.WriteLine("Result: {0}", CStr(num))

The String objects are equal.

Concat

The Concat method concatenates (joins) two or more Strings together. The result is a new, third String that
is the combination of String values of the source and target objects and that contains the concatenated
Strings. The syntax is as follows:

ing1.Concat(ing2)

or

String.Concat(ing1, ing2)

which joins ing1 and ing2 to form a new String. However, the method can take up to three Strings and has
application in Array types. The following code shows how you can concat three String values:

Dim ing1, ing2, ing3 As String
ing1 = "Florida, "
ing2 = "we have a (voting) problem."
Console.WriteLine(String.Concat(ing1, ing2, ing3))

The output to the console is the String representation of ing3, which is the concatenation of ing1 and ing2.
Note that the original Strings ing1 and ing2 are not modified in any way. The result to the console is as
follows:

Florida, we have a (voting) problem.

Copy

The Copy method provides a simple means of copying one String object to another. The original value is left
untouched. The Copy syntax is demonstrated in the following example:

Dim ing1, ing2 As String
ing1 = "Florida, we have a (voting) problem."
Console.WriteLine(ing2.Copy(ing1))

If you cannot guess what gets written to the console, then you have a problem. You do not need to forward
declare a source String object to copy from, as the following example illustrates:

Dim orida As String
Console.WriteLine(orida.Copy("Florida, we have a (voting) problem."))

 Concat

498

CopyTo

The CopyTo method is a little more complex than the Copy method, but it works harder to give much more
manipulation power. The CopyTo method takes a character at the source position of a String, at your selected
index value, and then copies the character to a destination position in a character Array. The base syntax is as
follows:

Str1.CopyTo(int1, myArray, int2, int3)

The character at int1 is the starting point or source index in the source Stringin the preceding example, the
source is Str1. The parameter myArray is the destination Array you must provide. Finally, Int2 is the
starting index or destination index in the target Array and Int3 is the number of characters to copy from the
source String, as shown in the following example:

Dim intI As Integer
Dim str1 As String = "Houston, we have a problem."
Dim myArray(5) As Char
str1.CopyTo(0, myArray, 0, 4)
str1.CopyTo(10, myArray, 4, 1)
For intI = 0 To 4
 Console.WriteLine(myArray(intI))
Next I

In the preceding code example, we have declared an array (myArray) of type Char to hold five characters.
Then we copy four characters into myArray starting at index 0 and ending at index 3. Next, using str1, we
copy character "e" in position 10 in the String to the index position 5 in the Array. The characters copied into
the Array are "h," "o," "u," "s," and "e."

Finally, to write the Array contents to the console, we used a For . . . Next loop (refer to Chapter 6), which
loops four times to output the characters and display the following:

h
o
u
s
e

EndsWith, StartsWith

The EndsWith and StartsWith methods are useful for simple checks on whether certain Strings or even
single characters appear at the beginning or end of Strings. You will receive True or False if the String you
are hoping to find is or is not at the end or beginning of your String. Let's check out this useful method:

Str.EndsWith()
Str.StartsWith()

Have a look at the following example:

Dim str1 As String = "Houston, we have a problem."
If str1.EndsWith("problem") Then
 console.WriteLine("true")
End If

 CopyTo

499

In the example, the output to the console can never happen because the period has been omitted from the
EndsWith test and the statement is thus False.

Equals

The Equals methodinherited from System.Objectprovides a means of determining, through the return of
True or False, if a certain String is equal in value to another String. Thus, if we think str1 is "X," the Equals
method allows us to determine if it is indeed "X." This method is convenient for testing values of Strings to
control flow in a methoda so−called sentinel construct. The syntax is as follows:

str1.Equals(str2)

Now consider the following code (note that case is important):

Dim s1 As String = "Florida, we are T−10 and counting."
If s1.Equals("Florida, we are T−10 and counting.") Then
 Console.WriteLine("True")
End If

Now you can also use the Is operator or the equal (=) operator to obtain the same results in the preceding
code. We only need to change one line, as follows:

If s1 Is "Florida, we are T−10 and counting." Then

Note It's a good idea to get into the habit of using the Is operator.

Format

The .NET Framework contains a String formatting method that provides standard formatting of a String's
characters, or the specified sub−String. It works by replacing the target String with the textual equivalent of a
numeric, date and time, or enumerator value. The legacy Visual Basic Format function has also been
wrapped by the .NET Framework, as demonstrated later in this section. See also "String Formatting," later in
this chapter.

Note The {0} specifier is the placeholder for a string of characters to be inserted into a String object. It works
like the C language's % specifier .

The types are formatted through the Format function applicable to the data type being rendered. The basic
syntax is as follows:

Str1.Format("The answer is {0:####}", answer)

Format is a static method, so the following syntax is also applicable:

Str1 = Format("The answer is {0:####}", answer)

The .NET formatting support also provides for custom formatting for more flexibility, which is illustrated
later in the section "String Formatting."

 Equals

500

IndexOf, LastIndexOf

The IndexOf and LastIndexOf methods provide a facility for locating a character or a set of characters in a
String object. In a word processing application, for example, you will want to provide your users with the
facility of searching for and replacing strings. Consider the following code snippet:

Dim str1 As String
str1 = "I waste a lot of time playing with my xbox."
Console.WriteLine(str1.IndexOf("x"))

It is rather easy to work out in your head the output to the console. It is the integer 38 of coursebeing the last
character in the above String object. If the character is not present in the String, a return value of 1 is
reported.

The method LastIndexOf provides a slightly different facility. It reports the last occurrence of a particular
character in the String. In the preceding example, there are two occurrences of "x" so the return value is 41.
But if we searched for "o" we could get 17 as the return value because there are two occurrences of "o" in the
String, and we are looking for the last one.

Insert

The Insert method inserts a String into another String in a location specified in the method. Consider the
following code:

Dim str1 As String
str1 = "The little black xbox"
Console.WriteLine(str1.Insert(4, "very expensive "))

The String argument "very expensive" is inserted at integer 4 in the String s1 to display to the console the
following:

The very expensive little black xbox

Intern, IsInterned

Often, String objects can get quite large, and the task of comparing them can become quite slow in
computing terms. The Intern method provides a facility for obtaining a reference to a String that speeds up
comparison operations by an order of magnitude. The Intern method is also useful for creating Strings
on−the−fly and then providing an immediate facility for using the String in a number of operations.

When you invoke the Intern method of different String objects that have the same content as the original
String object, you will obtain a reference to the first object. For every object instantiated that is the same as
the original object, you will obtain multiple references to the same object by interning each new String object.
Interned Strings can be compared with the = operator (equals) instead of calling the more resource−intensive
equals operator, which literally has to compare each character in the corresponding String.

The following code demonstrates the interning of String objects:

Public Sub TestIntern
Dim s1, s2, s3, s4 As String
s1 = "The small brown fox"
s2 = "The small brown fox"

 IndexOf, LastIndexOf

501

s3.Intern(s1)
s4.Intern(s2)
 If s3 = s4 Then
 Console.WriteLine("Jeez that was quick")
 End If
End Sub

The String object also provides the method IsInterned, which when called provides a reference to the String
if it has already been interned. Otherwise, it returns null and you can proceed to call Intern or handle the null
return value as an exception.

Join, Split

The Join and Split methods are used with arrays. The Split method can be used to chop up a String at the
characters in the String you designate as separators. The pieces of Strings can then be slotted into a String
array. The Join method copies the String elements occupying an array of type String and connects them with
separators or characters to assemble a String.

The following code first designates a separator character. In this example, we designate the blank character ("
") as the separator (str1). The code shows that str1 is passed as a char into an array of type char. We then use
the element of the array as the specifier for chopping up the String str2 (str2 is split at the blanks in the
lines). At this point in the execution, sArray holds a String (each word in the sentence) in each element or
index position in the array.

Dim intI As Integer
Dim str1, str2 As String
Dim seps(1) As Char
Dim sArray(6) As String
str1 = " "
str2 = "The cow jumped over the moon"
str1.CopyTo(0, seps, 0, 1)
sArray = str2.Split(seps)
For I = 0 To 5
 Console.WriteLine(sArray(I))
Next I
Console.WriteLine(s2.Join("*", sArray))

The first console output is derived from a loop that copies each word from the array and displays it on the
console. The second console output joins copies of all the elements of the first array into a sentence, using the
star or asterisk (*) character as the separator. The console's output is as follows for the first call to the
WriteLine method:

The
cow
jumped
over
the
moon

The console's next output is as follows for the second call to WriteLine:

The*cow*jumped*over*the*moon

 Join, Split

502

PadLeft, PadRight

The padding method either left or right aligns a String in its field and then pads the other end of the String
with spaces or a specified character to fill up the specified length of the field. The following code works for
both left and right padding of Strings:

Dim s1 As String = "Holy cow"
Dim dot As Char = Convert.ToChar(".")
Console.WriteLine(s1.PadLeft(20, dot)) 'or
Console.WriteLine(s1.PadRight(20, dot))

The output to the console is as follows:

Holy cow..........
............Holy cow

Note Observe the Convert.ToChar method used in the preceding code to change a character literal to a char
value. There is no character literal that forces conversion to type char.

Remove

Remove lets you remove a designated number of characters from a particular start index in a String. The
following code demonstrates this:

Dim s1 As String = "Holly cow"
Dim s2 As String = s1.Remove(3, 1)
Console.WriteLine(s2)

Replace

Replace lets you replace a character in a String with a new character. Consider the following code:

Dim str As String = "Holy cow"
Dim charc As Char = Convert.ToChar("w")
Dim charc1 As Char = Convert.ToChar("p")
str = str.Replace(charc, charc1)
Console.WriteLine(str)

The console output is as follows:

Holy cop

SubString

The SubString method lets you split a String into two Strings at the index location in the String and then
return the sub−String including the character at the index location. In the example provided, we want to
return just the sub−String and not the blank or space character at the location we obtain for the start of the
sub−String. The following code adds 1 to the location of the blank or space between the two words. We used
the IndexOf method to find the blank:

Dim str As String = "Holy cow"
Dim intI As Integer = str.LastIndexOf(" ")
str = str.SubString(int + 1)
Console.WriteLine(str)

 PadLeft, PadRight

503

This returns just the word "cow" to the console.

ToCharArray

The ToCharArray method lets you copy a String to a character array. You can easily reference the character
array as follows:

Dim str As String = "Holy cow"
Console.WriteLine(str.ToCharArray(0, 2))

The console output is as follows:

ho

ToLower, ToUpper

Often, you might need to convert characters to either upper− or lowercase. The methods ToLower and
ToUpper allow you to toggle text as lower− or uppercase. For example, the code

Dim str As String = "holy cow"
str = str.ToUpper()
Console.WriteLine(str)

writes HOLY COW to the console. ToLower converts uppercase to lowercase. Incidentally, the method does
not take an argument.

Trim, TrimEnd, TrimStart

The trim functions let you trim white spaces from the beginning and end of Strings. Trim lets you trim the
start and end of Strings with one call.

Classic Visual Basic String Functions

In addition to the String object's methods, the legacy−style VB functions listed in Table 15−3 are also
supported by Visual Basic .NET. These are accessible via the Microsoft.VisualBasic.Strings namespace.

Table 15−3: Classic Functions Wrapped by the Microsoft.VisualBasic.Strings Class

What You Need to Do Function to Use

Compares two Strings StrComp

Converts Strings according to constants supplied to the function StrConv

Returns a String or object consisting of the specified character repeated the
specified number of times

StrDup

Returns a String in which the character order of a specified String is
reversed

StrReverse, InStrRev

Converts Strings from uppercase to lowercase and vice versa LCase, UCase

Inserts spaces in Strings Space

Determines the length of a String Len

 ToCharArray

504

Reformats Strings Format, FormatCurrency,
FormatDateTime,
FormatNumber,
FormatPercent

Retrieves the sub−String the specified number of characters from the left
or right

Left, Right

Retrieves a String left− or right−aligned to a specified number of
characters

LSet, RSet

Retrieves sub−Strings Mid

Strips spaces from Strings LTrim, RTrim, Trim

Finds a sub−String in a String InStr, InStrRev

Retrieves the Integer values associated with ANSI and ASCII charactersAsc, AscW

Retrieves the character associated with the specified character code Chr, ChrW

Returns a Char value representing the character from the specified index
in the supplied String

GetChar

Replaces one String with another Replace

Retrieves subsets (as arrays) of Strings from a filter applied to an arrayFilter

Retrieves an array containing the result of splitting a String Split

Retrieves the result of a join of two Strings Join
These String manipulation functions are just as useful in Visual Basic .NET as they are in classic VB. If you
can easily solve your problems using the native String manipulation methods, then you should prefer those so
that you lessen the burden of and reliance on legacy code. On the other hand, if one of these functions does
the job, don't hesitate to use it. I have used several of these functions in .NET applications to reduce the
amount of code I needed to write to achieve a certain result and I found no noticeable problems or overhead.

To use these functions, you need to reference the Visual Basic Run−Time Library.

String Formatting

As mentioned earlier, the .NET Framework provides three types of format providers. These provide
formatting of numeric Strings, data and time Strings, and Enumeration Strings. These "formatters" are
wired into the ToString methods of the fundamental data types that implement the IFormattable interface,
such as Int32 (Integer), Int64 (Long), Singles, Doubles, DateTime, Enumerator, and the like.

As demonstrated earlier in this chapter and in various places in this book, these formatters are also present in
the workings of the Console and String classes and other classes, such as those in the System.IO namespace,
that process text. See the "Format" section earlier in this chapter.

Classes that provide the formatter "masks" or "patterns, such as {00:00} and separator tokens and decimal
point tokens, are known as format providers. These classes implement the IFormatProvider interface.

The format provider is typically passed to an overloaded ToString method as defined by the IFormattable
interface. If no provider is passed, then the method can be coded to use a default format provider against the
arguments processed to it. In such situations where no providers are passed, the formatting is implicit to the
method, which obtains the mask and its tokens from one of the standard framework format providers.
However, ToString methods typically implement IFormattable to provide the support in one of their
overloaded variations (such as Console.WriteLine).

 String Formatting

505

The key format providers that implement the IFormatProvider interface are listed as follows:

NumberFormatInfo Formatting information for numeric data types•
DateTimeFormatInfo Formatting information for DateTime objects•
CultureInfo Formatting information for different cultures•

In cases where formatting information is needed but no IFormatProvider is supplied, the CultureInfo object
associated with the current thread is usually used.

NumberFormatInfo

The standard NumberFormatInfo String comprises a character that represents the format, such as currency
or decimal, followed by digits that represent the precision. Table 15−4 lists the standard formats supported by
the Format method.

Currency

The Currency formatter is used to convert the given numerical value to a currency value. The currency value
can contain a locale−specific currency amount. The format information is determined by the current locale,
but you can override this by passing in the NumberFormatInfo object as an argument. The default in the
United States is, of course, USD. For example:

Console.WriteLine("{0:c}", 1250.99)
Console.WriteLine("{0:c}", −1250.99)

Tip The Console.WriteLine method automatically calls String.Format as demonstrated in the preceding and
following examples (as does ToString if the argument can be formatted as defined by the IFormattable
interface).

Table 15−4: The Built−in Formatters, or Format Providers, that Implement IFormatProvider

Format Specifier Output

C, c Currency

D, d Decimal

E, e Exponential (scientific)

F, f Fixed−point

G, g General

N, n Number

R, r Roundtrip. This format ensures that numbers converted to Strings will get
the same value when they are converted back to numbers.

X, x Hexadecimal
The output to the console is the following:

$1,250.99
($1,250.99)

 NumberFormatInfo

506

Decimal

The Decimal formatter can be used to convert the numerical value to an Integer value. For example:

Console.WriteLine("{0:D}", 125099)

writes 125099 to the console, but

Console.WriteLine("{0:D10}", 125099)

writes 00000125099 to the console, representing ten digits (five as passed by the parameter and five zeros for
left−padding).

Exponential

The Exponential formatter (scientific) formats the value passed to the String in the form of

m.dddE+xxx

As indicated, the decimal point is always preceded by one digit. The number of decimal places is specified by
the precision specifier (six places is the default). You can use the format specifier to determine the case of the
"E" in the output, as illustrated in the following examples:

Console.WriteLine("{0:E}", 125.8)
Console.WriteLine("{0:E10}", 125.88)
Console.WriteLine("{0:E5}", 125.88))

This example writes the following to the console:

1.258000E+002
1.2580000000E+002
1.25880e+002

Fixed−Point

The Fixed−Point formatter is used to convert the value provided in the argument to a String and then specify
the number of places after the decimal point to round the number. For example, the following code:

Console.WriteLine("{0:F}", 125.88)
Console.WriteLine("{0:F10}", 125.88)
Console.WriteLine("{0:F0}", 125.88)

provides this output:

125.88
125.8800000000
126

General

The General formatter is used to convert the String to a numerical value of either fixed− point format or
scientific format. This is often used in calculator software to write to the format that provides a more compact
representation. For example, the following code:

NumberFormatInfo

507

Console.WriteLine("{0:G}", 12345.67)
Console.WriteLine("{0:G4}", 12345.67)
Console.WriteLine("{0:G6}", 12345.67)

provides the following output to the console:

12345.67
1.2345E4
12345.7

Number

The Number format allows you to convert a large number that has a decimal point to a number that can be
better read with commas. For example, the following code:

Console.WriteLine("{0:N}", 12345.67)
Console.WriteLine("{0:N3}", 12345.67)

displays the following on the console:

12,345.67
12,345.678

The default is two decimal places, while in the second example, we explicitly specified three decimal places.

Round−trip

Round−trip is an implicit format provider that ensures that data converted from number Strings will get the
same value when converted back.

Hexadecimal

If you need to convert a String value to hexadecimal, you can use the Hexadecimal formatter. In the
following example, the uppercase X gives you uppercase letters, and the lowercase x gives you lowercase
letters. The minimum number of digits to display is set by the precision specifier. If the number is smaller
than the precision specifier, it will be padded to the width specified. The following code provides examples
(note the case differentiation, emphasized by the author):

Console.WriteLine("{0:x}", 123)
Console.WriteLine("{0:X3}", 123)

The output is as follows:

7b
07B

DateTimeFormatInfo

The DateType data type also implements IFormattable, which allows date and time information to be
formatted as a String, like the numeric types, in the overloaded DateTime.ToString method. The format
provider for DateTime formatting is the DateTimeFormatInfo class.

NumberFormatInfo

508

Again, both standard format Strings and custom format Strings and the output are influenced by the culture
context associated with the current thread or a CultureInfo object passed to the ToString method (see also
Chapter 4). Custom format Strings allow you to be more flexible and are useful in the rare occasions that the
standard formatters are insufficient.

Table 15−5 provides the list of standard DateTime format Strings. These Strings are interpreted as standard
format specifiers if they contain only one of the single format specifiers listed here. Some of the formatters
have specific nuances that may require escape characters and certain treatment to obtain the desired result. Be
sure to consult the .NET Framework SDK for specifics.

The formatters will throw ArgumentException if the specified format characters are not expected by the
receiving method. As long as you stick to the characters in the table, you will not have a problem.

Table 15−5: The Standard DateTime Formatters and property/patterns associated with the current thread or by
a specified format provider

Format Specifier Output

d Short date pattern displays a pattern defined by
DateTimeFormatInfo.ShortDatePattern property

D Long date pattern displays a pattern defined by the
DateTimeFormatInfo.LongDatePattern property

t Short time pattern displays a pattern defined by the
DateTimeFormatInfo.ShortTimePattern property

T Long time pattern displays a pattern defined by the
DateTimeFormatInfo.LongTimePattern property

f Full date/time pattern (short time) displays a combination of the long date and
short time patterns, separated by a space

F Full date/time pattern (long time) displays a pattern defined by the
DateTimeFormatInfo.FullDateTimePattern property

g General date/time pattern (short time) displays a combination of the short date
and short time patterns, separated by a space

G General date/time pattern (long time) displays a combination of the short date
and long time patterns, separated by a space

M or m Month day pattern displays a pattern defined by
DateTimeFormatInfo.MonthDayPattern property

R or r RFC1123 pattern displays a pattern defined by the
DateTimeFormatInfo.RFC1123Pattern property

s Sortable date/time pattern that conforms to ISO 8601. It displays a pattern
defined by the DateTimeFormatInfo.SortableDateTimePattern property.
The property references the CultureInfo.InvariantCulture property, and the
format follows the custom pattern "yyyy−MM−ddTHH:mm:ss."

u Universal sortable date/time pattern displays a pattern defined by the
DateTimeFormatInfo.UniversalSortableDateTime Pattern property.
Because it is a defined standard and the property is read−only, the pattern is
always the same regardless of culture or format provider. The format follows
the custom pattern "yyyy−MM−dd HH:mm:ssZ."

U

NumberFormatInfo

509

Universal sortable date/time pattern displays a pattern defined by the
DateTimeFormatInfo.FullDateTimePattern property. Note that the time
displayed is for the universal time, rather than local time.

Y or y Year month pattern displays a pattern defined by the
DateTimeFormatInfo.YearMonthPattern property

Any other single character Regarded as an unknown specifier
However, be aware that adding a single character to the formatter, even a white space, such as {"u"} will
cause the format String to be interpreted as a custom formatter. You also need to take into account that
formatters are influenced by the settings in the Regional Options control panel. This means that computers
with different cultures or different date and time settings will cause different patterns to be displayed.

Table 15−6 displays the standard format strings for formatting DateTime objects. Date and time separators
displayed by formatters are defined by the DateSeparator and TimeSeparator characters associated with the
DateTimeFormat property of the current culture.

While using the formatters specified in Table 15−6 is straightforward, keep in mind that, in cases where the
InvariantCulture is referenced by the "r", "s", and "u" specifiers, the characters associated with the
DateSeparator and TimeSeparator characters do not change based on the current culture.

Custom Formatters

As mentioned earlier, custom formatters can be used to control the output format of your values. When you
use the Custom format option, special characters are used asa template to shape the output. Characters that
are not recognized are simply copied to the output. Here are some examples of custom formatters for
numerical data.

Table 15−6: Formatters for the DateTime Object

Format Specifier Culture Information Output

d en US 4/10/2001

d en NZ 10/04/2001

d de DE 10.04.2001

D en US Tuesday, April 10, 2001

T en US 3:51:24 PM

T es ES 15:51:24

f en US Tuesday, April 10, 2001 3:51 PM

f fr FR Mardi 10 avril 2001 15:51

r en US Tue, 10 Apr 2001 15:51:24 GMT

r zh SG Tue, 10 Apr 2001 15:51:24 GMT

s en US 2001 0410T15:51:24

s pt BR 20010410T15:51:24

u en US 20010410 15:51:24Z

u sv FI 20010410 15:51:24Z

m en US April 10

m ms MY 10 April

 Custom Formatters

510

y en US April, 2001

y af ZA April 2001

L en UZ Unrecognized format specifier; a format exception is thrown
Digit or Zero for a Placeholder

The following code formats the output to the designated number of digits using a zero as the placeholder. If
there are more placeholders than digits passed in the argument, the output is left−padded with the placeholder
zeros. For example:

Console.WriteLine("{0:111}", 1234)
Console.WriteLine("{0:00}", 12)
Console.WriteLine("{0:0000}", 123)
Console.WriteLine("{0:0000}", 1234)

provides the following output

111
12
0123
1234

In the preceding output, the first line generates three of digit "1" because this placeholder is not recognized by
the method and is thus simply copied to the output, and the number (1234) as the argument is ignored. The
second line shows output limited to two digits. The third line shows output limited to four digits, but because
we only provide a three−digit String as the argument, the number is left−padded with a zero. The fourth line
shows four numbers formatted to a String of four digits.

Using a Digit or Pound for a Placeholder

The pound (or hash) character can be used as the digit or space placeholder. This placeholder works just like
the zero except that a space or blank is inserted into the output if no digit is used in the specified position. For
example:

Console.WriteLine("{0:####}", 123)
Console.WriteLine("{0:####}", 1234)
Console.WriteLine("{0:##}", 123456)

writes the following output to the console:

123
1234
123456

Custom Positioning of the Decimal Point

You can determine the position of the decimal point in a String of numerals by specifying the position of the
period (.) character in the format String. You can also customize the character used as a decimal point in the
NumberFormatInfo class. Here is an example:

Console.WriteLine("{0:####.000}", 123456.7)
Console.WriteLine("{0:##.000}", 12345.67)
Console.WriteLine("{0:#.000}", 1.234567)

Custom Formatters

511

The following code writes the following Strings to the console:

123456.700
12345.670
1.235

Using the Group Separator

The group separator is a comma (,) and can be used to format large numbers to make them easier to read. You
typically add the comma three places after the decimal point to specify a number such as 1,000.00 or higher.
The character used as the specifier can also be customized in the NumberFormatInfo class. The following
example illustrates placement of the group separator:

Console.WriteLine("{0:##,###}", 123456.7)
Console.WriteLine("{0:##,###,000.000}", 1234567.1234567)
Console.WriteLine("{0:#,#.000}", 1234567.1234567)

The output to console looks like this:

123,457
1,234,567.123
1,234,567.123

Using Percent Notation

You can use the percent (%) specifier to denote that a number be displayed as a percentage. The number will
be multiplied by 100 before formatting. In the following example:

Console.WriteLine("{0:##,000%}", 123.45)
Console.WriteLine("{0:00%}", 0.123)

you get the following percentages displayed in the console:

12,345%
12%

Building Strings with StringBuilder

The efficiency of the String object as an immutable type has its downside. Every time you change the String,
you create a new String object that requires its own memory location. If you need to repetitively work with a
String, shaping it for a particular task, you have the additional overhead of the constant creation of new
String objects every time you need to cut, add, and move characters around in the String.

When you need to constantly work with a String, such as an algorithm that takes UNC paths and converts
them to HTML paths, or when you need a storage location to shove characters into, like a stack, then you need
to turn to the StringBuilder class. This class can be found on the System.Text.StringBuilder namespace and
allows you to keep working with a String of characters represented by the same objects for as long as it is
needed. The great feature of the object is that you get to reference the collection of characters as a single
Stringfar less code than that "soda−fountain" Stack that requires extensive "popping."

Note In the BitShifters code in Chapter 5, we used the StringBuilder object, albeit in C# garb, as a place to
stuff bits.

Custom Formatters

512

The StringBuilder class is created similarly to the String object, as follows:

Dim MyStringBuilder As New StringBuilder("Hello Ariel!")

Naturally, you have access to this object's ToString method, so I won't go into it. The members of the
StringBuilder class are listed in Table 15−7.

Capacity

Once you have declared a variable of StringBuilder, it's easy to work with. This property ensures that the
capacity of this instance of StringBuilder is at least the specified value. To set the capacity in the declaration,
first initialize the object and pass in the capacity valuein this case 25as the second argument to the constructor
as follows:

Dim MyStringBuilder As New StringBuilder("Hello Ariel!", 85)

Meanwhile, the MaxCapacity property, as listed in Table 15−7, gets the maximum capacity of the object.

Append

The Append method can be used to add text or a collection of characters to the end of the object's collection
of characters. The following code example initializes a StringBuilder object to "To be or not to be" and then
appends some text to the end of the StringBuilder object. Space is allocated automatically as needed.

Dim MyStringBuilder As New StringBuilder_
("To be or not to be . . . ")
MyStringBuilder.Append("that is the question")
Console.WriteLine(MyStringBuilder)

Table 15−7: Members of the StringBuilder Class

Member Purpose

New Creates a new instance of the StringBuilder class

Capacity (p) Allocates the maximum number of characters that can be contained in the
memory allocated by the object

Chars (p) Retrieves or returns the character at the specified character position in the
object

Length (p) Retrieves or returns the length of the object's value

MaxCapacity (p) Retrieves the maximum capacity of the object

Append Appends characters onto the end of the String representation in the object

AppendFormat Works like Append but the StringBuilder object can take a formatted String,
as we discussed in the previous section. Each format specification is replaced
by the String representation of a corresponding object argument

EnsureCapacity Used to make sure that the capacity of the object you are referencing is at least
a specified value

Insert Inserts the collection of characters of a specified object into the referenced
object, at a specified character position

Remove

 Capacity

513

Kicks out individual characters or a range from the object. Use Remove to
flush the object

Replace Lets you replace all occurrences of a specified character or a collection of
characters in the object with other specified characters

As you can imagine, this method is heavily overloaded so that you can append the full gamut of data types
into your object.

The following example chews through the long date and time String pushed out by Index Server to inform
you of the last time a file it is stalking was modified:

For intI = 0 To pRow(4).ToString.LastIndexOf("/") + 4
'4 for the year xx/xx/2XXX
 sBuilder.Append(pRow(4).ToString.Chars(intI))
Next

So the value "02/02/2002 14:26:47 PM" is reduced to "02/02/2002." You might first grasp for a String
manipulator method, but the For Next loop chews down this particular String like a wolf on lamb ribs.

AppendFormat

The AppendFormat method adds text to the end of the StringBuilder object, but also implements the
IFormattable interface and therefore accepts the standard format Strings described in the formatting section.
You can use this method to customize the format of variables and append those values to a StringBuilder
object. The following code example uses the AppendFormat method to place an integer value formatted as a
currency value at the end of a StringBuilder object:

Dim intI As Integer = 1450
Dim sBuilder As New StringBuilder()
sBuilder.Append("Total remaining is ")
SBuilder.AppendFormat("{0:C}", intI)
Console.WriteLine(sBuilder)

The preceding code snippet writes the following to the console:

Total remaining is $1,450.00

Insert

The Insert method adds a String or object to a specified position in your StringBuilder object. The
following code snippet uses this method to insert a word into the sixth position of a StringBuilder class:

Dim sBuilder As New StringBuilder("Hello Ariel!")
sBuilder.Insert(6, "Beautiful ")
Console.WriteLine(sBuilder)

Remove

You can use the Remove method to remove a specified number of characters from the current StringBuilder
object, beginning at a specified zero−based index. The following code example uses the Remove method to
shorten a StringBuilder's value:

Dim sBuilder As New StringBuilder("Hello Ariel!")

 AppendFormat

514

sBuilder.Remove(5, 7)
Console.WriteLine(sBuilder)

Replace

Use the Replace method to replace characters within the StringBuilder object with other specified characters.
This example uses the Replace method to search a StringBuilder object for all instances of the exclamation
point character (!) and replace them with the question mark character (?):

Dim sBuilder As New StringBuilder("Hello Ariel!")
sBuilder.Replace("!"c, "?"c)
Console.WriteLine(sBuilder)

See anything you like in the preceding methods? In the following code for an Index Server application, I used
a StringBuilder object inside a While loop (this was later implemented with a regular expression). I extracted
the date information as previously described and then flushed the builder for the next iteration of the loop.
Once the entire table is built, the structure is dispatched, lock, stock, and barrel, to an awaiting Web client.

While row <= rows
 rownum += 1 'this comes first because we use it in the HTML table
 pRow = CType(rowIterator.Current, DataRow) 'get the row
 TABLE1.Rows(row).Cells(0).InnerText = CStr(rownum) & "."
 TABLE1.Rows(row).Cells(1).InnerText = pRow(2).ToString
 TABLE1.Rows(row).Cells(2).InnerText = pRow(3).ToString
 'extract a short date from the spaghetti _
 'date sent by the index server
 For intI = 0 To pRow(4).ToString.LastIndexOf("/") + 4
 '4 for the year xx/xx/2001
 sbuilder.Append(pRow(4).ToString.Chars(intI))
 Next
 TABLE1.Rows(row).Cells(3).InnerText = sBuilder.ToString
 'clear the builder for the next record
 sBuilder.Remove(0, intI)
 intI = 0
 TABLE1.Rows(row).Cells(1).InnerHtml = "<A HREF='/Searchfiles/" & _
 Row(2).ToString & "'>" & pRow(2).ToString & ""
 row += 1
 'we need this test because we don't want to advance
 'the cursor when paging backwards
 cursor += 1
 If Not rowIterator.MoveNext() Then
 Exit While
 End If
End While

Regular Expressions

The .NET Framework equips you with probably the most sophisticated and advanced regular expression
engine in existence today. If you don't know what regular expressions are, then consider the definition
provided by this book:

"A regular expression is a character or a combination of characters (which form a pattern)
used to find a matching character, String, or combination of characters in a sample. The
expression can be a simple wildcard, such as the "?" (question mark) or "*" (star or

 Replace

515

asterisk)which matches to anythingto a complex combination of characters that can find a
match according to a simple or complex matching rule. The characters that form the matching
"rule" are known as metacharacters. And the regular expression language is called a
metalanguage."

Once you have found a match (or not) you can simply act on the success or failure result or perform some
operation on the match, such as replace it with other strings or copy it somewhere.

If you remember DOS or the command line (I hear from many programmers who don't remember what a
command line or DOS looks like any more), then you'll remember the command Copy *.Doc or Dir *.Txt.
The * on the command is a metacharacter that instructs the file system to copy or list "all" files in a target
folder with the .doc or .txt extension. The * is the metacharacter that means "all" in this case. The regular
language provides this facility with a metalanguage enabling you not only to find matches according to the
most sophisticated and extreme of rules, but with the ability to replace, edit, delete, or otherwise manipulate
the Strings and characters at the same time.

This chapter will provide some examples of regular expressions at work, but an extensive treatment of the
subject is far beyond the scope of this book. Several books are dedicated to the subject and are worth reading
cover to cover. I must warn you, thoughand a description of the "regex" facilities in .NET coming up will bear
me outregular expressions are not for the faint of heart. The preceding code illustrates the simplest and most
basic use. But the metalanguage is extremely cryptic. Designing a sophisticated match expression combined
with actions requires lots of patience and time. If you need a good match expression and your clock is ticking,
make a call to a guru and pay whatever he or she is asking.

The System.Text.RegularExpressions namespace contains the classes that access the .NET Framework
regular expression engine. The functionality is accessible in the RegularExpressions namespace members
listed in Table 15−8.

Table 15−8: Members of the RegularExpressions Class

Class Member Purpose

Capture Represents the results obtained from a single subexpression capture.
Capture also represents one sub−String for a single successful capture

CaptureCollection Represents a sequence of capture sub−Strings. CaptureCollection returns
the set of captures from a single capturing group

Group Represents the results from a single capturing group. A capturing group
can capture zero, one, or more Strings in a single match with the use of
quantifiers. The Group supplies a collection of Capture objects

GroupCollection Represents a collection of captured groups. GroupCollection returns the
set of captured groups in a single match

Match Represents the results from a single regular expression match

MatchCollection Represents the set of successful matches found by recursively applying a
regular expression pattern to the input String

Regex Represents an immutable regular expression

RegexCompilationInfo Provides information that the compiler uses to compile a regular expression
to a stand−alone assembly

MatchEvaluator (d) The delegate that is called each time a regular expression match is found
during a Replace operation

 Replace

516

RegexOptions (e) Provides enumerated values to use to set regular expression options
The regular expression classes are part of the base class library and can be used with any language or tool that
targets the Common Language Runtime, including ASP.NET and Visual Studio .NET.

The regex support in .NET is also designed to be compatible with the Perl 5 regex framework (which, before
.NET, was considered the mother of all regex frameworks). Now the .NET Framework regular expressions
include features not yet seen in other implementations. These include right−to−left matching and on−the−fly
compilation where the CLR compiles the regex into an assembly.

The .NET Framework Regex Metalanguage

This section introduces you to the important sections in the .NET Framework regular expression
metalanguage. The constructs are extensive and this section thus only provides an introduction, a very short
one at that. For a detailed listing of the constructs, visit the .NET Framework SDK.

Character escape symbols These represent the most important regular expression language
operators, escaped single characters. For example, the escape character \ (a single backslash) signals
to the regular expression parser that the character following the backslash is not an operator. For
example, the parser treats an asterisk (*) as a repeating quantifier and treats a backslash followed by
an asterisk (*) as the Unicode character 002A. See the SDK for the list of character escapes.

•

Substitution symbols Substitutions are allowed only within replacement patterns. For similar
functionality within regular expressions, use a backreference (for example, \1), described later in this
list. Character escapes and substitutions are the only special constructs recognized in a replacement
pattern. All the syntactic constructs described in the following items are allowed only in regular
expression matching patterns as opposed to replacement patterns.

•

Regex character symbols You can find the Unicode category that a character belongs to with the
method GetUnicodeCategory. For more information on Unicode character categories, see the
document "Unicode Data File Format," available on the Unicode Technical Committee's (UTC) Web
site at www.unicode.org/Public/UNIDATA/UnicodeData.html.

•

Atomic zero width assertions These represent metacharacters that do not cause the engine to
advance through the string or consume characters. They simply cause a match to succeed or fail
depending on the current position in the String. For instance, ^ specifies that the current position is at
the beginning of a line or string. Thus, the regular expression ^FTP returns only those occurrences of
the character string "FTP" that occur at the beginning of a line.

•

Quantifiers Quantifiers add optional quantity data to a regular expression. A quantifier expression
applies to the character, group, or character class that immediately precedes it. The .NET Framework
regular expressions support minimal matching (lazy) quantifiers. See the SDK for the metacharacters
that affect matching quantity.

•

Groupings These constructs allow you to capture groups of subexpressions and to increase the
efficiency of regular expressions with noncapturing lookahead and lookbehind modifiers. For
example, (?<name>) captures the matched substring into a group name or number name. The string
used for name must not contain any punctuation and it cannot begin with a number. You can use
single quotes instead of angle brackets; for example, (?'name').

•

Backreference These constructs represent the optional parameters that add backreference modifiers
to a regular expression. For example, \<name> can provide the (\w)\1 construct to find doubled word
characters.

•

Alternations These special characters modify a regular expression to allow either/or matching. These
match any one of the terms separated by the Or | (vertical bar) character; for example, cat|dog|tiger.
The leftmost successful match wins.

•

Miscellaneous There are a few miscellaneous constructs that represent sub− expressions that modify•

 The .NET Framework Regex Metalanguage

517

a regular expression. For example, (?imnsx−imnsx) sets or disables options such as case insensitivity
to be turned on or off in the middle of a pattern.

The following sections present some examples of how the classes and constructs are used.

Capture

The Capture class contains the results from a single subexpression capture. The following example loops
through a Group collection, extracts the Capture collection from each member of Group, and assigns the
variables pos and len to the character position in the original String where each String or character was found
and the length of each String, respectively:

Public Sub MatEx(ByVal source As String)
 Dim intI As Integer
 Dim intJ As Integer
 Dim aRegex As Regex
 Dim aMatch As Match
 Dim aCapCollection As CaptureCollection
 Dim pos, len As Integer
 ARegex = New Regex("{0}", source)
 aMatch = Regex.Match("{0}", source)
 While aMatch.Groups(intI).Value <> ""
 aCapCollection = aMatch.Groups(intI).Captures
 For intJ = 0 To aCapCollection.Count 1
 pos = aCapCollection(intJ).Index
 len = aCapCollection(intJ).Length
 Next intJ
 intI += 1
 End While
End Sub

Group

The Group class represents the results from a single capturing group. Because Group can capture zero, one,
or more strings in a single match (using quantifiers), it contains a collection of Capture objects. Because
Group inherits from Capture, the last substring captured can be accessed directly (the Group instance itself is
equivalent to the last item of the collection returned by the Captures property).

Instances of Group are returned by the property Match.Groups(groupnum), or
Match.Groups("groupname") if the "(?<groupname>)" grouping construct is used. The following code
example uses nested grouping constructs to capture substrings into groups:

Public DoMatchGroups(ByVal source As String, ByVal rsource As Regex)
Dim matchPos(20) As Integer
Dim matchResults(20) As String
Dim aRegex As New Regex(rsource)
Dim aMatch As Match = aRegex.Match(source)
Dim intI As Integer
 While Not (aMatch.Groups(intI).Value = "")
 matchResults(intI) = aMatch.Groups(intI).Value
 matchPosition(intI) = aMatch.Groups(intI).Index
 intI += 1
 End While
End Sub

The Match class represents the results of a regular expression matching operation.

The .NET Framework Regex Metalanguage

518

Regex

This simple example shows how to use the Regex.Replace method when a match is found in the target that is
being parsed. The StripNoise method looks in a String for all instances of words provided in the array of
samples and then deletes the matches from the target String:

Private Function StripNoise(ByVal sentence As String) As String
 While x <= UBound(noiseArray)
 sentence = Regex.Replace(sentence, noiseArray(x), "")
 x += 1
 End While
 Return sentence
End Function

The method then returns the new String minus the matched words. Trying to use one of the String
manipulation methods or functions in an extensive block of text or a stream of characters would be extremely
difficult, and in many cases not at all possible.

You would also use regular expressions to parse complex TCP/IP headers to locate and remedy malformed
URLs. You know how complex some of these headers can be. If you need to look for misplaced periods,
white spaces, illegal characters, duplication of @ ("at") symbols, and so on, nothing other than a regular
expression can do the job for you. I also use it to "scrub" data and "prepare" complex search Strings supplied
against the likes of the Microsoft Index Server search engine, which chokes on a comma or a period or
misplaced white space.

File, Stream, and Text IO Operations

The .NET Framework provides an impressive range of IO namespaces that contain dozens of classes used for
writing, reading, and streaming all manner of text, characters, and binary data, as well as file, folder, and path
support. Many of them, such as those represented by the System.IO, System.Text, and System.XML
namespaces, let you code asynchronous and synchronous reading and writing of data to streams and files. All
these namespaces are currently partitioned across the mscorlib, System, System.Text, and System.XML
assemblies.

The files you work with in your programs are typically ordered collections of bytes, representing characters
on a file system. Files are static; they squat on your hard disks like chickens hatching eggs. Streams, on the
other hand, are continuous "rivers" of data, writing to and reading from various devices. Streams are
constantly on the move.

Streams typically originate from files on devices like hard disks, CDs, and DVDs, and other devices for
persistent storage such as tape drives and optical disks. Streaming data moves across processes and
workspaces on your workstation, and between computers on the vast networks of the world. They move from
persistent memory into volatile memory and back again in a constant ebb and flow of data. Eventually,
streams of data get fed to printers for physical representation like annual reports or user manuals (after some
time, the pages can be fashioned into paper airplanes and tossed out of windows or shredded when the FBI
comes knocking).

The following is a list of the key sections we will discuss that facilitate basic I/O for the .NET Framework:

File and Directories This section presents the classes that encapsulate the functionality of all known
file and directory processing operations. Files are opened, closed, and manipulated using the classes

•

The .NET Framework Regex Metalanguage

519

in this section. This section also covers the key file operation classes, such as file access
enumerations, file mode enumerations, file information classes, directory information classes, and so
on. The principal classes discussed here are File, FileInfo, Directory, DirectoryInfo, and Path. File,
Directory, and Path descend directly from System.Object while FileInfo and DirectoryInfo are
descendants of FileSystemInfo. We also look at BinaryReader and BinaryWriter, which also
derive from System.Object.For the nostalgic, I will discuss briefly .NET's support for the classic
FileSystemObject, aka FSO, which has been the mainstay API of classic VB file system
programming for some time now.
Streams This section discusses the classes that support data streaming, reading and writing data to
objects and devices, and so on. The principal class discussed here is FileStream. Most of the
stream−utility classes derive from System.IO.Stream.

•

Readers and Writers This section covers the text readers and writers that are available to you. They
derive from System.IO.TextWriter and System.IO.TextReader. We will also discuss how these
readers and writers can be bridged to various classes and objects like File and StringBuilder.

•

Let's begin our sojourn into .NET data processing by discussing basic file operations first. You also need a
good understanding of how file processing works before working with the Stream objects, because streams
objects are bridged to file operations.

Files and Directories

An application devoid of support for files and directories is like a vehicle without wheels or a boat without a
propeller. Simply put, it's not going anywhere. There are a lot of cool things in .NET in general and Visual
Basic .NET in particular that you don't need to have an initial grounding in. A thorough understanding of the
core elements and concepts discussed in this book will help you get up to speed on them quickly. But I deem
it essential that you become totally immersed in .NET's file handling and I/O support before the opening bell
(before you start a .NET paying project), or you'll be declared a TKO by the end of round 1.

There are two approaches to coding against the file and directory libraries that ship with the .NET Framework.
You can reference static operations classes (File, Directory, and Path), or you can create file and directory
objects using the FileInfo and DirectoryInfo classes. (Refer to Chapter 9 if you are unsure of the difference
between an operations class and a class that can be instantiatedthat is, activated as an object).

For many operations, you can simply use the static or shared classes, but there will be many reasons to work
with file and folder objects. For starters, if you herald from the world−wide sister−brotherhood of classic VB
programmer you'll probably be very familiar with the File System Object (FSO). Most established VB
programmers use the FSO all the time. Both FileInfo and DirectoryInfo let you code against a similar and
thus familiar object model as the FSO.

If you are not familiar with file and directory object models, consider the objects as objects that represent files
or directories, or abstractions thereof. An operations class is somewhat disconnected from the file or directory
you intend to work on, but a file or directory object is more like a programmable file or directory object, with
a layer you can code against.

Note The .NET Framework and the CLR obviate the need for loading and reading files for
application initialization (refer to the section "Working with Configuration Files" in Chapter
17).

 Files and Directories

520

The File Class

The File class provides the .NET Framework's support for all manner of file handling. With this class, you can
create, copy, delete, move, and open files and much more. File is a static or shared "operations" class and not
a class for objects. You cannot instantiate File and it has no constructor. To use File, simply reference it as
follows:

File.Copy("c:\doh.txt", "c:\ray.txt")

If you need to use file objects to do your file operations, use the FileInfo class, which contains instance
methods that work like the methods of the File class but live in objects. Static methods, being shared, incur
more security overhead, whereas instance methods do not always require security checks. Table 15−9 lists the
static (s) members of File.

Note See "Basic File Class Operations" at the end of this section for a discussion of the methods most
frequently used for standard file I/O operations.

You have the potential to raise exceptions if you provide malformed filenames and path information. The
following examples of paths will get processed by the File methods, but you should consider using the Path
class, discussed next, to help reduce path errors:

"c:\doh\ray.txt"
"c:\doh"
"doh\ray.txt" 'a relative path and file name
"\\doh\ray\" 'A UNC path for a server and share name.

Path

Programming against the file and directory classes is not rocket science, but the potential for problems in your
code is increased because you need to pass complex arguments (such as the various mode and access
constants discussed in the next section). One parameter that can be a minefield represents the path information
argument you need to pass to the various methods of the file and directory classes.

Table 15−9: The Static Methods of File

Member Purpose

AppendText Bridges to a StreamWriter that appends UTF−8 encoded text to an
existing file

Copy Copies a source file to a new target file

Create Creates a file on a given fully qualified path

CreateText Creates or opens a new file for writing UTF−8 encoded text

Delete Deletes the file on the given fully qualified path. An exception is not
thrown if the specified file does not exist

Exists Checks if a specific file exists

GetAttributes Retrieves the FileAttributes on the file on a given fully qualified path

GetCreationTime Retrieves the creation date and time of the specified file or directory

GetLastAccessTime Retrieves the date and time that the file or directory was last accessed

GetLastWriteTime Retrieves the date and time that the file or directory was last written to

 The File Class

521

Move Moves the source file to a new folder. It also provides the option of a new
filename

Open Opens a FileStream on the given path

OpenRead Opens an existing file for reading

OpenText Opens an existing UTF−8 encoded text file for reading

OpenWrite Opens an existing file for writing

SetAttributes Sets the specified FileAttributes on the file on the given path

SetCreationTime Sets the date and time that the file was created

SetLastAccessTime Sets the date and time that the given file was last accessed

SetLastWriteTime Sets the date and time that the given file was last written to
The other stickler in file and directory operations is having to deal with the differences between the various
file systems on the Windows platformFAT, FAT32, and the mighty NTFS. The current file system on the
platform you are targeting your application to determines the exact format of a path. You might not always
have the pleasure of working with one file system, or even accessing a file or directory on a system other than
a version of FAT or NTFS. You thus need to come up with a flexible design to accommodate changing file
system conditions.

Some paths start with drive or volume letters, while others do not. Some file systems maintain file extensions,
and some do not. Some systems maintain a three−character extension; others let you maintain extensions of
more than three characters. The separator characters of path namespaces also differ from platform to platform.
And you probably know that various TCP/IP path elements are separated with forward slashes instead of the
backslashes of the UNC.

Paths can also contain absolute or relative location information. Absolute paths specify physical locations that
can be uniquely identified. Relative paths specify a partial location that still requires additional resolution.

File systems on the various platforms in use today are as different as humming birds are from fruit beetles. To
cater to these differences (remember we are living in the era of the Internet and distributed functionality),
.NET provides a class you can use to process path strings as platform independently as possible.

The members of the Path class are not used to physically operate on files and folders. You will use the
aforementioned file and directory classes and objects for that. But Path's members are used to verify and
modify path strings before you submit them as arguments to methods that do manipulate file systems objects.

When you use Path to verify a path string, it will throw an ArgumentException if your path string characters
do not evaluate correctly. You decide what is or is not correct. The invalid characters get defined in an
InvalidPathChars array, which gets looked at when you request verification.

Here's an example: Invalid path characters on some platforms include quote ("), less than (<), greater than (>),
pipe (|), backspace (\b), null (\0), and Unicode characters 16 through 18 and 20 through 25. You'll thus insert
these characters into the InvalidPathChars array and then use this construct to filter out bad path strings.

The Path class is also very useful for other path operations, such as enabling you to quickly and easily
perform common operations like determining whether a filename extension is part of a path, or the combining
of two strings to make one pathname. Table 15−10 lists the members of the Path class.

The following example uses several members of the Path class to work files and path names and to determine
if the paths passed to various file and directory methods are acceptable. Please note that these properties have
been extracted from a class that encapsulates the contructs of the Path class. The first example calls the

 The File Class

522

Combine method to make a full path name out of the directory and file names:

 'Make a path
Public ReadOnly Property FilePath() As String
 Get
 Return PathChecker.Combine(pName, fName)
 End Get
End Property

This FilePath property information returned is

C:\indexworks\noisefile.txt

Table 15−10: Members of the Path Operations Class

Member Purpose

AltDirectorySeparatorChar Provides a platform−specific alternate character used to separate
directory levels in a path string that reflects a hierarchical file
system organization

DirectorySeparatorChar Provides a platform−specific character used to separate directory
levels in a path string that reflects a hierarchical file system
organization

InvalidPathChars Provides a platform−specific array of characters that cannot be
specified in path string arguments passed to members of the Path
class

PathSeparator A platform−specific separator character used to separate path
strings in environment variables

VolumeSeparatorChar Provides a platform−specific volume separator character

ChangeExtension Changes the extension of a path string

Combine Combines two path strings

GetDirectoryName Retrieves the directory information for the specified path string

GetExtension Retrieves the extension of the specified path string

GetFileName Retrieves the filename and extension of the specified path string

GetFileNameWithoutExtension Retrieves the filename of the specified path string without the
extension

GetFullPath Retrieves the absolute path for the specified path string

GetPathRoot Retrieves the root directory information of the specified path

GetTempFileName Retrieves a unique temporary filename and creates a zero−byte
file by that name on disk

GetTempPath Retrieves the path of the current system's temporary folder

HasExtension Determines whether a path includes a filename extension

IsPathRooted Retrieves a value indicating whether the specified path string
contains absolute or relative path information

The following example extracts the root from the above−specified full path and file name:

Public ReadOnly Property PathRoot() As String
 Get
 Return PathChecker.GetPathRoot(FilePath)

 The File Class

523

 End Get
End Property

The PathRoot information returned is

C:\

The following example tests to see if a logical root exists in a path string. It returns False when the FilePath
property passes "indexwork\noisefile.txt" to the IsPathRooted method.

Public ReadOnly Property CheckRooted() As Boolean
 Get
 Return PathChecker.IsPathRooted(FilePath)
 End Get
End Property

Remember that Path is not privy to exactly what's cooking on the hard disks or devices, volatile or built of
silicone and metal. Just because a drive and file path check though the Path's string gauntlet does not mean
the actual drive, computer, and network actually exist at the time the path checks out.

File Enumerations

Among the parameters required by various methods for file operations are certain values that are represented
by a collection of enumeration classes. These classes include constants for file access, synchronous or
asynchronous processing, and file attributes. Table 15−11 lists the file enumeration classes.

Note These enumerations can apply to FileInfo and FileStream classes as well, so get used to them now.

FileAccess

Various file−handling methods require you to specify the level of file access enjoyed by the user or process
accessing the file. The default file access level is full read and write capability on a file. A FlagsAttribute
attribute decorates the class (refer to Chapter 8) so that the CLR can evaluate bitwise combinations of the
members of the enumeration. Table 15−12 lists the three FileAccess attributes.

Here is an example that grants read−only access to a file. This allows it to be opened by the File operation
while someone else is using the file, but only allows the other, latter users to read the file. They cannot write
to it until they get the chance to open the file with write access, as demonstrated in the following code:

Dim noisefile As New FileStream(filePath, FileMode.Open, _
FileAccess.Read, FileShare.Read)

Table 15−11: File Enumeration Classes

Enumeration Purpose

FileAccess Read and write access to a file

FileShare Level of access permitted for a file that is already in use

FileMode Synchronous or asynchronous access to the file in use
Table 15−12: Constants for the FileAccess Attributes Parameter

 File Enumerations

524

Member Purpose

Read Read access to the file. Data can be read from the file. Combine with Write for
read/write access

ReadWrite Read and write access to the file. Data can be written to and read from the file

Write Write access to the file. Data can be written to the file. Combine with Read for
read/write access

FileAttributes

This enumeration class provides additional attributes for files and directories. A FlagsAttribute attribute also
decorates the file. Table 15−13 lists the file and directory attributes that permeate up from the WinNT.h
wrapper. The table also indicates where the attributes are applicable to files and where they are applicable to
directories. The asterisk (*) denotes that the facility may not be supported by all file systems.

Not all attributes can be accommodated by every file system in existence. For example, reparse points and
support for mounted folders and encryption only arrived with the Windows 2000 operating system.

FileMode

The FileMode parameter lets you specify the treatment of a file as it is accessed. For example, you can
specify if the file should be opened in Append mode, which causes the opening object supporting a Seek
method to seek to the end of the file, where the new data gets appended. OpenCreate, for example, lets the
opening object create and open the file in the same pass.

These attributes can be specified in File's (and FileInfo's) Open methods and the constructors of FileStream
and IsolatedStorageFileStream. They control whether the file can be overwritten, created, or opened, or
open in some combination modes. Table 15−14 lists the FileMode enumeration's constants.

Table 15−13: Constants for the FileAttributes Parameter

Member Purpose

Archive Use this attribute to mark a file for backup or removal.

Compressed Indicates the object is compressed.
[*]

Device Reserved for future use.

Directory Indicates the object is a directory.

Encrypted Indicates the object encrypted. At the file object level, all data in the file is
encrypted. At the directory level, this attribute indicates that all newly
created files and files in subdirectories get encrypted.

[*]

Hidden The file is marked as hidden so that the file system does not allow it to be
shown in a directory listing. The user can usually change this at the
directory level to show hidden files.

Normal Normal here means no other attributes, other than "normal," are set.

NotContentIndexed Files that are marked with this attribute do not get indexed by Index Server
or some other content indexing service.

Offline When a file is marked offline, it means that its data is not immediately
available.

ReadOnly The file is read−only. See also the file access attributes.

File Enumerations

525

ReparsePoint This means the file contains a reparse point, which is a block of
user−defined data associated with a file or a directory.

[*]

SparseFile A sparse file is typically a large file whose data is mostly zeros.

System This means your file is part of the operating system or it is used exclusively
by the operating system.

Temporary A temporary file is usually a placeholder for a file currently in volatile
memory. Your application should delete temporary files as soon as they are
no longer needed.

[*] The asterisk denotes that the facility may not be supported by all file systems.
Table 15−14: Constants for the FileMode Parameter

Member Description

Append Seeks to the end of the existing file when it is opened; if the file does not exist,
the file system creates a new file

Create Forces the creation of a new file

CreateNew Requests the file system to create a new file with the given name

Open Requests that the file system should open an existing file

OpenOrCreate Requests that the file system should open a file if it exists; otherwise, a new
file should be created

Truncate Requests that the file system should open an existing file
The following list demonstrates the use of these attributes in the File.Open methods:

Append This attribute can only be used in conjunction with FileAccess.Write. Any attempt to read
in the same pass gets rebuked with ArgumentException. The following code demonstrates
FileMode.Append:

Dim noisefile As New FileStream(filePath, FileMode.Append, _
FileAccess.Read, FileShare.Read)

•

Create If the file already exists, it will be overwritten. This requires PermissionAccess.Write and
FileIOPermissionAccess.Append. FileMode.Create is the equivalent of requesting that if the file
does not exist, use CreateNew; otherwise, use Truncate. The following code checks use File's Exist
method to choose either Create or CreateNew. There are various techniques you can use to prevent
inadvertent deletion of a file when trying to create a new one. The following If. . .Then condition is
one example:

If Not (File.Exists(FilePath)) Then
 Dim noisefile As New FileStream(FilePath, FileMode.Create, _
 FileAccess.Read, FileShare.Read)
End If

•

CreateNew This attribute requires FileIOPermissionAccess.Read and
FileIOPermissionAccess.Append. This attribute provides better protection of existing files than the
Create attribute discussed earlier, because it will cause an IOException that prevents damage to the
existing file. The following examples illustrates its usage.

Dim noiseFile As New FileStream(filePath, FileMode.CreateNew, _
FileAccess.Read, FileShare.Read)

•

Open This attribute also requires FileIOPermissionAccess.Read. It will cause a
FileNotFoundException if the file does not exist. The following examples demonstrates opening the
file in Read mode:

•

File Enumerations

526

Dim noiseFile As New FileStream(filePath, FileMode.Open, _
FileAccess.Read, FileShare.Read)

OpenOrCreate A useful attribute if you are creating a number of files. Use this attribute with
FileAccess.Read and FileIOPermissionAccess.Read. When you use FileAccess.ReadWrite and the
file exists, FileIOPermissionAccess.Write is required at the same time. But if the file does not exist,
FileIOPermissionAccess.Append is required in addition to Read and Write. The following example
shows this happening:

Dim noiseFile As New FileStream(filePath, FileMode.OpenOrCreate, _
FileAccess.Read, FileShare.Read)

•

Truncate This attribute will cause an existing file to be opened and cleared or flushed in one pass. In
other words, as soon as it is opened, the file size of the file is zero bytes. This operation requires
FileIOPermissionAccess.Write. Naturally, any attempts to read from a truncated file will result in an
exception. The following method opens a file and specifies truncation:

Dim noiseFile As New FileStream(filePath, FileMode.Truncate, _
FileAccess.Read, FileShare.Read)

Note If a file is already open when you try to open it using one of the Read, Write, or None flags, the
operation will fail. You can only gain access to the file once the current owner has closed it. And
even if the file is closed and you pass one of the above flags, you may still need additional
permissions to access it.

•

FileShare

The constants exposed in the FileShare enumeration map to constants that let you specify to the file system
exactly how a file should be opened when it opens it. These constants are typically passed to the Open
methods of File and FileInfo and in the constructors of FileStream (discussed later in this chapter) and the
IsolateStorageFileStream. Table 15−15 lists the constants of this enumeration.

Basic File Class Operations

This section demonstrates how to create and work with files. In the example code, I have created a class with
various methods that call the File class's static methods. I then allow other objects to delegate to this wrapper
or bridge the objects for file operations.

Table 15−15: Constants for the FileShare Parameter

Member Purpose

Inheritable Allows the file handle to be inherited by child processes. This feature is apparently
not directly supported by the Win32 API.

None Rebukes attempts to share access to a file. Any request to open the file by the current
process or any another process fails until the file is closed.

Read Allows subsequent opening of the file for reading

ReadWrite Allows subsequent opening of the file for reading or writing

Write Allows subsequent opening of the file for writing

File Enumerations

527

How to Create a File

The Create and CreateText methods let you create a file at the end of the fully qualified path. You can
choose to call the Create method that returns a reference to the created file, or you can call CreateText to
open a file for writing in UTF−8 encoded data. The following code demonstrates calling CreateText. (See the
examples for using Create earlier in the chapter.) Note also that the following code calls for a Boolean result
from the Exists method to prevent an existing file from being deleted as a result of a create process.

If Not (File.Exists(FilePath)) Then
 If FileFile.CreateText(FilePath)
End If

How to Copy a File

The following code demonstrates the copying of an existing file to a new file:

File.Copy(SourceFile, TargetFile)

The arguments SourceFile and TargetFile provide the Copy method with source and target path and file
names. If you omit directory information Copy sources and targets the folder of the application it is executed
from.

How to Delete a File

The following code demonstrates the call to delete a file. Delete will throw an exception if it is unable to
delete the target file for any reason.

File.Delete(TargetFile)

The method also traps the exception that will be inevitable if you attempt to delete a file that is not on the
fully qualified path, or that simply does not exist.

Getting and Setting File Attributes and Access Information on Files

You will always have cause to peek at file attributes and use them in various file− handling scenarios. The
following example demonstrates retrieving the attributes that adorn a given file with the GetAttributes
method.

Public Function GetFileAtts(ByVal fileandpath As String) _
 As System.IO.FileAttributes
 'FilePath = c:\indexworks\noisefile.txt
 Debug.WriteLine(File.GetAttributes(FilePath))
End Function

With the list of attributes in hand, we can write the code that sets and changes certain attributes. This is
achieved using the SetAttributes method in the following code:

File.SetAttributes(FilePath, FileAttributes.Hidden)

To report on the time a file was created, last accessed, and last written to, and to set these attributes, you can
use the methods GetCreationTime, GetLastAccessTime, GetLastWriteTime, SetCreationTime,
SetLastAccessTime, and SetLastWriteTime, respectively. The following code extracts this information
from all the files in a directory and writes the information to a file that is stored in a directory. Then a process

Basic File Class Operations

528

checks the last time the file directory activity status file was written to and, if a certain number of hours have
passed, re−creates the status file and then resets its creation time (see the section "FileSystemWatcher," later
in the chapter).

Moving Files Around

The Move method moves a file to a new location. The method also provides the option of changing the
filename, as demonstrated in the following code:

File.Move(SourceFile, TargetFile)

The arguments SourceFile and TargetFile provide File.Move with source and target path and file names. The
Move method throws exceptions if it cannot source the file or the destination already contains a file of the
same name as the one being moved.

Directory

The Directory class contains static methods exposed for the purpose of creating, moving, and enumerating
through directories and subdirectories. As is the case with the File class, Directory is a shared operations
class. If you need to perform folder operations via an object, then you can use the DirectoryInfo class,
discussed shortly. Table 15−16 lists the members of the Directory class.

Note Malformed path strings will cause exceptions. Refer to "The File Class" and "Path" earlier in
this chapter. Both sections provide specifics to ensure you pass well−formed path strings to
these methods.

The static methods of Directory are straightforward, so I am not going to cover each method with its own
example. The following code, however, parses a given directory and then reports what it finds to the console:

Public Shared Sub ProcessDirectory(ByVal targetDir As String)
 Dim subdirectory As String
 Dim fileName As String
 Dim subdirectories As String() = Directory.GetDirectories(targetDir)
 Dim files As String() = Directory.GetFiles(targetDir)
 For Each fileName In files
 PrintFileInfo(fileName)
 Next fileName
 For Each subdirectory In subdirectories
 ProcessDirectory(subdirectory)
 Next subdirectory
End Sub

The ProcessDirectory method starts off taking the path of a target directory passed to it and then it
recursively enumerates all subdirectories in the target directory. The full path is then written to the console
using the PrintFileInfo method in the following code:

Public Shared Sub PrintFileInfo(ByVal path As String)
 Console.WriteLine("Found: {0}", path)
End Sub

Table 15−16: The Static Members of the Directory Class

Basic File Class Operations

529

Member Purpose

CreateDirectory Creates directories and subdirectories on a given path

Delete Deletes directory contents

Exists Checks if given paths exist

GetCreationTime Retrieves creation dates and times of directories

GetCurrentDirectory Retrieves current working directories of the applications

GetDirectories Retrieves names of subdirectories in specified directories

GetDirectoryRoot Retrieves volume information, root information, or both for the
specified paths

GetFiles Retrieves the names of files in the specified directories

GetFileSystem Entries Retrieves the names of all files and subdirectories in the specified
directory

GetLastAccessTime Retrieves the date and time the specified file or directory was last
accessed

GetLastWriteTime Retrieves the date and time the specified file or directory was last
written to

GetLogicalDrives Retrieves the names of the logical drives on this computer; for example,
"c:\"

GetParent Retrieves the parent directory of the specified path, including both
absolute and relative paths

Move Moves files or folders and directory contents to a new location

SetCreationTime Lets you set the creation date and time for files or directories

SetCurrentDirectory Lets you create the current working directory

SetLastAccessTime Lets you set the date and time the specified file or directory was last
accessed

SetLastWriteTime Lets you set the date and time a directory was last written to

The FileInfo Class

This class contains methods that provide the same service as the File class. The main difference between the
two classes is that FileInfo's methods are instance methods and the class contains a constructor that lets you
create it as an object. What you get is a reference variable to an object that represents or abstracts a file. The
class also provides a handful of properties that make reporting on a file easier. The members of FileInfo (sans
methods inherited from Object) are listed in Table 15−17.

Table 15−17: The Members of the FileInfo Class

Member Purpose

Attributes (p) Gets or sets the FileAttributes of the current FileSystemInfo object

CreationTime (p) Gets or sets the creation time of the current FileSystemInfo object

Directory (p) Gets an instance of the parent directory

DirectoryName (p) Gets a string representing the directory's full path

Exists (p) Gets a value indicating whether a file exists

Extension (p) Gets the string representing the extension part of the file

FullName (p) Gets the full path of the directory or file

 The FileInfo Class

530

LastAccessTime (p) Gets or sets the time the current file or directory was last accessed

LastWriteTime (p) Gets or sets the time when the current file or directory was last written to

Length (p) Gets the size of the current file or directory

Name (p) Gets the name of the file

AppendText Creates a StreamWriter that appends text to the file represented by this
instance of the FileInfo

CopyTo Copies an existing file to a new file

Create Creates a file

CreateText Creates a StreamWriter that writes a new text file

Delete Permanently deletes a file

MoveTo Moves a specified file to a new location, providing the option to specify
a new filename

Open Opens a file with various read/write and sharing privileges

OpenRead Creates a read−only FileStream

OpenText Creates a StreamReader with UTF8 encoding that reads from an
existing text file

OpenWrite Creates a write−only FileStream

Refresh Refreshes the state of the object
Apart from the semantic differences, the reduction in security checks, and a few additional members like
Refresh and Length, this class provides the same operations on files as the File class. As I said, if you get
more utility out of a file system object and prefer to stick with a .NET file handling class, then use FileInfo
over the legacy FSO.

Also, the same exception raised for File problems applies to FileInfo problems, especially malformed paths
and file information.

DirectoryInfo

Table 15−18 lists the methods and properties of the DirectoryInfo class. This class can be instantiated and its
members are instance members. Instantiation gets you access to a useful collection of properties that provide
information such as file extensions, parent directory names, root folders, and so on.

Table 15−18: The Instance Members of the DirectoryInfo Object

Member Purpose

Attributes (p) Retrieves or changes the FileAttributes of the current resource

CreationTime (p) Retrieves or changes the creation time of the current resource

Exists (p) Retrieves or changes a value indicating whether the directory exists

Extension (p) Retrieves or changes the string representing the extension part of the file

FullName (p) Retrieves the full path of the directory or file

LastAccessTime (p) Retrieves or changes the time the current file or directory was last
accessed

LastWriteTime (p) Retrieves or changes the time when the current file or directory was last
written to

 DirectoryInfo

531

Name Overridden (p) Retrieves the name of this DirectoryInfo instance

Parent (p) Retrieves the parent directory of a specified subdirectory

Root (p) Retrieves the root portion of a path

Create Creates a directory

CreateSubdirectory Creates a subdirectory or subdirectories on the given path. The path can
be relative to this instance

Delete Deletes the resource directory and its contents from a path

GetDirectories Retrieves the subdirectories of the current directory

GetFiles Retrieves a file list from the current directory

GetFileSystemInfos Retrieves an array of strongly typed FileSystemInfo objects

MoveTo Moves a directory and its contents to a new path

Refresh Refreshes the state of the object
Instantiate a DirectoryInfo object passing in the directory path string (pName) to the method as follows:

Dim dirinfo As New DirectoryInfo("pName")

You can then code against the object, as demonstrated in the following example, which maintains a reference
to a DirectoryInfo object for folder management:

Dim dirifo As New DirectoryInfo("pName")
If dirinfo.Exists = False Then
 'create the directory
 dirinfo.Create()
End If

Creating a file and opening it are also quite simple with the DirectoryInfo class. Here is an example:

Dim folders As New DirectoryInfo("C:\indexworks")
folders.CreateSubdirectory("noisefiles")

Notice in the above example the CreateSubdirectory method only needs the name of the subdirectory. It will
throw an exception if you try to pass it path information.

Using the Classic File System Object

The .NET Framework can wrap the classic File System Object (FSO) that many VB programmers are familiar
with. Bringing the FSO into .NET is a process that happens in less than ten mouse clicks, so the only
difficulty you may have in using it is deciding if you want to or have to. If you know your way around the
FSO model, you can continue to program against it, because the interop layer that wraps this legacy object
provides seamless access to the original objects in its COM DLL (the Microsoft Scripting Runtime). If this
support helps you with migration or porting, then you need to consider it until you are ready to adopt the
FileInfo and DirectoryInfo classes.

If, however, you do not care for the FSO or are not moving code from VB to Visual Basic .NET, then stick
with the "native" classes that don't need the additional overhead of the interop layers (the FSO is still very
fast, even in .NET).

For those of you who do not know about the FSO object model, it encapsulates the following objects:

 Using the Classic File System Object

532

Drive Lets you extract information about drives attached to the local computer or a remote computer
on the network. With it, you can determine how much space is available on the drive, what share
names it has, and so on. The Drive object lets you access other devices as well, such as a CD−ROM
drive, a RAM disk, and a DVD.

•

Drives Exposes Count and Item properties•
Folder Lets you create, delete, or move folders. It also supports the ability to research folder names,
paths, and more

•

File Lets you create, delete, or move files. It also supports the ability to research filenames, paths,
and other information.

•

TextStream Lets you read and write text files

Note The FSO is particularly weak against binary streams.

•

To use the FSO in your application, you need to create a reference to the Scripting type library (Scrrun.dll) in
which it resides. This is a COM object that typically lives in the operating system's folders (such as
C:\Winnt\System32). But you can access and reference it in your project by adding the reference to it from the
References Folder, Add Reference option, or from your project's menus. The low−down on adding interop
references can be found in Chapters 3 and 4.

Click the COM tab in the Add Reference dialog box and scroll down to the item that reads Microsoft
Scripting Runtime. Double−click the item to select it and click OK. Presto, an interop wrapper is spun around
this legacy DLL, and you can start using it (just don't go "interopping" every legacy DLL you've been using in
your VB apps for the past ten years, or your apps will start crawling to a halt in no time).

At the top of your class that you are going to use to code against the FSO add an Imports statement and point
it to the Scripting namespace created in the interop wrapper. You'll see it the second you type Imports. You
can now start using the facilities in this namespace immediately.

The following code demonstrates how to instantiate a new FSO:

Dim fso As New FileSystemObject

Or you can call old faithful, the CreateObject method, and pass the FQNS (the legacy type library and the
object it encapsulates) to the FSO as an argument. This affects the bridge as well. The latter option is
demonstrated as follows:

Dim fso = CreateObject("Scripting.FileSystemObject")

Once you have referenced the Scripting DLL, you can browse the interop.Scripting assembly in the Object
Browser. You will notice that most of the objects, classes, and methods do not offer anything special or
different from the native File and FileInfo classes (we will also be covering .NET's Directory and Path
classes shortly, so sit tight). However, the Drive and Drives classes are worth looking at.

Drive provides you with a neat collection of methods for accessing volume information, available space, drive
letters, share names, and so on. What I like about Drive is its ability to access drive information on both local
computers and remote computers on the network. The properties listed in Table 15−19 provide disk and
volume information.

Table 15−19: The Properties of the Drive Class in the File System Object

 Using the Classic File System Object

533

Property Purpose

TotalSize Retrieves the total size of the drive, in bytes

AvailableSpace, FreeSpace Retrieves the amount of space available on the drive, in bytes

DriveLetter, Letter Retrieves the drive letters assigned to the drive

DriveType Retrieves the type of drive (removable, fixed, network, CD−ROM,
or RAM disk)

SerialNumber Retrieves the drive's serial number

FileSystem Retrieves the type of file system on the drive (FAT, FAT32, or
NTFS)

IsReady Used to determine if the drive is available for use

ShareName, VolumeName Provides the name of the share and/or volume

Path, RootFolder Provides the path or root folder of the drive
A Drives object that comes packaged into the FSO model also exposes a Count property and an Item
property. The following code demonstrates how to instantiate the object via the FSO interface and access its
members.

Dim fso As New FileSystemObject()
DriveInfo.Add(fso.Drives.Count())

FileSystemWatcher

Objects of the FileSystemWatcher class watch the file system and report to you the moment a file or folder
changes. There are so many uses for this class that it would be pointless to try and list them all. I have used it
to trigger events that tell my data processing applications that it's time to go to work on a folder and process
files that have changed.

The FileSystemWatcher class lets you also watch for changes in a specified directory on a network drive, or
a remote computer. But before you get caught up in the "novelty" of this class, remember that the "watcher" is
platform−dependent. FileSystemWatcher only works on Windows XP, .NET Server, Windows 2000, and
Windows NT 4.0. Your remote computers must have one of these platforms installed for the component to
function properly. You cannot watch a remote Windows NT 4.0 computer from a Windows NT 4.0 computer.

FileSystemWatcher does not attempt to watch CDs and DVDs, which don't change. Its members are listed in
Table 15−20.

Table 15−20: The Members of the FileSystemWatcher Class

Member Description

Container (p) Retrieves the IContainer that contains the component

EnableRaisingEvents (p) Retrieves or changes a value indicating whether the component is
enabled

Filter (p) Retrieves or changes the filter string, used to determine what files are
monitored in a directory

IncludeSubdirectories (p) Retrieves or changes a value indicating whether subdirectories within the
specified path should be monitored

InternalBufferSize (p) Retrieves or changes the size of the internal buffer

 FileSystemWatcher

534

NotifyFilter (p) Retrieves or changes the type of changes to watch for

Path (p) Retrieves or changes the path of the directory to watch

Site (p) See Component.Site of the Component class

SynchronizingObject (p) Retrieves or changes the object used to marshal the event handler calls
issued as a result of a directory change

BeginInit Begins the initialization of a FileSystemWatcher used on a form or used
by another component. The initialization occurs at run time.

EndInit Ends the initialization of a FileSystemWatcher used on a form or used
by another component. The initialization occurs at run time.

Equals
(inherited from Object)

Determines whether two Object instances are equal

WaitForChanged A synchronous method that returns a structure that contains specific
information on the change that occurred

Changed (e) Occurs when a file or directory in the specified Path is changed

Created (e) Occurs when a file or directory in the specified Path is created

Deleted (e) Occurs when a file or directory in the specified Path is deleted

Disposed (e)
(inherited from Component)

Adds an event handler to listen to the Disposed event on the component

Error (e) Occurs when the internal buffer overflows

Renamed (e) Occurs when a file or directory in the specified Path is renamed
The following example watches a folder for changes in files that will trigger the need to re−create the files and
folder status report. It creates a FileSystemWatcher to watch the directory specified at run time. The
component is set to watch for changes in LastWrite and LastAccess time, and the creation, deletion, or
renaming of text files in the directory. If a file is changed, created, or deleted, the path to the file prints to the
console. When a file is renamed, the old and new paths print to the console.

Public Sub Watching()
 'declare a watcher
 Dim Watcher As New FileSystemWatcher()
 'specify a path
 Watcher.Path = "c:\indexworks"
 'specify the notify filters
 Watcher.NotifyFilter = (NotifyFilters.LastAccess _
 Or NotifyFilters.LastWrite _
 Or NotifyFilters.FileName _
 Or NotifyFilters.DirectoryName)
 'the file to watch
 Watcher.Filter = "noisefile.txt"
 'Specify event handlers.
 AddHandler watcher.Changed, AddressOf OnChanged
 'Start
 Watcher.EnableRaisingEvents = True
End Sub

'implement the event handler.
Public Shared Sub OnChanged(ByVal source As Object, _
 ByVal eArgs As FileSystemEventArgs)
 'Reload the noisewords file after it has been changed
 Indexworks.Reload(FilePath)
End Sub

The following ingredients in this code should be noted.

 FileSystemWatcher

535

NotifyFilters

Changes to watch for in a file or folder are specified by constants of the NotifyFilters enumeration and set to
the NotifyFilter property. Like the constants of the file mode, access, and attributes enumerations, this
enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values. In other
words, you can combine constants to watch for more than one kind of change. For example, you can watch for
changes in the size of a file or a folder, and for changes in security settings. The combination raises an event
anytime there is a change in size or security settings of a file or folder.

Table 15−21 lists the constants of the NotifyFilters enumeration.

Table 15−21: Members of the NotifyFilters Enumeration

Member Purpose

Attributes Represents the attributes of the file or folder

CreationTime Represents the time the file or folder was created

DirectoryName Represents the name of the directory

FileName Represents the name of the file

LastAccess Represents the date the file or folder was last opened

LastWrite Represents the date the file or folder last had anything written to it

Security Represents the security settings of the file or folder

Size Represents the size of the file or folder
Use these filter constants to specify the constant or constant combinations to watch. To watch for changes in
all files, set the Filter property in the object to an empty string (""). If you are watching for a specific file,
then set the Filter property to the filename as follows:

Watcher.Filter = "noisefile.txt"

To watch for changes in all text files, simply set the Filter property as follows:

Watcher.Filter = "*.txt"

By the way, hidden files are not ignored.

WatcherChangeTypes

Changes to watch for that may occur to a file or folder are specified by constants of the
WatcherChangeTypes enumeration and set to the event hanlder. This enumeration also has a FlagsAttribute
attribute decorating it that allows the CLR to reference bitwise combinations of its member values. Each of
the WatcherChangeTypes constants is associated with an event in FileSystemWatcher. The constant
members of this enumeration are listed in Table 15−22.

Table 15−22: The Constants of the FileSystemWatcher Enumeration

Member Description

All Fires on the creation, deletion, change, or renaming of a file or folder

FileSystemWatcher

536

Changed Fires on the change of a file or folder. The types of changes include: changes to size,
attributes, security settings, last write, and last access time.

Created Fires on the creation of a file or folder

Deleted Fires on the deletion of a file or folder

Renamed Fires on the renaming of a file or folder
You also need to be careful not to create too many events in the FileSystemWatcher object, a problem that
can arise when a file you are watching is moved to another folder you are also watching. You'll get events for
the "departing files" as well as the "arrival files." For example, moving a file from one location to another
generates a delete event, OnDelete, when the file departs. Then you get an OnCreated event when the file
arrives at its new location.

You also need to be cognizant of the changes other applications make on your files. Backup software changes
the attributes of files. Virus software also has a stake in the file system because it opens files, inspects them,
and then closes them. Products like Open File Manager, which lets backup software back up open files, may
also conflict.

Too many changes in a short time may also cause the object's buffer to overflow. This will cause the object to
lose track of changes in the directory. Memory used by the object is also expensive, because it comes from
nonpaged memory that cannot be swapped out to disk. The key is to keep the buffer as small as possible and
avoid a buffer overflow by refining your operations. This means dropping unnecessary or redundant filters
and subdirectories.

Streams

The previous section covered how we can manage files and folders. Now we will cover the support .NET
provides for getting data into files and getting it out again. This is the crux of I/O, and .NET accomplishes it
with streams.

The .NET Framework defines a base class called Stream that supports the reading and writing of bytes. Any
time that you implement stream I/O functionality, you will inherit, or directly instantiate, objects from the
classes inherited from Stream. The derivatives of Stream can be found in Sytem.IO, System.Net,
System.Security, and System.XML.

Stream is an abstract class and has been extended in a variety of specialized child classes. You can derive
from Stream and build your own classes to support streaming. But you would be hard−pressed to come up
with something that isn't already supported in the base class library (other than soda streams), or that isn't
already earmarked for the next release of the .NET Framework.

The Stream class and its children provide a facility for handling data, blocks of bytes, without having to care
about what happens down in the basement of the operating system. There is no need for you to burden
yourself with the myriad details of how data flows down to metal and across the wire. The various layers
beyond your method calls are dealt with by the CLR and the file system. So perfectly aligned are these classes
with the platform that writing and reading to streams makes you feel guilty for what programmers in the
"Wild West" days of C and Assembly had to go through.

The following classes derive from Stream:

BufferedStream Reads and writes to other Stream objects. This class can be derived from and
instantiated.

•

 Streams

537

FileStream Bridges a Stream object to a file for synchronous and asynchronous read and write
operations. This class can be derived from and instantiated.

•

MemoryStream Creates a Stream in memory that can read a block of bytes from a current stream
and write the data to a buffer. This class can be derived from and instantiated.

•

CrytoStream Defines a Stream that bridges data objects to cryptographic services. This class can be
derived from and instantiated.

•

NetworkStream Defines a Stream that bridges data objects to network services. This class can be
derived from and instantiated.

•

The preceding classes provide data streaming operations. This data may be persisted by bridging certain
objects to various backing stores. However, the Stream objects do not necessarily need to be saved. Your
objects might stream volatile information, resident only in memory. For algorithms not requiring backing
stores and other output or input devices, you can simply use MemoryStream objects.

MemoryStream objects support access to a nonbuffered stream that encapsulates data directly accessible in
memory. The object has no backing store and can thus be used as a temporary buffer. On the other hand, when
you need to write data to the network, you'll use classes like NetworkStream. Your standard text or binary
streams can also be managed using the FileStream class. Stream objects enable you to obtain random access
to files through the use of a Seek method, discussed shortly.

Another Stream derivative you will find yourself using on many occasions is the CryptoStream class. We'll
go over it briefly later in this chapter. This class is also not included in the System.IO namespace but has been
added to the System.Security.Cryptography namespace.

BufferedStream objects provide a buffering bridge for other Stream objects, such as the NetworkStream
object. The BufferedStream object stores the stream data in memory in a special byte cache, which cuts
down on the number of calls the object needs to be made to the OS.

FileStream

FileStream objects can be used to implement all of the standard input, output, and error stream functionality.
With these objects, you can read and write to file objects on the file system. With it you can also bridge to
various file−related operating system handles, such as pipes, standard input, and standard output. The input
and output of data is buffered to facilitate performance.

The File class, discussed earlier in this chapter, is typically used to create and bridge FileStream objects to
files based on file paths and the standard input, standard output, and standard error devices. MemoryStream
similarly bridges to a byte array.

The principal method in a FileStream object is Seek. It supports random access to files and allows the
read/write position to be moved to any position within a file. The location is obtained using byte offset
reference point parameters. The following code demonstrates the creation and opening of a file and the
subsequent bridge to the FileStream object used to write to the file:

Dim aFile As New FileStream(source, IO.FileMode.Create)

In the preceding code, a file is opened, or created if it does not already exist, and information is appended to
the end of the file. The contents of the file are then written to standard output for display.

Byte offsets are relative to a seek reference point. A seek reference point can be the beginning of the file, a
position in the file, or the end of the file. The three SeekOrigin constructs are the properties of the

 FileStream

538

SeekOrigin class.

Disk files always support random access. At the time of construction, the CanSeek property is set to true or
false depending on the underlying file type. Specifically, if the underlying file type is FILE_TYPE_DISK, as
defined in winbase.h, the CanSeek property is true. Otherwise, the CanSeek property is false.

Table 15−23 lists the members of the FileStream class.

Table 15−23: The Members of FileStream

Member Purpose

CanRead (p) Retrieves a value indicating whether the current stream supports reading

CanSeek (p) Retrieves a value indicating whether the current stream supports seeking

CanWrite (p) Retrieves a value indicating whether the current stream supports writing

Handle (p) Retrieves the operating system file handle for the file that the current FileStream
object encapsulates

IsAsync (p) Retrieves a value indicating whether the FileStream was opened asynchronously
or synchronously

Length (p) Retrieves the length, in bytes, of the stream

Name (p) Retrieves the name of the FileStream that was passed to the constructor

Position (p) Retrieves or changes the current position of this stream

BeginRead Begins an asynchronous read

BeginWrite Begins an asynchronous write

Close Closes the file and releases any resources associated with the current file stream

EndRead Waits for the pending asynchronous read to complete

EndWrite Ends an asynchronous write, blocking until the I/O operation has completed

Flush Clears all buffers for this stream and causes any buffered data to be written to the
underlying device

Lock Prevents access by other processes to all or part of a file

Read Reads a block of bytes from the stream and writes the data in a given buffer

ReadByte Reads a byte from the file and advances the read position one byte

Seek Changes the current position of this stream to the given value

SetLength Changes the length of this stream to the given value

ToString Returns a String that represents the current Object

Unlock Allows access by other processes to all or part of a file that was previously locked

Write Overridden. Writes a block of bytes to this stream using data from a buffer.

WriteByte Overridden. Writes a byte to the current position in the file stream
BeginRead, BeginWrite

When you get ready to open a file object using FileStream, you need to specify either synchronous or
asynchronous mode. The read and write methods support both modes but, depending on your data and the
algorithm, the modes provide significant performance consequences for the synchronous methods (Read and
Write) and the asynchronous methods (BeginRead and BeginWrite).

FileStream

539

Both sets of methods will work in either mode; however, the mode will affect the performance of these
methods. FileStream defaults to opening files synchronously, but the constructor is overloaded and provides a
version of New to open files asynchronously.

While either can be used, the underlying file system determines which resources might allow access in only
one of these modes. While FileStream opens the operating system handle synchronously, this impacts
asynchronous method calls, which are made independently of the file systems. To use asynchronous methods,
construct the object with a constructor that allows you to specify an isAsync argument.

The signature of this BeginRead method is as follows:

Overrides Public Function BeginRead(ByVal array() As Byte, _
 ByVal offset As Integer, _
 ByVal numBytes As Integer, _
 ByVal userCallback As AsyncCallback, _
 ByVal stateObject As Object _
) As IAsyncResult

The following list describes its parameters:

array A buffer to read data into•
offset The byte offset in the array at which to begin reading•
numBytes The maximum number of bytes to read•
userCallback The method to be called when the asynchronous read operation is completed•
stateObject A user−provided object that distinguishes this particular asynchronous read request from
other requests

•

Before you call BeginRead, issue a condition check on the CanRead property. This will let you determine
whether your object has the all−clear to move into high gear. BeginRead will also choke on invalid
arguments and throws out exceptions immediately. Wrapping up the method calls in exception handling code
is thus critical. Exceptions are also raised during asynchronous read requests. For example, a read may fail if
the file reference dies through disk failure, corruption, or some other file catastrophe.

By default, streams smaller than 64KB complete synchronously for better performance. The additional effort
required for asynchronous I/O on such small streams negates the advantages of asynchronous I/O. Also, you
need to call EndRead with IAsyncResult to find out how many bytes were read.

Table 15−24 lists the possible exceptions that can result from good read requests that go bad.

Table 15−24: Exceptions That Can Be Generated on a BeginRead Operation

Exception Condition

ArgumentException The array variable's length minus offset is less than numBytes

ArgumentNullException The array variable references Nothing

ArgumentOutOfRangeException The offset or numBytes is negative

IOException An asynchronous read was attempted past the end of the file

FileStream

540

Seek

The Seek method changes the current position in the stream to the value passed as the argument. Its signature
is as follows:

Overrides Public Function Seek(_
 ByVal offset As Long, _
 ByVal origin As SeekOrigin _
) As Long

The following list describes its parameters:

offset A point relative to the origin from which to begin seeking.•
origin A value that specifies the beginning, the end, or the current position as a reference point for
origin, using a value of type SeekOrigin.

•

Return Value You get back the new position in the stream.•

Seek can cause the exceptions listed in Table 15−25.

You can use the CanSeek property to determine whether the current instance supports seeking. Also note that
seeking to any location beyond the length of the stream is supported. Set the position to one byte beyond the
end of the stream, as recommended by the SDK documentation to open a new file and write to it. This lets you
append to the file. Just remember that the position cannot be set to more than one byte beyond the end of the
stream.

Table 15−25: Exceptions That Can Be Generated on a Seek Operation

Exception Type Condition

IOException An I/O error occurred

NotSupportedException The stream does not support seeking. This can happen if the
FileStream is constructed from a pipe or console output.

ArgumentException Attempted seeking before the beginning of the stream or more than
one byte past the end of the stream

ObjectDisposedException Methods were called after the stream was closed
One of the classes you will find especially interesting is IsolatedStorageFileStream. This class supports the
streaming of data to isolated storage units, which are a form of private file systems that can contain files and
that can only be accessed by an owner, an application, or user.

Writing to a file stream object can be performed like the following examples which add words to the top of
the noisewords files. Existing words are pushed down:

Public Sub AddWords(ByVal fileandpath As String, ByVal neword As String)
 Dim aFile As New FileStream(source, IO.FileMode.OpenOrCreate, _
 FileAccess.Write)
 Dim wordadder As StreamWriter = New StreamWriter(aFile)
 'Gets new words to add to the file.
 wordadder.WriteLine("neword)
 wordadder.Close()
End Sub

FileStream

541

After the words are added, the file stream is closed and the information is automatically saved. The following
example appends to a file. Instead of the words inserted at the top of the file, they are appended at the end of
the text in the file:

Public Sub AddWords(ByVal source As String, ByVal neword As String)
 Dim aFile As New FileStream(source, IO.FileMode.OpenOrCreate, _
 FileAccess.Write)
 Dim wordadder As StreamWriter = New StreamWriter(aFile)
 'Gets new words to append to the end of the file.
 wordadder.BaseStream.Seek(0, SeekOrigin.End)
 wordadder.WriteLine("neword)
 wordadder.Close()
End Sub

In the preceding examples, there is a slight difference at the Seek calls. The change is the BaseStream.Seek
method of the StreamWriter object that we created. I did a SeekOrigin.End on the StreamWriter object,
and since the mode that we opened the file in was FileMode.OpenOrCreate, it opened the existing file that
we created earlier. This means that the subsequent executions of the second example will append the data to
the file. You can easily change the position by changing the SeekOrigin enumeration. This is demonstrated as
follows:

Public Sub AddWords(ByVal source As String, ByVal neword As String)
 Dim aFile As New FileStream(source, IO.FileMode.OpenOrCreate, _
 FileAccess.Write)
 Dim wordadder As StreamWriter = New StreamWriter(aFile)
 'Gets new words to append to the end of the file.
 wordadder.BaseStream.Seek(0, SeekOrigin.Begin)
 wordadder.WriteLine("neword")
 wordadder.Close()
End Sub

If I were to rerun the earlier example, the file would get overwritten, because I am not moving the pointer to
the end of the file; I am just writing as soon as I open the file.

SeekOrigin Enumeration

The SeekOrigin construct is used by the Seek methods of the Stream and "writer" classes described in this
chapter. Seek methods take an offset parameter that is relative to the position specified by SeekOrigin. Table
15−26 lists the SeekOrigin constants.

Table 15−26: Constants of the SeekOrigin Enumeration

Member Purpose

Begin Specifies the beginning of a stream

Current Specifies the current position within a stream

End Specifies the end of a stream
This following example shows a use of SeekOrigin with BaseStream and Seek to set the file pointer of the
underlying stream to the beginning:

Dim aFile As New FileStream(source, FileMode.OpenOrCreate,_
FileAccess.Read)
Dim wordReader As New StreamReader(aFile)

 SeekOrigin Enumeration

542

'Position the file StreamReader file pointer at the beginning.
wordReader.BaseStream.Seek(0, SeekOrigin.Begin)

The following example demonstrates the Current constant of the SeekOrigin enumeration. First it creates a
FileStream object with the file access option set to write. Then it creates a StreamWriter object to write the
data into the file (with full path) passed to the method's source parameter. The word to write to the file is
passed to the noiseword parameter.

Public Sub AddNoises(ByVal source As String, _
 ByVal noiseword As String)
 Dim fStream As New FileStream(source, FileMode.OpenOrCreate, _
 FileAccess.Write)
 ' Create a 'StreamWriter' to write the data into the file.
 Dim sWriter As New StreamWriter(fStream)
 sWriter.WriteLine(noiseword)
 ' Update the 'StreamWriter'.
 sWriter.Flush()
 ' Close the 'StreamWriter' and FileStream.
 sWriter.Close()
 fStream.Close()
End Sub

The following method now reads the contents of the file into an array as follows:

Public Sub ReadNoises(ByVal source As String)
 Dim fStream As New FileStream(source, FileMode.OpenOrCreate, _
 FileAccess.Read)
 'Place the cursor at the beginnig of the file.
 fStream.Seek(0, SeekOrigin.Begin)
 'Get a byte array
 Dim byteArray(20) As Byte
 'Read the first twenty characters into the byte array.
 fStream.Read(byteArray, 0, 20)
 Dim Encoder As New ASCIIEncoding()
 Console.WriteLine("The Contents of the array are {0}: ", _
 Encoder.GetString(byteArray))
 Console.WriteLine(Encoder.GetString(byteArray))
 'Increment the file pointer from CurrentPosition by one character.
 fStream.Seek(1, SeekOrigin.Current)
 'Read the next five characters.
 fStream.Read(byteArray, 0, 20)
 Console.WriteLine("The rest of the array are {0}: ", _
 Encoder.GetString(byteArray))
 'Close the FileStream.
 fStream.Close()
End Sub

BufferedStream

A buffered stream's purpose in life is to read and write to another stream. BufferedStream is essentially a
block of bytes in memory used to cache data, thereby reducing the number of calls to the operating system.
You will use your buffers to improve read and write performance, but you cannot use a buffer to read and
write at the same time. Objects of the BufferedStream work like the FileStream object, but the Read and
Write methods of BufferedStream are used to automatically maintain the buffer. I liken it to overdraft
protection for a stream.

 BufferedStream

543

If you always read and write for sizes greater than the internal buffer size, then BufferedStream might not
even allocate the internal buffer. BufferedStream also buffers reads and writes in a shared buffer. Usually,
you do a series of reads or writes, but rarely alternate between reading and writing.

The following method example demonstrates the creation of a BufferedStream object bridged to the earlier
declared standard FileStream object:

Public Sub AddNoises(ByVal source As String, _
ByVal noiseword As String)
 Dim fStream As New FileStream(source, FileMode.OpenOrCreate, _
 FileAccess.Write)
 Dim bStream As New BufferedStream(fStream)
 'Create a 'StreamWriter' to write the data into the file.
 Dim sWriter As New StreamWriter(bStream)
 sWriter.WriteLine(noiseword)
 ' Update the 'StreamWriter'.
 sWriter.Flush()
 ' Close the 'StreamWriter' and FileStream.
 sWriter.Close()
 fStream.Close()
End Sub

NetworkStream

A NetworkStream object provides the underlying stream of data for network access. NetworkStream
implements the standard .NET Framework stream mechanism to send and receive data through network
sockets. It also supports both synchronous and asynchronous access to the network data stream.

CryptoStream

The CLR also uses a streams model for reading and writing encrypted data. This service is provided by the
CryptoStream object. Any cryptographic objects that implement CryptoStream can be chained together
with any objects that implement Stream, so the streamed output from one object can be bridged into the input
of another object. The intermediate result (the output from the first object) does not need to be stored
separately.

MemoryStream

MemoryStream is no different from the previously mentioned streams except that volatile memory is used as
the so−called backing store rather than a disk or network sockets. This class encapsulates data stored as an
unsigned byte array that gets initialized upon the instantiation of the MemoryStream object. However, the
array can also be created empty. The encapsulated data in the object is thus directly accessible in memory.
Memory streams can reduce the need for temporary buffers and files in an application, which can improve
performance by an order of magnitude.

GetBuffer

To create a MemoryStream object with a publicly visible buffer, simply call the default constructor. A
stream can be declared resizable, which resizes the array, but in that respect, multiple calls to GetBuffer
might not return the same array. You can also use the Capacity property, which retrieves or changes the
number of bytes allocated to the stream. This ensures consistent results. GetBuffer also works when the
MemoryStream is closed.

 NetworkStream

544

ToArray

The ToArray method is useful for translocating the contents of the MemoryStream to a formal Byte array. If
the current object was instantiated on a Byte array, then a copy of the section of the array to which this
instance has access is returned. MemoryStream also supports a WriteTo method that lets you write the entire
contents of the memory stream to another streamone that has a persistent backing store, for example.

Readers and Writers

So far we have looked at classes that let you work with Strings that also provide a facility for you to retrieve
or supply the String. We have also gone from manipulating String data to constructing Strings and using
them in various display fields. While capturing the values provided by the various ToString methods is
possible, the classes and utilities discussed earlier don't provide much in the way of features that get data on
the road. StringReader and StringWriter provide the basic facilities for character I/O.

The .NET Framework's data streaming (I/O) support inherits from the abstract TextReader and TextWriter
classes that live in the System.IO namespace. These classes form the basis of support for internationally
viable and highly distributed software because they support Unicode character streams.

Text Encoding

Before we look at the reader and writer classes, understand that methods are provided to convert Arrays and
Strings of Unicode characters to and from Arrays of Bytes encoded for a target code page. A number of
encoding implementations are thus provided in the System.Text namespace. The following list presents these
encoding classes:

ASCIIEncoding class Encodes Unicode characters as single 7−bit ASCII characters. It only supports
character values between U+0000 and U+007F.

•

UnicodeEncoding Encodes each Unicode character as two consecutive Bytes. Both little−endian
(code page 1200) and big−endian (code page 1201) Byte orders are supported.

•

UTF7Encoding Encodes Unicode characters using the UTF−7 encoding (UTF−7 stands for UCS
Transformation Format, 7−bit form). This encoding supports all Unicode character values, and can
also be accessed as code page 65000.

•

UTF8Encoding Encodes Unicode characters using the UTF−8 encoding (UTF−8 stands for UCS
Transformation Format, 8−bit form). This encoding supports all Unicode character values, and can
also be accessed as code page 65001.

•

Other encoding can be accessed using the GetEncoding method that passes a code page or name argument.

When the data to be converted is only available in sequential blocks (such as data read from a stream), an
application can use a decoder or an encoder to perform the conversion. This is also useful when the amount of
data is so large that it needs to be divided into smaller blocks. Decoders and encoders are obtained using the
GetDecoder and GetEncoder methods. An application can use the properties of this class, such as ASCII,
Default, Unicode, UTF7, and UTF8, to obtain encodings. Applications can initialize new instances of
encoding objects through the ASCIIEncoding, UnicodeEncoding, UTF7Encoding, and UTF8Encoding
classes.

Through an encoding, the GetBytes method is used to convert arrays of Unicode characters to Arrays of
Bytes, and the GetChars method is used to convert Arrays of Bytes to Arrays of Unicode characters. The

MemoryStream

545

GetBytes and GetChars methods maintain no state between conversions.

The core GetBytes and GetChars methods require you to provide the destination buffer and ensure that the
buffer is large enough to hold the entire result of the conversion. An application can use one of the following
methods to calculate the required size of the destination buffer.

The GetByteCount and GetCharCount methods can be used to compute the exact size of the result of a
particular conversion, and an appropriately sized buffer for that conversion can then be allocated.

The GetMaxByteCount and GetMaxCharCount methods can be used to compute the maximum possible
size of a conversion of a given number of bytes or characters, and a buffer of that size can then be reused for
multiple conversions.

The GetMaxByteCount method generally uses less memory, whereas the second method
GetMaxCharCount generally executes faster. See the .NET Framework SDK documentation for the various
encoding and decoding methods.

StringReader/StringWriter

Besides the standard methods of the StringBuilder class, which make it useful on its own, the framework
bridges StringBuilder to both the StringWriter and StringReader classes. This cooperation between the
"builder" classes and the "transport" classes lets you stream characters into and out of StringBuilder objects
as a type of staging area where Strings get to go to be manipulated. You can think of these classes as the
instruments you can use to write and read characters to the StringBuilder object.

Despite being the StringBuilder's apprentices, these classes are located in the System.IO namespace (while
StringBuilder lives in System.Text), which has a lot to do with the fact that StringWriter derives from
TextWriter (discussed in this section). Table 15−27 presents the important members of the StringReader
class.

The syntax for creating a StringReader class is as follows:

Dim s as new StringReader("C:\MyFile.txt")

Table 15−28 lists the members of the StringWriter class.

Note If these methods look familiar, they should. The Console class uses synchronized (thread−safe)
instances of TextWriter and TextReader to write to and read from the console. Later, we take a look at
the support for streaming and how all these classes connect.

Table 15−27: The Members of the StringReader Class

Member Purpose

Close Closes the StringReader

Peek Returns the next available character but does not consume it

Read Reads the next character or next set of characters from the input string

ReadBlock Reads a maximum of counted characters from the current stream and writes the
data to the buffer, beginning at a specified location

 StringReader/StringWriter

546

ReadLine Reads a line from the underlying string

ReadToEnd Reads to the end of the text stream
Table 15−28: The Members of the StringWriter Class

Member Purpose

Encoding (p) Retrieves the encoding in which the output is written

FormatProvider (p) Retrieves an object that controls formatting

NewLine (p) Retrieves or changes the line terminator string used by the current
TextWriter

Close Closes the current StringWriter and the underlying stream

CreateObjRef Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object

Flush Clears all buffers for the current writer and causes any buffered data to be
written to the underlying device

GetLifetimeService Retrieves the current lifetime service object that controls the lifetime policy
for this instance

GetStringBuilder Returns the underlying StringBuilder object

Write Writes to this instance of the StringWriter

WriteLine Writes some data as specified by the overloaded parameters, followed by a
line terminator

Write

User the Write method to write data to an object that can receive a text input stream, such as StringBuilder.
The following code illustrates writing to a StringBuilder object:

Public Sub AddWords(ByVal source As String, ByVal newword As String)
 Dim sBuilder As New StringBuilder()
 Dim strWriter As New StringWriter(sBuilder)
 strWriter.Write(newword)
 'check if write worked
 Console.WriteLine(sBuilder)
End Sub

Write does not force a new line, and new text is either appended to the existing text or, depending on the
object, overwrites it.

WriteLine

The WriteLine method works exactly like Write, but adds a line terminator to the end of the String, which
forces a new line. This is demonstrated as follows:

Console.WriteLine(sBuilder)

GetStringBuilder

The GetStringBuilder method will return an instance of StringBuilder that you can write to. Append and
insert your characters to the object as demonstrated in the earlier "Building Strings with StringBuilder"
section and then simply write the object to a line.

Public Sub AddChars()

StringReader/StringWriter

547

 'Create a StringBuilder with 20 characters capacity and capped at 20
 Dim sBuilder As New StringBuilder(20, 20)
 'Create a character array to hold characters that will be
 'fed into the StringBuilder.
 Dim charArray As Char() = {"I"c, " "c, "l"c, "o"c, "v"c, "e"c, _
 " "c, "V"c, "B"c, " "c, "."c, "N"c, "E"c, "T"c, "."c}
 'Create a StringWriter...
 Dim strWriter As New StringWriter()
 'and bridge it to the StringBuilder object
 sBuilder = strWriter.GetStringBuilder()
 'Write a bunch of characters from the array to the StringBuilder.
 strWriter.Write(charArray, 0, 15)
 Console.WriteLine(sBuilder)
End Sub

The code writes "I Love VB .NET" to the console. The technique shown here is useful for building Strings
that you can then simply write to a text output stream. The receiver picks up the object and simply writes to
the console or similar device.

Flush

Flush can also be used to write to the output device. But the method clears the writer's buffer in the process.
The following example demonstrates flushing to a StringBuilder object:

sBuilder = strWriter.GetStringBuilder()
'Write a bunch of characters from the array to the StringBuilder.
strWriter.Write(charArray, 0, 15)
strWriter.Flush(charArray, 0, 15)
Console.WriteLine(sBuilder)

Close

The Close method simply shuts down the writer and its underlying stream as follows:

strWriter.Close()

StreamReader/StreamWriter

While derivatives of the Stream class are intended for Byte I/O, the StreamReader and StreamWriter
classes are intended for writing to and reading from a standard text file. The StreamReader and
StreamWriter classes default to UTF−8 encoding unless specified otherwise, instead of defaulting to the
ANSI code page for the current system. UTF−8 handles Unicode characters correctly and provides consistent
results on localized versions of the operating system. See the earlier "Text Encoding" discussion.

Table 15−29 lists the members of the StreamReader class; Table 15−30 lists the members of the
StreamWriter class.

The Read and Write methods read and write the number of characters specified by their Count parameter.
These are to be distinguished from BufferedStream.Read and BufferedStream.Write, which read and write
the number of bytes specified by a count parameter. Use the BufferedStream methods only for reading and
writing an integral number of byte array elements. For example:

Dim sReader As New StreamReader(FilePath)

StringReader/StringWriter

548

The optional arguments are as follows:

encoding Specified character encoding to use•
BufferSize Suggested minimum buffer size•
DetectEncodingFromByteOrderMarks Encoding type indicator•

Table 15−29: The Members of the StreamReader Class

Member Purpose

Null (p) A StreamReader around an empty stream

BaseStream (p) Returns the underlying stream

CurrentEncoding (p) Retrieves the current character encoding that the current StreamReader
is using

Close Closes the StreamReader and releases any system resources associated
with the reader

CreateObjRef Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object

DiscardBufferedData Allows a StreamReader to discard its current data

Peek Returns the next available character but does not consume it

Read Reads the next character or next set of characters from the input stream

ReadBlock Reads a maximum of counted characters from the current stream and
writes the data to a buffer, beginning at a specified index

ReadLine Reads a line of characters from the current stream and returns the data
as a string

ReadToEnd Reads the stream from the current position to the end of the stream
When you read data from the StreamReader for the first time, you can change the encoding by changing the
encoding flag.

The DetectEndcodingFromByteOrderMarks detects the encoding from the first three bytes of the stream.
The big−endian, little−endian, and UTF−8 Unicode text is automatically recognized. If the encoding cannot
be determined, the user−defined encoding is implemented.

Table 15−30: The Pertinent Members of StreamWriter

Member Purpose

Null (Nothing) (p) Provides a StreamWriter with a backing store that can be written to, but
not read from

AutoFlush (p) Retrieves or changes a value indicating whether the StreamWriter will
flush its buffer to the underlying stream after every call to Console.Write
or Console.WriteLine

BaseStream (p) Retrieves the underlying stream that interfaces with a backing store

Encoding (p) Retrieves the encoding in which the output is written

FormatProvider (p) Retrieves an object that controls formatting

NewLine (p) Retrieves or changes the line terminator string used by the current
TextWriter

StringReader/StringWriter

549

Close Closes the current StreamWriter and the underlying stream

Flush Clears all buffers for the current writer and causes any buffered data to be
written to the underlying stream

Write Writes to the stream

WriteLine Writes some data as specified by the overloaded parameters, followed by a
line terminator

StreamWriter defaults to using an instance of the UTF8Encoding object unless specified otherwise. This
instance of UTF8Encoding is constructed such that the Encoding.GetPreamble method returns the Unicode
byte order mark written in UTF−8. The preamble of the encoding is added to a stream when you are not
appending to an existing stream. This means any text file you create with StreamWriter will have three byte
order marks at its beginning. UTF−8 handles all Unicode characters correctly and gives consistent results on
localized versions of the operating system. If we now create a StreamReader class, we can figure out what
we wrote to the StreamWriter with the following code:

Dim sReader As StreamReader = New StreamReader(fStream)
sReader.BaseStream.Seek(0, SeekOrigin.Begin)
For intX = 0 to 25
 Console.Write cstr(rReader.Read)
Next intX

BinaryReader/BinaryWriter

The BinaryReader and BinaryWriter classes read and write primitive data types as binary values in a
specific encoding. The primary methods in these classes are Read and Write, which come in a different
flavor for every data type supported in the framework.

XML I/O

The .NET XML namespaces remind me of the Amazon jungle. So vast, so thick, and so chock−full of
functionality that you need a dedicated platoon of experts to decipher themin a book dedicated to the subject
of .NET XML support. Still, two classes in the XML realm belong in our inner circle of I/O support because
they represent the fundamental ability to read and write: XMLTextReader and the XMLTextWriter.

Reading XML Files

The XmlTextReader object provides forward−only, read−only access to a stream of XML data. You can gain
programmatic access to the current node in the text by being able to reference the node on which the reader is
positioned. The reader advances through the data by being able to use any of the read methods and properties
to reflect the value of the current node.

The XmlTextReader class implements the abstract XmlReader, which has been designed to conform to
W3C Extensible Markup Language (XML) 1.0 and the Namespaces in XML recommendations.
XmlTextReader provides us with the functionality listed in Table 15−31.

The XmlTextReader class provides the parsing and tokenizing functionality we need to read XML files. The
XML Document Object Model (DOM) provides great flexibility for loading XML files as documents, but
there is still the need to read XML as a file−based stream and perform basic element manipulation. Since
loading XML via the services of the DOM does require some overhead, loading XML files through the
XmlTextReader is normally faster and more efficient.

 BinaryReader/BinaryWriter

550

To read an XML file, declare an instance of the XmlTextReader in the same way you declare a standard text
reader, and then call the Read method until you reach the end of the XML file. Here is a simple
implementation of this example, where the "xmlfilepath" parameter expects the path to a valid XML file:

Public Sub RdzXML(ByVal xmlfilepath As String)
 Dim xmlRdr As XmlTextReader = New XmlTextReader(xmlfilepath)
 Do While xmlRdr.Read()
 'Do something x−rated
 Loop
End Sub

Table 15−31: The Members of the XMLTextReader Class

Member Purpose

AttributeCount (p) Retrieves the number of attributes on the current node

BaseURI (p) Retrieves the base URI of the current node

CanResolveEntity (p) Retrieves a value indicating whether this reader can parse and resolve
entities

Depth (p) Retrieves the depth of the current node in the XML document

Encoding (p) Retrieves the encoding of the document

EOF (p) Retrieves a value indicating whether the reader is positioned at the end of
the stream

HasAttributes (p) Retrieves a value indicating whether the current node has any attributes

HasValue (p) Retrieves a value indicating whether the current node can have a Value

IsDefault (p) Retrieves a value indicating whether the current node is an attribute that
was generated from the default value defined in the DTD or schema

IsEmptyElement (p) Retrieves a value indicating whether the current node is an empty element
(for example, <MyElement/>)

Item (p) Retrieves the value of the attribute

LineNumber (p) Retrieves the current line number

LinePosition (p) Retrieves the current line position

LocalName (p) Retrieves the local name of the current node

Name (p) Retrieves the qualified name of the current node

Namespaces (p) Retrieves or changes a value indicating whether to do namespace support

NamespaceURI (p) Retrieves the namespace URI (as defined in the W3C Namespace
specification) of the node on which the reader is positioned

NameTable (p) Retrieves the XmlNameTable associated with this implementation

NodeType (p) Retrieves the type of the current node

Normalization (p) Retrieves or changes a value indicating whether to normalize white space
and attribute values

Prefix (p) Retrieves the namespace prefix associated with the current node

QuoteChar (p) Retrieves the quotation mark character used to enclose the value of an
attribute node

ReadState (p) Retrieves the state of the reader

Value (p) Retrieves the text value of the current node

 BinaryReader/BinaryWriter

551

WhitespaceHandling (p) Retrieves or changes a value that specifies how white space is handled

XmlLang (p) Retrieves the current xml:lang scope

XmlResolver (p) Changes the XmlResolver used for resolving DTD references

XmlSpace (p) Retrieves the current xml:space scope

Close Changes the ReadState to Closed

Equals (inherited from Object) Determines whether two Object instances are equal

GetAttribute Retrieves the value of an attribute

GetRemainder Retrieves the remainder of the buffered XML

IsStartElement Tests if the current content node is a start tag

LookupNamespace Resolves a namespace prefix in the current element's scope

MoveToAttribute Moves to the specified attribute

MoveToContent Checks whether the current node is a content (nonwhite space text,
CDATA, Element, EndElement, EntityReference, or EndEntity) node. If
the node is not a content node, the reader skips ahead to the next content
node or end of file. It skips over nodes of the following types:
ProcessingInstruction, DocumentType, Comment, Whitespace, or
SignificantWhitespace.

MoveToElement Moves to the element that contains the current attribute node

MoveToFirstAttribute Moves to the first attribute

MoveToNextAttribute Moves to the next attribute

Read Overridden Reads the next node from the stream

ReadAttributeValue Parses the attribute value into one or more Text, EntityReference, or
EndEntity nodes

ReadBase64 Decodes Base64 and returns the decoded binary bytes

ReadBinHex Decodes BinHex and returns the decoded binary bytes

ReadChars Reads the text contents of an element into a character buffer. This method
is designed to read large streams of embedded text by calling it
successively.

ReadElementString This is a helper method for reading simple text−only elements

ReadEndElement Checks that the current content node is an end tag and advances the reader
to the next node

ReadInnerXml Reads all the content, including markup, as a string

ReadOuterXml Reads the content, including markup, representing this node and all its
children

ReadStartElement Checks that the current node is an element and advances the reader to the
next node

ReadString Reads the contents of an element or a text node as a string

ResetState Resets the state of the reader to ReadState.Initial

ResolveEntity Resolves the entity reference for EntityReference nodes

Skip Skips the children of the current node
Note The XmlTextReader class is located in System.Xml.
When we read the file, the XmlTextReader class that we create maintains a nodetype property used to return
the type of node currently being read. The Name property retrieves element and attribute names, and the
Value property retrieves the text value that the node contains. Consider the following example of reading the

 BinaryReader/BinaryWriter

552

XML file, and returning the Name and Value property:

Public Sub RdzXML(ByVal xmlfilepath As String)
 Dim xmlRdr As XmlTextReader = New XmlTextReader(xmlfilepath)
 Do While xmlRdr.Read()
 Console.WriteLine(xmlRdr.Name & xmlRdr.Value)
 Loop
End Sub

Table 15−32 describes the node types and their equivalent in the W3C DOM. The types are further explained
in the list that follows the table.

Table 15−32: XML Node Types

Node Type XML Value

None 0

Element <name> 1

Attribute Id='123' 2

Text '123' 3

CDATA <![CDATA[]]> 4

EntityReference &foo; 5

Entity <!ENTITY> 6

ProcessingInstruction <?pi test?> 7

Comment <!comment> 8

Document 9

DocumentType <!DOCTYPE> 10

DocumentFragment 11

Notation <!NOTATION> 12

Whitespace Whitespace 13

SignificantWhiteSpace Whitespace between markup in a mixed
content model

14

EndTag </foo> 15

EndEntity Returned when the reader is at the end of
the entity replacement as a result of a call
to ExpendEntry

16

CharacterEntity Returned when the reader has been told to
report character entities

17

Attribute nodes can have the following child node types: Text and EntityReference. The Attribute
node does not appear as the child node of any other node type. It is not considered a child node of an
Element.

•

CDATA sections are used to escape blocks of text that would otherwise be recognized as markup. A
CDATA node cannot have any child nodes. It can appear as the child of the DocumentFragment,
EntityReference, and Element nodes.

•

Comment nodes cannot have any child nodes. They can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.

•

 BinaryReader/BinaryWriter

553

Document nodes can have the following child node types: XmlDeclaration, Element (maximum of
one), ProcessingInstruction, Comment, and DocumentType. Document nodes cannot appear as the
child of any node types.

•

DocumentFragment nodes associate a node or subtree with a document without actually being
contained within the document. A DocumentFragment node can have the following child node
types: Element, ProcessingInstruction, Comment, Text, CDATA, and EntityReference.
DocumentFragment nodes cannot appear as the child of any node types.

•

DocumentType nodes can have the following child node types: Notation and Entity. They can
appear as the child of the Document node.

•

Element nodes can have the following child node types: Element, Text, Comment,
ProcessingInstruction, CDATA, and EntityReference. The Element can be the child of the
Document, DocumentFragment, EntityReference, and Element nodes.

•

Entity nodes can have child nodes that represent the expanded entity (for example, Text and
EntityReference nodes). The Entity can appear as the child of the DocumentType node.

•

EntityReference nodes can have the following child node types: Element, ProcessingInstruction,
Comment, Text, CDATA, and EntityReference. An EntityReference node can appear as the child
of the Attribute, DocumentFragment, Element, and EntityReference nodes.

•

Notation nodes cannot have any child nodes. A Notation node can appear as the child of the
DocumentType node.

•

ProcessingInstruction nodes cannot have any child nodes. Such a node can appear as the child of the
Document, DocumentFragment, Element, and EntityReference nodes.

•

Text nodes cannot have any child nodes. The Text node can appear as the child node of the
Attribute, DocumentFragment, Element, and EntityReference nodes.

•

XmlDeclaration nodes must be the first node in the document. This node cannot have children. It is a
child of the Document node. It can have attributes that provide version and encoding information.

•

Using the XmlTextReader is no different to using the earlier reader and writer classes discussed, so we don't
need any elaborate examples here to show how it works. The same goes for the XmlTextWriter class coming
up.

Writing XML Files with XMLTextWriter

The XMLTextWriter represents a writer that provides a fast, noncached, forward−only way of generating
streams or files containing XML data that conforms to the W3C Extensible Markup Language (XML) 1.0 and
the namespaces in XML recommendations.

The XmlTextWriter maintains a namespace stack corresponding to all the namespaces defined in the current
element stack. Using XmlTextWriter you can declare namespaces manually. Table 15−33 lists the pertinent
members of XmlTextWriter.

The following example writes data to represent a data set:

Public Sub rytzXml(ByVal target As String)
 Dim xmlRyter As XmlTextWriter = New XmlTextWriter(target, _
 System.Text.Encoding.ASCII)
 xmlRyter.WriteStartElement("Body")
 xmlRyter.WriteAttributeString("xmlns", "noo", Nothing, "urn:1")
 xmlRyter.WriteStartElement("oyvey", "urn:1")
 xmlRyter.WriteEndElement()
 xmlRyter.WriteStartElement("oyvey", "urn:1")
 xmlRyter.WriteEndElement()
 xmlRyter.WriteEndElement()

 Writing XML Files with XMLTextWriter

554

 xmlRyter.Close()
End Sub

Table 15−33: The Pertinent Members of the XmlTextWriter Class

Member Purpose

BaseStream (p) Retrieves the underlying stream object

Formatting (p) Indicates how the output is formatted

Indentation (p) Retrieves or changes how many IndentChars to write for each
level in the hierarchy when Formatting is set to
Formatting.Indented

IndentChar (p) Retrieves or changes the character to use for indenting when
Formatting is set to Formatting.Indented

Namespaces (p) Retrieves or changes a value indicating whether to do namespace
support

QuoteChar (p) Retrieves or changes the character to use to quote attribute values

WriteState (p) Retrieves the state of the write

XmlLang (p) Retrieves the current xml:lang scope

XmlSpace (p) Retrieves an XmlSpace representing the current xml:space scope

Close Closes this stream and the underlying stream

Flush Flushes whatever is in the buffer to the underlying streams and also
flushes the underlying stream

LookupPrefix Returns the closest prefix defined in the current namespace scope
for the namespace URI

WriteAttributes When overridden in a derived class, writes out all the attributes
found at the current position in the XmlReader

WriteAttributeString When overridden in a derived class, writes an attribute with the
specified value

WriteBase64 Encodes the specified binary bytes as Base64 and writes out the
resulting text

WriteBinHex Encodes the specified binary bytes as BinHex and writes out the
resulting text

WriteCData Writes out a <![CDATA[...]]> block containing the specified text

WriteCharEntity Forces the generation of a character entity for the specified
Unicode character value

WriteChars Writes text a buffer at a time

WriteComment Writes out a comment <!−−...−−> containing the specified text

WriteDocType Writes the DOCTYPE declaration with the specified name and
optional attributes

WriteElementString When overridden in a derived class, writes an element containing a
string value

WriteEndAttribute Closes the previous WriteStartAttribute call

WriteEndDocument Closes any open elements or attributes and puts the writer back in
the Start state

 Writing XML Files with XMLTextWriter

555

WriteEndElement Closes one element and pops the corresponding namespace scope

WriteEntityRef Writes out an entity reference as follows: & name

WriteFullEndElement Closes one element and pops the corresponding namespace scope

WriteName Writes out the specified name, ensuring it is a valid name according
to the W3C XML 1.0 recommendation
(www.w3.org/TR/1998/REC−xml−19980210#NTName)

WriteNmToken Writes out the specified name, ensuring it is a valid NmToken
according to the W3C XML 1.0 recommendation
(www.w3.org/TR/1998/REC−xml−19980210#NTName)

WriteNode When overridden in a derived class, copies everything from the
reader to the writer and moves the reader to the start of the next
sibling

WriteProcessingInstruction Writes out a processing instruction with a space between the name
and text as follows: <?name text?>

WriteQualifiedName Writes out the namespace−qualified name. This method looks up
the prefix that is in scope for the given namespace.

WriteRaw Writes raw markup manually

WriteStartAttribute Writes the start of an attribute

WriteStartDocument Writes the XML declaration with the version "1.0"

WriteStartElement Writes the specified start tag

WriteString Writes the given text content

WriteSurrogateCharEntity Generates and writes the surrogate character entity for the surrogate
character pair

WriteWhitespace Writes out the given white space
The preceding code produces the following output (noo and oyvey are Yiddish XML):

<Body xmlns:noo="urn:1">
 <noo:oyvey />
 <noo:oyvey />
</Body>

The writer promotes the namespace declaration to the root element to avoid having it duplicated on the two
child elements. The child elements pick up the prefix from the namespace declaration. XmlTextWriter also
allows you to override the current namespace declaration. In the following example, the namespace URI "foo"
is overridden by "bar" to produce the XML element <q:node xmlns:q="bar"/>.

xmlRyter.WriteStartElement("q", "node", "foo")
xmlRyter.WriteAttributeString("xmlns", "q", Nothing, "bar")

The Write methods can take a prefix as an argument to let you specify which prefix to use. Also, if there are
multiple namespace declarations mapping different prefixes to the same namespace URI, XmlTextWriter
walks the stack of namespace declarations backward and picks the closest one. When the
WriteAttributeString call does not specify a prefix, the writer uses the last prefix pushed onto the namespace
stack.

If namespace conflicts occur, XmlTextWriter resolves them by generating alternate prefixes. For example, if
an attribute and element have the same prefix but different namespaces, XmlTextWriter generates an
alternate prefix for the attribute. The generated prefixes are named n{i}, where i is a number beginning at 1.

 Writing XML Files with XMLTextWriter

556

The number is reset to 1 for each element.

Attributes that are associated with a namespace URI must have a prefix (default namespaces do not apply to
attributes). This conforms to section 5.2 of the "W3C Namespaces in XML" recommendation. If an attribute
references a namespace URI, but does not specify a prefix, the writer generates a prefix for the attribute.

When writing an empty element, an additional space is added between the tag name and the closing tag: for
example, <item />. This provides compatibility with older browsers.

When a String is used as a method parameter, a reference to Nothing and String.Empty is equivalent.
String.Empty follows the W3C rules.

You can also write strongly typed data by using the XmlConvert class which works just like the standard
Convert class. For example, the following line of code converts String data to Double data:

Dim total As Double = XmlConvert.ToDouble(reader.ReadInnerXml())

There is a ton of XML specific information that would be terrific to cover but much of it belongs in a book
dedicated to the subject. However, there is one more I/O facility we need to look at in this book before we can
close the long chapter: serialization.

Serialization with XML

Serialization support in .NET is extensive. The base implementations and interfaces are derived from
System.Runtime.Serialization. The System.Runtime.Serialization.Formatters namespace provides
enumeration support and the base classes for the serialization formatting. Then we have access to two
namespaces that provide the actual implementation and formatting. One class provides binary formatting
(Formatters.Binary) and the other, which we are going to use, provides text formatting in SOAP format
(Formatters.Soap).

The Soap class is very useful for serializing across and through network boundaries, because the data, XML,
is encapsulated in a SOAP envelope. The framework also provides a namespace specializing in pure XML
serialization streams, essentially serializing into and out of XML documents.

Serialization is very useful for persisting data stored in various data structures. It's also very lightweight and
efficient to use, especially for applications running on Web servers, database servers, and various facilities
that you may need to scale. One scenario where serialization comes in handy is loading data into an
application at start up. The data can be easily piped into an object that is created on the fly at runtime. The
Indexworks application introduced at the beginning of the chapter is one such application.

The outmoded way of loading data into the application at runtime would have you create an array or some
other data structure, initialize the structure, open a flat text file, read the data into the array, and then position
the array for access by the application's various components. The modern approach instead lets you suck in
(serialize) the XML file into the application's processing space, creating and initializing the object that holds
the data all at the same time.

The lattter sophisticated approach cuts out the step of having to read in the data and add it to the elements of
an array or the nodes of a linked list one element or node at a time. It's like having the entire object and all its
data sitting on the disk ready for loading at a moment's notice (in fact it's exactly that).

 Serialization with XML

557

Let's make the linked list class we constructed in Chapter 13 work with serialization. This will allow a
consumer of the linked list class not only to persist the data while an application works on the list, but every
time the application starts up, the object and data can be automatically reconstituted inside the application
ready for use.

Before we can use the serialization classes, we have to decorate the classes we want to serialize as being
serializable. Let's apply this to our linked list class (BaseNodeContainer). This entails providing serialization
attributes for the base class. This is done with the following code, part of which has been set in bold, so that
you can easily see the changes from the class constructed earlier:

Option Explicit On
Option Strict On

Imports System
Imports System.Runtime.Serialization

<Serializable()> Public Class BaseNodeCollection

What's now different about the preceding class compared to the classes shown throughout the book? For
starters, the class makes a reference to the Serialization classes by importing the
System.Runtime.Serialization namespace. This is defined using the Visual Basic .NET attributes indicators,
<>.

But remember that the BaseNodeContainer class also contains a composite Node class so we need to
decorate that class with the same attribute as follows:

<Serializable()> Public Class Node

You next need to provide a method in the base class that performs the actual serialization. But before you can
do that, you need to build the file and stream support into the class to get the data in the object to the file
system, and store it in a folder somewhere. This can now be easily accomplished with the extensive I/O
facilities we have covered in earlier parts of this chapter, which by now we should have mastered.

To do the object serializing and persist the data, you will need to create a method that walks the graph,
serializes the data in the SOAP/XML format, and then saves the stream into a file. The following method
achieves that objective:

Public Sub PlayOutList(ByVal target As String)
 Dim meData As New SoapFormatter()
 Try
 If File.Exists(target) Then
 File.Delete(target)
 ElseIf (Not File.Exists(target)) Then
 Dim fileForObject As New FileStream(target, IO.FileMode.Create)
 meData.Serialize(fileForObject, Me)
 fileForObject.Close()
 End If
 Catch e As Exception
 Me.exceptinfo = e.Message
 End Try
End Sub

The first step in actually implementing serialization using the SOAP format is to create a new SoapFormatter
object to process the SOAP stream, and this was done using the following line:

 Serialization with XML

558

Dim meData As New SoapFormatter()

However, to instantiate SoapFormatter as meData, we need to reference the SoapFormatter class. This
should be done using an Imports directive as follows:

Imports System.Runtime.Serialization.Formatters.Soap

Next it would be a good idea to create the stream and file support for our object or it will be going nowhere in
a hurry. This is achieved using the following code:

If File.Exists(target) Then
 File.Delete(target)
ElseIf (Not File.Exists(target)) Then
 Dim fileForObject As New FileStream(target, IO.FileMode.Create)
...

So, what have we done here so far? In the SerializeOut method, we created a SoapFormatting object that
provides the necessary transport to move the data from the object's location in memory to storage. We could
have used TCP or some other transport mechanism, but SOAP is an excellent protocol to use and allows us to
support the serialization of the object across machine and even process boundaries.

Notice the target parameter in the PlayOutList signature. This variable gives us a unique string containing
path and filename as the target that will receive the current object to be serialized.

Finally, we call the Serialize method on the FileStream object and reference the current object's data via the
Me keyword. Here's the code that achieves this:

meData.Serialize(fileForObject, Me)
fileForObject.Close()

To recap: first, we created a new file to receive the SOAP stream. Then, we called the Serialize method on
Me and bridged it to the target file. After the job is done, it is a good idea to close down the FileStream
object with a simple call to its Close method. You can check the serialized data in the file. If everything
worked according to plan, the saved file will contain data that looks like this (very much abridged with the
data
in the linked list shown in bold):

<SOAP−ENV:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP−ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP−ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP−ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
...

<Data id="ref−6" xsi:type="SOAP−ENC:string">I</Data>
<Data id="ref−7" xsi:type="SOAP−ENC:string">love</Data>
<Data id="ref−10" xsi:type="SOAP−ENC:string">VB</Data>
<Data id="ref−12" xsi:type="SOAP−ENC:string"> </Data>
<Data id="ref−14" xsi:type="SOAP−ENC:string">.</Data>
<Data id="ref−16" xsi:type="SOAP−ENC:string">NET</Data>
...

</SOAP−ENV:Body>
</SOAP−ENV:Envelope>

 Serialization with XML

559

That's all there is to serializing object data out to some persistent storage location. Instantiating the class
automatically provides the serialization support.

Activating Serialization at Run Time

There is no code in the BaseNodeContainer class that fires serialization events (that automatically calls the
SerializeOut method), so at first we will have to do it manually from the application user interface, which we
will create with many of the resources we will learn about in the next chapter. And, we could easily add a
timed interval event that calls the PlayOutList method every few seconds or minutes.

In the meantime, the following line of code triggers the serialization manually:

List.PlayOutList("c:\indexworks\workfile.txt")

We simply call the method and pass it the target file information. This method then invokes the serialization
process in the class, and that's all there is to it.

Now what happens if the application is shut down (or the machine shuts down abnormally while we are in the
middle of a read (a power failure or something))? How do we get back the data we had when we first started
up or last wrote to the List object? Reconstituting the object is as easy as spewing out to the file. We need to
create a method to implements the deserialization. Follow these steps to provide this:

Check if an object was serialized to disk. This could be as simple as checking for the target file.1.
Create a holding object in the application of the type to receive the data from the file.2.
Create a SOAP formatter to recover the data from the file.3.
Open the file.4.
Deserialize into the holding object.5.

This is demonstrated in the followed deserializer method, which can be provided by an external facility, like
the application's startup object or the user interface:

Public Sub PlayInList(ByVal source As String)
 Try
 If File.Exists(source) Then
 Dim fileForRecover As Stream = File.OpenRead(source)
 Dim aClone As New BaseNodeCollection()
 Dim meData As New SoapFormatter()
 aClone = CType(meData.Deserialize(fileForRecover), _
 BaseNodeCollection)
 fileForRecover.Close()
 List = aClone
 End If
 Catch E As Exception
 Me.exceptinfo = E.Message
 End Try
End Sub

If all works well the linked list gets sucked off the hard disk and is streamed into the application, just in time
to service the first Web surfer's hit on the search page. What's cooking in the PlayInList method? First, we
needed to create a new Stream to open the file in the source folder. The code that achieves this can be written
as follows:

Dim fileForRecover As Stream = File.OpenRead(source)

 Activating Serialization at Run Time

560

Tip Notice how we can simply call File.OpenRead and feed it to the
stream.

Next, we have to create a new SoapFormatter just as we did earlier. The code that achieved this is as
follows:

Dim meData As New SoapFormatter()

Finally, we call the Deserialize method and close the file when we are done. Notice that we use CType to
explicitly convert the holder type to the type represented in deserialized data.

aClone = CType(meData.Deserialize(fileForRecover), _
BaseNodeCollection)
fileForRecover.Close()

At this point, our job is not yet done. We got the data back, but it is in an object that is not currently being
referenced by our application. However, all that's left to do is to copy the data in one object to the other. There
are several different ways to recover the data, but just assigning the new object to the old object's reference
variable (List) is the easiest (as long as the old object is not yet holding active data that will be lost when you
cut its lifeline).

To call the deserializer method at run time is not difficult to achieve. You could call it shortly after startup, as
demonstrated in the following code, to enhance the console application:

Public Sub New
 MyBase.New

List.PlayListIn()
End Sub

That's all there is to the serialization. Incidentally, for local applications that do not need to serialize across
network streams, it would be faster and more secure to use the binary formatter class.

Observations

While this chapter might be big enough to be called a book, it still represents a tiny portion of the I/O and data
processing ability of .NET. This chapter demonstrated the design and creation of several business objects that
are useful in a variety of data processing scenarios. We used a variety of facilities in the .NET Framework to
achieve the results. These included the exhaustive String, character and text manipulation classes, the file I/O
and directory management classes, classes that empower us to read and write to streams of text and binary
data, and finally, that critical requirement all businesses now harp after, XML support.

In the next chapter, we'll complete the mission by providing smart user interface elements to all of this
functionality.

 Observations

561

Part IV: Writing Software with VB .NET

Chapter List

Chapter 16: Interfacing with the End User
Chapter 17: Getting Ready to Release

562

Chapter 16: Interfacing with the End User

Overview

We have come a long way from Chapter 1, which discussed how important it is to separate application logic,
business logic, functionality, operations, and services from the user interface and its logic. Recall Figure 1−2,
which illustrated a bunch of related file transfer operations that operate in the background or behind the UI
components on a form. Most of this book is devoted to everything you need to know to build the logic in
first−class applicationsthe code behind. Now we have to put an interface on the application, so that our users
find the application useful, productive, and worth all the money you invested creating the product.

The reason I have delayed our study of Windows forms, visual controls, and UI components to the
second−to−last chapter is to stress how important this way of thinking (separation of business and user
interface logic) is. If you did not pick up on this theme in the opening chapters and throughout the book, then
it should become very clear to you in this chapter. It is the only way you can write software in the modern age
of distributed computing and component, widget−based, breakfast factory, software development. In fact, it is
the only way you should write software.

Waiting until this point in the book to get into forms and UI stuff is very different from how past VB books
were written, which typically launched into the subject from the get go. I read many of those book years ago,
and I always felt the authors were trying to get the readers up and running as quickly as possible (in some
cases, the franchise, the target readers, of the book merited this approach) before presenting a solid foundation
for writing code. Often, too much emphasis was placed on creating applications centered on forms that were
nowhere near those used in the real world"dragging and dropping" your way to a finished product in what
seemed akin to painting by numbers.

Note Another big payoff of first learning all you can about the .NET object model in the earlier chapters is
that you will be able to navigate around the forms and control classes like a pro. Visual controls and
components, such as forms and menus, are all objects, so you'll have an insider's understanding of how
their properties, identifiers, modifiers, and so on are defined, specified, and set.

I believe that the only thing this so−called rapid application development achieved was rapid application
frustration, because keen developers would lose interest due to the frustration of not learning what it takes to
write good software. Here is a good example from an e−mail I received while writing this chapter:

"I am depressed. I have made two classes. The first has the input fields and the second
accesses a table. But I don't know the way to link them and pass the data from the first class
to the second. I don't know how to create the container object that will contain the data. In the
first class I have created a table. Please help."

The problem with many developers (like this one) is that they spend too much time looking at cute UIs and
not enough time implementing the application.

It was also amazing to me, circa 1995, how completely different Delphi and VB books were from the new
Java books that were taking the world by storm. They hardly covered the UI subject, partly because Java's UI
technology was so bad in the first years that seven−day−old roadkill looked better on your desktop.

The world of software development has changed dramatically in the past few years. Before the advent of the
Web and distributed computing (which has your objects potentially spread all around the network),
programmers typically engineered heavy forms, forms in which most of the logic and functionality is packed

563

into the form's module or class itself. Much of the business logicsuch as database connections, algorithms that
managed data structures, events, file operations, I/O, network connections, error handling, and so onwere
programmed in functions and procedures in one single form file (or at least encapsulated into it).

This model sufficed in the years before objects, because most applications, especially the ones written by
Delphi and Visual Basic programmers, centered around a heavy user interface, comprising a bunch of heavy
forms, that squatted on a user's computer. That was acceptable for the era because nothing but the form itself
was able to use the functionality built into it. This is illustrated in Figure 16−1, showing a fat form interacting
with the user and doing most of the application processing itself.

Figure 16−1: The fat form's logic is hard to maintain, reuse, extend, and debug
At the same time, packing all that functionality and data into a single form, or a collection of forms, did little
good for application design, maintenance, reusability, quality assurance, and so much more that
object−orientation brought.

Sure, by version 6 of classic VB, we had some semblance of OOP and could delegate specialized operations
and functionality to VB 6 classes. But inheritance and native interfaces were lacking, and thus it was not as
easy to decouple UI logic from business or core logic like you can with Java.

As we have discussed in the past 15 chapters, you have all the power you need in a pure object−oriented
framework to delegate UI logicinteracting with the user, getting data from the user, presenting data and
information to the userto the form. Behind the scenes, objects are delegated the tasks of getting information
from the components on the forms, processing and computing that information, and returning it to the form so
that the form can present it to the user. This is illustrated (similarly to Figure 1−2) in Figure 16−2, where
objects are created behind the form, and the form sits in the middle as the intermediary between business logic
on the back end and the end user on the front end.

Figure 16−2: The light form and its objects are easier to maintain, reuse, extend, and debug
Light forms that interact with decoupled code in objects provide you another important benefit. With objects,
shared classes, delegates, and interfaces completely disconnected from the UI, the UI can change in any way it
needs to, to accommodate the user, without affecting a single line of code in the objects (where the action
happens). In other words, your UI can be located on a watch, a PDA, a telephone, a server, a workstation, a

 Chapter 16: Interfacing with the End User

564

tablet, on the other side of the galaxy, on a console, or in another reality, without affecting the business logic
in any way whatsoever.

This disconnection is exactly how ASP.NET applications and rich−client applications will work as we move
into mainstream .NET development. All it takes to move a desktop application to the Internet is to drop the
form−based UI running on the client, and replace it with a Web form running on Internet Explorer.

The separation of the two application "domains" allows an effective development team to keep its best UI
people working on the front end while the logic and objects in the operational side of the application can be
worked on by the best class and object designers and code construction workers. As long as the "back−end"
developers understand that they are creating classes and objects that clients' code will "hook" into, you can
achieve a highly cohesive and productive software development workforce that lets developers that have an
artistic flair do a lot more that just screen painting.

There is no longer an excuse not to delegate properly with Visual Basic .NET and the power of the .NET
Framework. There is no excuse not to extend specialized and generic collections of classes with inheritance,
and there is no excuse not to delegate and use the power of polymorphism with native interfaces and
delegates.

A Windows forms program can be a stand−alone executable or exist as the client portion of a multitiered
system. There are various ways of connecting to the back−end logic, and the most cutting−edge method is via
Web services technology over HTTP. The server typically can be connected to a database, a mail server, or
any other collection of objects you care to call "server." The Windows forms technology is such that your new
featherweight classes can act as the UI to a powerful, data−enabled system that leverages the rich UI of a
client application with the advanced processing of an application server. To encapsulate this is a single
utterance: "The Web is dead, long live the Web."

Windows Forms

The Windows Forms technology is the new UI solution for the .NET Framework. All UI elements, such as
forms and visual input, output, and presentation components, extend a hierarchy of classes found in the
System.Windows.Forms namespace. You can use the forms classes and controls classes as is, or derive from
them to create your own UI and visual controls and components. The Windows forms are an ideal OOP
solution for creating rich UIs for local workstation clients, or as thin UIs developed for multitier distributed
solutions.

Windows−based UIs are typically cast in the following three styles:

Single document interface (SDI) This is the UI that only opens a single document, such as Notepad
or WordPad or Outlook, which opens e−mails. You first have to close the current document before
you can open a new one. You can use the SDI application for simple document editors, various
utilities, and applications that do not need to work with multiple open forms.

•

Multiple document interface (MDI) This UI contains numerous forms that encapsulate documents,
database input fields, grids, drawing areas, and various layouts and components. You can open new
forms in the UI as you need them. You do not need to close forms before opening new ones. Forms
inside the main form are enumerated into the Window menu for easy management and access. A good
example of the MDI application is Microsoft Word.

•

Explorer−style interface This UI is an SDI application that is split into two panes inside a single
parent form. The left pane provides access to a tree of items, such as the so−called "cool" bar or some
other type of collection. The right pane provides the details of the node selected from the tree. A good

•

 Windows Forms

565

example of this type of interface is Microsoft Outlook or Windows Explorer.

A form is your application's little claim of screen space that you will use to communicate with users. Your
form will occupy either a portion of the screen or all of it. Forms are typically rectangular in shape and can be
made to shrink or grow to any sizefrom the size of a dime or less, to the size of the screen when the form is
fully maximized. Forms can be solid, opaque, or invisible. With advanced support of the Windows XP and
.NET Server operating systems, forms can also now be any shape.

You use the form to present information to the user and to accept input from the user. This is achieved by
placing familiar objects on the form, with which the user interacts to send and receive information to and from
the application.

UI developers arrange the controls on the form in an aesthetic and productive manner by exposing the various
properties of the input/output controls placed on the form. The properties of the controls define their behavior
and affect how the user interacts with the application.

As the interface developer, you will also spend a substantial amount of your time behind the form's UI,
implementing its code. Controls do not magically hook into existing functionality you have written; you still
have to "wire up" the UI to the back end and business logic and hook up the events to the event handlers and
event listeners. This wiring involves capturing events generated by the controls on the form, such as text being
entered, mouse clicks, button clicks, scrolling through lists, collapsing and expanding trees, and so on. The
events communicate with interested objects that monitor the form for services they need to perform, such as
sending data to a database and retrieving data from the database.

A Form Is an Object

As previously stated many times, a class is a template or a blueprint for an object. The .NET Form class is
such a blueprint for the form object that you instantiate. Form classes can also be extended by you. This
means you can easily inherit from existing framework or custom forms to add functionality or modify existing
behavior. In other words, when you add a form to your project, you can choose to inherit from the standard
Form class or from a custom base Form class you may have already developed. The form hierarchy of
classes is a perfect example of how inheritance is used as the foundation for all specializations of classes in an
OO framework. Form objects are also controls, because the standard form provided by the framework
ultimately inherits from its parent Control class.

Chapter 9 presented a concise introduction to the Form class in the discussion of inheritance and aggregation.
We saw then how a form can be created entirely in the Code Editor. But Visual Studio makes it far easier to
use the Windows Forms Designer to create and modify forms. Later in this section, we will discuss the steps
to take to kick off a UI project with the creation of your main form, and any collateral forms used by your
application.

The System.Windows.Forms Namespace

The System.Windows.Forms namespace contains the collection of classes used for creating Windows−based
UI applications. The classes in this namespace can be grouped as follows:

Control•
UserControl•
Form•
Controls•

 A Form Is an Object

566

Components•
Common Dialog Boxes•

Most of the classes within the System.Windows.Forms namespace are specializations of the base Control
class, which provides the base functionality for all controls that are displayed on a Form. You will derive
from the Form class or a specialization of it to represent a window component of your application. Windows
can be manipulated interactively through their properties to play the roles of dialog boxes, modeless windows,
message boxes, and MDI clients. One form, the parent, becomes the form that represents the application.

The controls of an application are familiar objects the user will interact with on a form. Controls typically
refer to text boxes, labels, check boxes, radio buttons, list boxes, buttons, and so on. A control can be a small
graphical enhancer, such as a slider gauge, or something much more complex, such as a grid or
spreadsheet−like control that binds to a data source and displays the contents of a table in the cells of the grid.

The System.Windows.Forms namespace encapsulates an impressive collection of control classes that we can
use to create the elegant and very functional user interfaces. For example, if we need to build a text editor, the
namespace provides us with TextBox controls we can use for editing comments and writing documentation,
and ComboBox controls for choosing section details in the documentation, such as headers, footers, and
labels for specifications. We'll use other controls, such as Label and ToolTip, to display information.

The representation of the project folders, class files, and class members can be provided with the TreeView
control and the ListView control. We'll also use buttons and the ToolBar control. We are not attaching to any
databases, so we don't need to worry about DataGrid controls and other databound controls in our initial
exploration of UI elements.

The components of an application are often synonymous with controls, but it helps to discern or group
nonvisual controls by referring to them as components. These components typically include help items, menu
items, help constructs, and tooltips.

Common dialog boxes provide the interface to common operations, such as saving files, opening files,
printing and print setup, and so on. These forms are prefabricated, so we can simply "plug" them into our
application with less than a full line of code. In the early days of programming for the Windows OS, we had
to code these reusable constructs ourselves.

Good examples of these "pluggable" dialog boxes are the interfaces to the printing facilities, like
PageSetupDialog, PrintPreviewDialog, and PrintDialog. These objects will be useful for controlling
various actions required in the printing of our documents.

Various enumerations in the System.Windows.Forms namespace provide various constants that control the
look and feel of the UI components and controls.

There are also a number of information controls at our disposal that do not derive from the Control class but
still provide visual components of the UI. These include ToolTip, ErrorProvider, and several classes we
have already explored, such as Menu and MenuItem. There is also a ContextMenu control that enables you
to display menus in the context used to invoke the menu within an application. Help and HelpProvider are
two other classes that enable us to communicate with the user and enrich their experience with our
applications.

The System.Windows.Forms namespace also encapsulates the MessageBox class that lets us display a
message box to the user, lets the user click certain buttons, and may also prompt the user for certain
information.

 A Form Is an Object

567

Note To support Windows XP visual styles, you can set the FlatStyle property of some of your visual
controls to System.

Automatically Generated Code

While you can easily construct a Windows application in code from scratch, as demonstrated in Chapter 9, it
is much easier and makes much more sense to let Visual Studio generate the initial application shell for you.

When you select Windows Application from the New Project dialog box, Visual Studio creates a solution (if
one is not open for the new application) and places your new project in it. This project contains various
references to core assemblies, namespaces, and so on, and one class, which is named Form1 by default.

Note To see the namespaces imported by default, open the Project Properties dialog box. To access
this, right−click the project in Solution Explorer, choose Properties, and then choose Imports
from the panel on the left side.

The default code generated when you create a form is as follows:

Public Class Form1
 Inherits System.Windows.Forms.Form
Note The following code is contained within a region by default.
#Region " Windows Forms Designer generated code "
 Public Sub New()
 MyBase.New()
 ' This call is required by the Windows Forms Designer.
 InitializeComponent()
 ' Add any initialization after the InitializeComponent() call.
 End Sub

 ' Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 ' Required by the Windows Forms Designer.
 Private components As System.ComponentModel.Container

 ' NOTE: The following procedure is required by the Windows Forms Designer.
 ' It can be modified using the Windows Forms Designer.
 ' Do not modify it using the Code Editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
 Me.Text = "Form1"
 End Sub
#End Region

End Class

The InitializeComponent section is of interest to you because it is used by the IDE to hold the property
values that you visually set in the Windows Forms Designer. These properties persist in the application and
are required by the main form.

 Automatically Generated Code

568

Introduction to Threading

User interfaces and forms applications often present an opportunity to engage additional threads to help keep
the application responsive and enrich the user experience. Applications that perform extensive processing and
limit themselves to single threads can cause the UI and access to controls and components to be locked out
while the main application thread waits for the process attached to the end of it to complete. In simple terms,
locking a user out of an application, even intermittently, is akin to putting a gun to your head and squeezing
the trigger.

Lengthy processes, such as long downloads, backing up data, loading data to databases, extensive searching,
sorts, virus checking, and the like, could and should be allocated to new threads. An application will fast lose
the support of its users if every time it needs to perform a hefty service the user has to take a walk around the
block or do something else to kill some time, like looking for King Solomon's mines.

While there are various techniques that can help increase the responsiveness of the application while it
processes the data necessary to get the job done, nothing is as effective as invoking multiple threads,
especially on computers with only one processor. These threads are fondly known as "workers." You give
them a task to perform and then send them off to do the work, while you continue with the other chores.

The .NET Framework's threading model is equipped to take advantage of the small slices of time between
user−driven events to process data in the background. For example, a user can continue developing,
designing, or configuring an application while the thread recalculates the data in the background within the
same application space.

If your user needs to download an extensive document, search and replace some phrases in a document, or
sort a big array, they can still keep working while another thread performs the computations or tasks that
would normally lock the user out of the application.

Your single application domain of a .NET application can use multiple threads where high−priority threads
can manage time−critical tasks and low−priority threads can cater to ad−hoc access required by the user.
Having multiple threads on the back end, in a server application, also allows more clients to connect to the
service simultaneously. And if the system has multiple processors, multiple threads can be executed on the
additional processing stack in true parallel concurrent processing wizardry.

The downside to threading is that it is much more difficult than single threading to design and implement, as
you will see in the following code. Threads process independently of each other and, by and large, the order of
execution of the threads is nondeterministic. The management of the different threads, controlling the lifetime
of the threads, sharing resources between threads, thread cooperation and interoperation, and so on constitute
a complicated and complex process.

Threading is also resource intensive. The more threads you throw at an application, the more OS and platform
resources you consume. You are still limited by available memory and still have to share hard disks, network
connections, ports, the file system, and, of course, the processor. The .NET Framework's thread model also
involves the instantiation and support of AppDomain objects, which also need to be managed.

In the application design arena, you need to manage threads carefully. If you have too many threads running
the opposite of what you were looking to achieve, application response will suffer. Poorly designed and
implemented threading architecture can bring an application to a halt and cause it to crash.

Thread termination and destruction needs also need to be addressed, and you need to manage and monitor the

 Introduction to Threading

569

thread operations and processing, which can be a potential source of bugs in the application.

To share resources on any machine or in the application, you need to synchronize the access of the threads.
Not doing so can cause thread deadlocks and various other conditions that can make your code horrendously
difficult to construct, manage, and maintain. Typically, multiple threads need to be synchronized to share
ports, file systems, global static (shared) fields, reentrance, access priority, and so on.

In extensive systems, like the send and receive engines of a mail server, or the service engine of a telephony
application or automatic call distributor, threading support can be an all−consuming expedition into extensive
program design and implementation, involving transaction monitoring, managing critical sections, and
prioritizing.

It is for these latter reasons that I considered an extensive treatment of concurrent program design and
threading with the .NET Thread Model beyond the scope of this book. So, what I present here should be seen
as little more than an introduction to the threading model in .NET, and something to get you started for simple
threading algorithms in UIs.

Nevertheless, implementing basic threading support for scenarios such as sorting data and maintaining UI
responsiveness is important.

Note For an in−depth discussion on how Windows operating systems implement threading,
concurrency, and parallel processing, and the differences between preemptive and
nonpreemptive multitasking, log on to www.sdamag.com and download the white paper,
"Concurrent Programming on Windows NT," by Jeffrey R. Shapiro (Jacaranda
Communications, Inc, 1987, 2002).

The User Interface and Thread Design

Generally speaking, providing an application with support for multiple threads and threading is not a task akin
to dropping controls onto forms or wiring up visual elements and event handlers to application logic. It
requires careful planning and design, because your UI will make use of the threads through which to run the
wires that connect the UI logic to the business and application logic of your product.

You can think of the threading and wiring up of the application as akin to flying a jetliner that is controlled by
numerous wires, which are accessed and controlled by the pilot and other flight engineers from their cockpit
controls. The UI is like a cockpit, and all the controls and gadgets that make the jet fly are the controls and
components that give your application its flight ability.

On the back end are the engines that push the craft and the controls that alter the pitch of wing flaps that allow
the pilot to steer the craft in a certain heading, to land, and to take off. Connecting the two ends are the wires,
the threads. If the threads snap or collide and get entangled, the passengers and the flight crew are doomed to
certain death.

So is it with threading an application, especially one with a complex UI and some advanced business and
application logic down in the engine room. To get us taxiing on the runway, however, the easiest way to
handle a multithread requirement to keep a UI responsive is with the aid of an additional thread devoted to
background tasks that can relieve the interface and keep the user working. Before we get into the
implementation of a thread, and pop the hood to yank at the wires, let's first have a brief look at the .NET
Framework's thread model.

 The User Interface and Thread Design

570

The .NET Framework's Thread Model

The .NET Framework's thread model is represented by the System.Threading namespace, which is
partitioned between the System (classes for thread delegates) and mscorlib assemblies. The classes and
constructs in this namespace contain all the support for threads, thread synchronization, thread events, critical
sections, thread prioritizing, locking, and monitoring.

We learned in Chapter 2 the relevance of application domains and how they are applied to the .NET
Framework execution environment. These subprocesses provide the operation context and environment that
our managed .NET applications run in. When you start an application, the CLR implicitly provides a single
thread for it and allocates it to the application domain that represents your program. The single thread (and
any future threads) wires up your application to the base OS, in unmanaged space.

However, you can spawn additional threads from your application to handle concurrent operations, and the
CLR also gives programmatic opportunity and ability to create additional application domains.

Managed threads are allowed to operate freely within your application process in its domain, and they are
allowed to move freely between application domains. It is also possible to maintain only one thread in your
application domain and move it between several application domains. This is essentially what the .NET
Framework refers to as its "free−threading model." It is precisely this model, and the power of its
implementation, that requires you to devote a significant effort to a sound threading architecture for critical
concurrent processing applications that need it. In a nutshell, so powerful is the model that "given enough
thread, you can easily hang yourself."

Getting Started with Basic Threading

The central character in the threading model story is the System.Threading.Thread class. Thread objects
extend System.Object but they cannot be further extended by you or me. The instantiation of multiple
Thread objects is demonstrated in Figure 16−3. You can instantiate and put into service as many Threads as
you need to execute any methods in any objects or classes referenced in your application. The threads run
concurrently so any objects that are the target of the threads are processed concurrently with the objects
accessed by other threads. Naturally, if there is only one thread in an application the only object that can be
processing is the one that is the target of the thread.

Figure 16−3: Multiple Thread objects means concurrent processing
The Thread object controls the thread, sets its priority, and monitors its execution status. Think of it as
nothing more than the "worker" I mentioned earlier that you summon and have "run a method" while you go
off and do something else.

Table 16−1 lists the basic members of the System.Threading namespace we will encounter in this chapter.
Of course, there are loads more classes and constructs in the namespace, but they will be tackled in the
advanced threading treatise.

To start a new thread in the application, we must first create a delegate to represent the method to execute.
Then, we pass that delegate to a new instance of the Thread object. That's really all there is to adding

 The .NET Framework's Thread Model

571

multithreading to your application.

The following code added to an application creates a new Thread object and receives a reference to a method
that fires the maintance run. The thread then takes off concurrent to the main application thread and works in
the background.

Public Sub StartMaintenance()
 'Create and instance of the object that encapsulates
 'the IndexOps maintenance methods
 Dim IdxMaintenance As New IndexOpsMaintenance()
 Dim idxM As New ThreadStart(AddressOf IdxMaintenance.StartMaintenance)
 Dim IdxThread As New Thread(idxM)
 IdxThread.Start
End Sub

Table 16−1: Abridged Listing of Classes in the System.Threading Namespace

Classes Purpose

IsAlive (p) A property that retrieves a value indicating the execution status of
the current thread

ThreadState (p) A property that retrieves the state of the referenced Thread object

Thread The class for creating, controlling, and managing threads

ThreadAbortException The exception that is thrown when a call is made to the
Thread.Abort method

ThreadExceptionEventArgs The data for the ThreadException event

ThreadStart (d) The delegate that represents the method that will handle the Start
event of a Thread

ThreadStateException The exception that is thrown when a Thread is in an invalid
ThreadState for the method call

This code employs the ThreadStart delegate, which is used to point to the program code executed by a
Thread (remember from Chapter 14 that delegates underpin the entire .NET Framework). It is very similar to
an event that gets fired, and the delegate is simply used to "wrap" (in other words, specify the interface) the
method signature to be executed. The AddressOf operator is used to bind to the method in the class it is
implemented in.

After the delegation is complete, the Thread object's Start method is invoked. If you call Start more than
once on the same working thread, a ThreadStateException will be raised. Naturally, it's good programming
practice to always enclose threading operations in Try . . . Catch. . . Finally blocks.

Start's job is to make an asynchronous request to the OS for a thread. Start completes immediately, and if the
system gives the "go" the thread goes to work. At this point, you can access the data in the ThreadState
property. This information provides you with the ability to check in on your worker at will.

If the Thread runs into trouble, you can call its Abort method, which shuts it down and raises a
ThreadAbortException. At this point, you can also peek at the IsAlive property, which will return True if
the thread is still running or False if it is dead.

ThreadState can also report the current state of the Thread object at any time. This property provides an
extensive collection of constants encapsulated in the ThreadState enumeration. It can tell you if the thread is

 The .NET Framework's Thread Model

572

running, if Abort was invoked, if the thread is sleeping, if the thread is stopped, and so on.

You can gain a significant performance boost by using an additional thread to cater to the request of a user to
engage in an operation that may require some lengthy processing time. Using the extra thread in this fashion is
pretty straightforward. Rather than putting the single application thread allocated to every application to work
on such a task, simply create the Thread object as shown in the preceding code and delegate it to the job of
managing the thread.

You also do not have to hard−code the thread creation code into any of your forms. Simply delegate to one of
the business objects referenced from the form. The object and its thread go off and do their work and the user
can continue without being any the wiser.

It looks simple enough. The difficulties arise when you need to create more threads that potentially go off and
collide with each other. You can imagine the problems if more than one maintenance Thread object was
created in the preceding code and they all tried to access the same files. One thread might start serializing a
file out to disk while another may be trying to serialize it back to the application. That's where the advanced
features provided by locks, monitors, thread pools, waits, and critical sections come into play. Reaching that
level is a thread for another day.

MDI Applications

The MDI application comprises a single containing parent form and a collection of MDI child windows. The
child windows, known as the "subwindows," present various interaction opportunities for the user as he or she
works with the application. An MDI parent form is not difficult to create. You can create the form using the
Windows Forms Designer, in a visual style, or nonvisually in code.

Creating the MDI Parent

A form is made into an MDI parent form at design time by setting its IsMDIContainer property to True.
This can be done from the form's property editor or in code. Once this property is set to True, the form
becomes the MDI container and all other windows become its so−called children.

To get started with an MDI application, perform the following steps:

Create a Windows Application project from the File, New menu or from the Add, New Project menu
accessible from the Solution Explorer.

1.

When the new form appears in the designer, click its body and select the IsMDIContainer property
from the Properties window. Set the property to True. The main body of the window disappears,
leaving a white canvas that serves as the backdrop for the interaction with the child windows. Child
windows can be expanded to fill this inner frame, and the menus of the child window can be merged
with the parent.

2.

You can set the IsMDIContainer property in code as follows:

Switch to code view by right−clicking the form's icon in Solution Explorer and choosing View Code
from the form's context menus.

1.

In the InitializeComponent method, add the following line of code:2.

Me.IsMDIContainer = True

 MDI Applications

573

You can also set the following properties while in this method, or from the Properties window:

Me.Name = "MainForm"
Me.Text = "Indexworks"
Me.WindowState = FormWindowState.Maximized

At this point, it makes life easier if you rename the actual source code file to something more meaningful than
Form1.vb. I changed the name to MForm (for main form), which tells me that the form contains the source for
the parent form. I also renamed the class file for the form to MainForm, which is more useful than Class1.
The Text property shown in the preceding code is the caption at the top of the parent form, which you reserve
for the name of the application.

It is easier to work with MDI child windows when the parent form is maximized. You will also notice that the
edges of the MDI parent form will be the same as the system color, which you set in the Windows System
control panel. This property is not affected by the back color set using the Control.BackColor property. At
this juncture, if the form is too small in the designer, you can make it bigger by dragging with the mouse, or
you can set the height and width with the following code in the InitializeComponent method:

Me.ClientSize = New System.Drawing.Size(600, 400)

Once this is done, you can add the first menu resources to the parent form as follows:

Switch to visual mode and click the form so that the Toolbox becomes active.1.
Drag or double−click a MainMenu component from the Toolbox palette to the form. The first thing
you'll notice is that the menu hides as soon as it hits the form. You can get it back from the
drop−down list at the top of the Properties window.

2.

Click the menu component's top−level menu item and set the property to &File. You can also create
sub−submenu items like &New, &Close, and &Exit in the same manner. And you can also create
top−level menu items called &Window and &Help, although a Help menu may be a long way off at
this stage from being implemented (nothing wrong with starting the Help system at the beginning of
the development; after all, if you followed my advice in the past chapters, most of the applicationthe
code behindhas already been built). The File menu items are where you write the code to create, and
open windows, and the Close menu will be used to close down the application. The Window menu
will be used to keep track of open MDI child windows that are enumerated. The menus and the form
built at this point are illustrated in Figure 16−4.

Figure 16−4: The new MDI parent form and initial menus

Tip Rename the menus from the default identifiers, like MenuItem2, that Visual Studio assigns. This
will make it easier for you to find and set properties in the correct menu item later when the
number of menus listed in the Properties window grows. You also need more intuitive menu
names for the event wiring that comes later when you connect the click on a menu item to an

3.

 MDI Applications

574

event that causes something to happen in the application.
Save and build the form, which, at this point, is nothing more than an empty MDI application that
consists of nothing more than the main form. Build the form by selecting the project in Solution
Explorer, right−click to expose the context menus, and select Debug | Start New Instance. The
application will now run maximized as we had earlier set. The menus will not work, because we have
not wired up any code under them. But, you can close the application from the Close facility ("x" or
"Close Alt + F4") in the top−right or top−left corner, respectively.

Tip You may get a build error stating that the compiler could not find the entry point to the
application. That will happen if you change the class name in code from Class1 to something else
(VS is not updated when you change the name manually). It's an easy fix from the Properties
window, where you select the new name as the so−called WinMain entry point.

4.

Creating the MDI Children

An MDI application would not be an MDI application without child forms, so you need to create the template
object that instantiates them. To do this, we will add a child form class to the MDI parent, which already has a
Window top−level menu item, as well as New and Close to create, close, and enumerate the child form
objects, respectively. Return to the drop−down list at the top of the Properties window and select the
&Window menu item. You can set its MDIList property to True.

This property provides the facility to enumerate the "handles" of open or created child windows, essentially
instantiated form objects, and maintain the list in the Window menu. You can also place a check mark next to
the active child window in this menu. To set this up, go to Solution Explorer, right−click the project name,
select Add, and then select Windows Form. This form serves as the template for all MDI child forms. In other
words, every time your user selects New from the menu, an instance of this form object will be created. To
create the child form in the designer, do as follows:

In Solution Explorer, select the name of the project, right−click, and select Add New Item. The Add
New Item dialog box appears.

1.

Now select Local Project Items from the Categories pane and Windows Form from the Templates
pane to the right.

2.

In the Name box, name the form Child.vb and click the Open button to add the form to the project.
The Windows Forms Designer adds another tab to the work area and displays "child" on the canvas.

3.

You can now change the name of the class and its various properties, as we did earlier with the parent. I
named the class ChildForm (try to avoid giving the class the same name as the filesuch as dittoname.vb).You
can then also drag whatever controls and components you need onto the child form, thereby aggregating these
controls and components to the child class. You do not need to explicitly make the child class a child class,
because by default its IsMDIContainer property is set to False. After all, you can only have one parent MDI
container, and it's already been created.

But we do need to wire up the child class to the MDI parent. We can start the ball rolling by creating an event
handler under the New menu item we created earlier. To do that, simply double−click New in the parent form.
An event handler, just like the ones we studied in Chapter 14, is created and defined in the MDI parent class
with all the necessary event constructs.

Now we need to add some code to the event handler, which will create new MDI child forms whenever the
user clicks the New menu item. The following code handles the job of instantiating new child window objects.
As you write the method, you'll easily spot the correct class in the object browser that IntelliSense pops up
under your fingertips. It's a good thing we renamed it from Form1, because we can be sure we are referencing

 Creating the MDI Children

575

the correct class.

Private Sub NewMenu_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles NewMenu.Click
 Dim AnMDIChild As New ChildForm()
 AnMDIChild.MdiParent = Me
 AnMDIChild.Show()
End Sub

Build your application (from the Project menu's Debug, Start New Instance menu item). If your method is
implemented as shown in the above code, you'll be able to create new MDI child forms. By setting the
MDIlist property to True, we can see the enumeration of child windows in the Window menu, as illustrated
in Figure 16−5.

Figure 16−5: An MDI application with child windows
As mentioned earlier, if you place menus on the child form, they will be merged automatically with the menu
items of the parent, provided you have set the MergeType property of the main menu to MergeItems.
Additionally, you can also set the MergeOrder property so that the menu items from both menus appear in
the order you specify.

The Active Child

When you implement child forms in MDI applications, you need a way to reference the active form from
other forms and from the parent form. Seldom do you ever work with a child form in total isolation from the
rest of the application and its sibling forms. For example, how would you be able to copy text from one child
form's text editor to another child form's text editor without having access to the handles of source and target
objects?

You can obtain a reference on the active form by using the facility of the parent's ActiveMDIChild property.
The property returns to you the child form that currently has the focus, or the form that was the most recently
active.

In addition, you also need to have information about which control on a child form is active. This information
comes to you by way of the ActiveControl property. So, if we have more than one control active on a form,
this property lets us know which control is currently in focus, or being referenced.

The following code demonstrates the referencing of these properties, and thus of the various properties
exposed to the form objects:

Public Sub IndexCopy_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles IndexCopy.Click

 The Active Child

576

 ' Get the active child form.
 Dim activeChild As Form = Me.ActiveMDIChild

 ' If there is an active child form, find the active control, which
 ' in this example should be a RichTextBox.
 If (Not activeChild Is Nothing) Then
 Try
 Dim textBox As TextBox = _
 Ctype(activeChild.ActiveControl, RichTextBox)
 If (Not textBox Is Nothing) Then
 ' Put selected text on Clipboard.
 Clipboard.SetDataObject(textBox.SelectedText)
 End If
 Catch
 MessageBox.Show("Please select TextBox.")
 End Try
 End If
End Sub

Arranging the Forms

If you provide the user with the ability to open more than one form, you'll want to provide the ability to
arrange the forms automatically. The built−in options you have for arranging all the forms as a collection are
Tile, Cascade, and Arrange.

You can provide the arranging facility by reference any one of the MDILayout enumeration values that cause
the child forms to arrange as you specify. The enumeration values let you arrange the child forms as
cascading, as horizontally or vertically tiled, or as child form icons that are fanned out along the lower portion
of the MDI form in a minimized state.

You can also use constructs such as the event handlers called by a menu item's Click event. This lets you
create a menu item, such as Cascade Windows, that provides the effect of cascading child MDI child
windows.

To arrange child forms, create a method to set the MDILayout enumeration for the parent. The following
code demonstrates referencing the Cascade constant of the MDILayout enumeration for the child windows
of the MDI parent form. You will typically use the enumeration in your code as follows:

Protected Sub CascadeWindows_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 MainForm.LayoutMDI(System.Windows.Forms.MDILayout.Cascade)
End Sub

That's about as far as I need to take you with MDI applications. The rest of the chapter explores the various UI
elements you can use for building out your MDI application.

Delegating Application Startup and Shutdown

The life of your application typically begins and ends with the parent or main form. When you close the main
form, you terminate the life of the application. However, your main form does not have to become the
controlling object in the life of your application. You can relocate the entry point and delegate the
application's start up and shut down code to other objects. This can be achieved by moving the startup logic
into a separate object that only you know exists somewhere in the vast expanse of memory called the heap.

 Arranging the Forms

577

You can then start the application from this object and control the arrival and visibility of the forms of your
application from the new startup location. The application only ends when you close down the
startup/shutdown object by sending it a particular message.

We can add the startup/shutdown class to the project from our Project menus, or we can create a singleton
class from scratch as we did in Chapter 13. Within the new class, simply provide a method that controls the
appearance and visibility of the main form. This is demonstrated in the following code:

Sub Main()
 Dim idxWorks as New IndexWorksMainForm()
 'make a whole lot more of this for here
 idxWorks.Show()
End Sub

You still need to change the startup object for the project to be the "hidden" object instead of Form1 as
discussed earlier. Build the application. Now when the application runs, the code within the hidden object
executes before you do anything with the instance of Form1. You can now do whatever you like with your
forms in the background without the user's knowledge. For example, you can set up your form's visibility via
its Visible property and thus delay its initial arrival into the world.

Keeping a Form on Top

The TopMost property of a form specifies whether the form is a topmost form. On the Windows 2000
operating systems and later, the topmost form is always on top of all windows in a given application. On
Windows 98, the topmost form is always on top of all windows in all applications.

The TopMost property is useful to keep toolbar windows in front of your application's main window so that
the user always has access to frequently used items. The topmost form will float above other, nontopmost
forms, even when it is not active.

Making a form topmost requires you to set the TopMost property to True. You can set it interactively in the
Properties window, or in code as shown here:

Public Sub SetFormTopMost()
 ToolbarForm.TopMost = True
End Sub

Form Transparency

The form opacity value allows you to control the opacity of the windows that are displayed in your
application. To make a form more transparent, you need only vary the value in its Opacity property.
Transparent forms are only supported on Windows 2000 or later. Your transparent forms will be completely
opaque when run on older OSs, such as Windows 98, and the value set for the Opacity property is ignored.

You can set the opacity interactively in the Properties window. The values (of type Double) lie between the
ranges 0.0 (complete transparency) and 1.0 (complete opacity). The following code shows how to control the
opacity programmatically:

Public Sub GetThinner()
 FadeForm.Opacity = 0.5
End Sub

 Keeping a Form on Top

578

Modality

Another very important property of forms and dialog boxes is the modality property, which specifies whether
a form is either modal or modeless. Modal forms or dialog boxes prevent you from working with the rest of
the application until you close them. They are very useful to control user input and to make sure a user is
presented with a message in a dialog box or acknowledges and reacts to the requirements of the modal dialog
box. Only after clicking OK will the dialog box close and allow the user to continue. A modal dialog box
prompting a user to save information or do something next before anything else is the common use for the
modality property.

Modeless forms, on the other hand, let you move between forms in the application freely. Open child forms,
such as text editors, are modeless. You can switch between the forms with no restrictions and you can
continue to work anywhere in the application while the modeless forms are displayed.

You should avoid modeless forms in situations where you do not want your user to access forms and parts of
the application in an unpredictable order. A typical reason to provide the modality is to prevent your user from
working on something in one window and then opening another window and doing something unpredictable
that affects what they were doing in the other window, such as changing data in one window that was edited
in another.

Tool windows, for example, can be shown modeless, because the target of the tools and buttons is the form
that is currently in focus. A find, search, and replace dialog box is a good example, as is a dialog box for
setting document properties such as fonts and margins. The common dialog boxes are modal, because you
don't want to open the print facility over one form to print and then inadvertently change out the focus of the
target form.

The following code displays a form as a modal dialog box:

Public Sub ShowFormsModal(ByRef aForm As Form)
 aForm.ShowDialog()
End Sub

The ShowFormsModal method here takes an argument that can be used to show a form in modal or dialog
state. In the following code, we establish your main form as the owner:

Private Sub mnuAbout_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles mnuAbout.Click
 Dim orm As New Form()
 orm.ShowDialog(Me)
End Sub

To display a form as a modeless dialog box, call the Show method as follows:

Dim orm As New Form()
orm.Show()

Remember that if a form is shown modal, any code following the ShowDialog call is not executed until the
dialog box is closed. When a form is shown as modeless, any code following the call to Show is executed
immediately.

 Modality

579

Changing Borders

We can determine the look and feel of our forms by setting various border properties. This is done by
changing the FormBorderStyle property. The property also lets you control the resizing behavior of the form,
how the caption bar is displayed, and what buttons might appear on the form. Table 16−2 lists the property
settings for changing borders.

All the border styles listed in Table 16−2, with the exception of None, provide the Close box on the right side
of the title bar. You can set the border style of the form interactively with the FormBorderStyle property.

The border style of the form is set using the FormBorderStyle enumeration, so you can also easily set the
border style programmatically by setting the FormBorderStyle property to one of the values of the
enumeration. The following code provides an example:

SearchDlgBx.FormBorderStyle = FormBorderStyle.FixedDialog

This code sets the form to a border style that lets the form have Minimize and Maximize buttons. You can
also specify whether you would like either or both of these to be functional; however, the Minimize and
Maximize buttons are enabled by default, and their functionality is manipulated through property settings as
well.

Table 16−2: Border Styles for Forms

Setting Purpose

None The form contains no border or border−related elements. It is used for
startup forms.

Fixed 3D Not resizable For 3−D border effects. You can include control−menu box, title bar,
Maximize and Minimize buttons on the title bar. Provides a raised
border relative to the body of the form.

Fixed Dialog Not resizable For dialog boxes. It can include control−menu box, title bar, Maximize
and Minimize buttons on the title bar. Provides a recessed border
relative to the body of the form.

Fixed Single Not resizable Can include control−menu box, title bar, Maximize button, and
Minimize button. Resizable only using Maximize and Minimize
buttons. Creates a single line border.

Fixed Tool For tool windows. It displays a nonsizable window with a Close button
and title bar text in a reduced font size. This form does not appear in the
Windows taskbar.

Sizable (Default) Use as main window and child windows. The form is resizable and can
include control−menu box, title bar, Maximize button, and Minimize
button. It can be resized using the control−menu box, Maximize button,
and Minimize button on the title bar, or by using the mouse pointer on
any edge.

Sizable Tool A sizable tool window displays sizable with a Close button and title bar
text in a reduced font size. The form does not appear in the Windows
taskbar.

To disable the Minimize and Maximize buttons set the MinimizeBox or MaximizeBox properties to False
(properties such as this are inherited, and it is thus easier to set them interactively in the Properties editor).

 Changing Borders

580

Changing these properties does not always remove the box, but it may simply disable it.

Changing the Size of Forms

A form can be easily resized by accessing its sizing properties in code or interactively from the Windows
Forms Designer. To resize a form in the Windows Forms Designer, simply click it and drag one of the sizing
handles that hover at the borders of the form. These handles are the small white boxes on the borders that
change the mouse pointer into a double−headed arrow when you touch them.

Note For more control in resizing the form, press the arrow keys while holding down the SHIFT key.

Entering the values for the width and height, separated by a comma, in the Properties window will change the
size, but you can also drill down into the Size properties to enter individual Width and Height values.

You can resize the forms programmatically at run time as demonstrated in the following example, which
shows the form size set to 100 by 100 pixels:

MainForm.Size = New System.Drawing.Size(100, 100)

Changing the Width and Height properties can be done individually as follows:

MainForm.Width = 300

In the preceding code, the height of the form remains unchanged. You can also change Width or Height by
setting the Size property in the following style:

MainForm.Size = New Size(300, Form1.Size.Height)

Form size can also be changed in increments programmatically as demonstrated in the following line:

MainForm.Width += 200

This code sets the width of the form to 200 pixels wider than the current setting. You should always use the
Height or Width property to change the size of a form, unless you're setting both at the same time. The
following code, for example, will not change the form size:

Dim orm As New Form()
orm.Size.X += 100

The Size property only returns the Size structure containing a copy of the form's height and width, and the X
member of this structure is incremented by 100. You would then use the X value somewhere else, but it does
not act on the original form size.

Screen Location

You can specify exactly where a form is to be located at startup or at any time during the application's
lifetime. This is done by entering values in the form's Location property. The position is specified, in pixels, a
number of pixels away from the top of the screen and from the left corner of the screen.

I would, however, set the StartPosition of the application to the WindowsDefaultLocation constant. This
tells the OS to compute the best location for the form at startup, based on the current hardware and user

 Changing the Size of Forms

581

preferences. You really have no way of knowing at design time what the user's environment might be. Some
people like to chain monitors together and you are thus never certain just how much screen real estate the user
really has.

Screen size and resolution are also important, and you will often find your application installed to the lowest
resolution in an environment that requires it. I have a client, for example, that has no choice but to set the
screen resolution of workers to 600x400 pixels, because a commercial application does not render well in
anything higher (so all other UIs suffer).

You can, however, use the Properties window to set the StartPosition property to Manual. Then, you can
type the values for the Location property, separated by a comma, as you did earlier with the Size values. The
first number (X) is the distance from the left border of the display area, and the second number (Y) is the
distance from the upper border of the display area. You can also expand the Location property to enter the X
and Y subproperty values individually.

To position forms programmatically in code, set the Location property values by using a Point object, as
shown in the following example:

Form1.Location = New Point (100, 100)

You can change the X or Y coordinates of the form's location using the Left subproperty for the X coordinate
and the Top subproperty for the Y coordinate. In the following example we adjust the form's X coordinate to
the 300−pixel point:

Form1.Left = 300

Form position can also be changed in increments programmatically, as demonstrated in the following line:

Form1.Left += 200

Tip The Location property can be used to set the X and Y positions simultaneously. But they can also be set
individually. To do this, first set the form's Left (X) or Top (Y) subproperty. The Point structure or value
type itself only represents the form's location, which is merely a copy of the form's current coordinates.

Also, in light of the fact that a small percentage of users work upside down or lying horizontally, the taskbar
may not always be on the bottom default location of the desktop. It would thus be a good idea to use the
DesktopLocation property to factor in the startup location of your form. It sets the location of your form
relative to the taskbar. Docking the taskbar to the left or top obscures the desktop's 0−based X and Y
coordinates (0,0). Thus, a form with the DesktopLocation property set to (0, 0) will always appear in the
upper−left corner of the primary monitor, but a taskbar, if present, will not obscure it.

To set the DesktopLocation property programmatically, set it as you would any other property as follows:

Dim idxNoiseLst As New Form()
idxNoiseLst.DesktopLocation = New Point (100,100)

By the way, if you are looking for the DesktopLocation property in the Properties window (as I first did), you
will not have any luck. It can only be set programmatically as described here.

 Changing the Size of Forms

582

Components and Controls

Now that you've become the master of the form, the hard work begins. For a UI to be useful and to gain the
trust and support of the user, it needs to be well thought out, well scoped, and intelligently constructed. Of
course, it also needs to be aesthetic and pleasing to the eye. Your users should not find themselves struggling
to navigate the application as if they had just parachuted into the deepest South China jungle.

User interface design, however, is beyond the scope of this book. Besides, another task that is even more
demanding on the programmer, is adding controls and components to the forms and connecting the UI logic to
the business and functional logic of the application.

A term that adequately sums up the effort involved in working with visual controls and components is "wiring
up the application." The remainder of this chapter is dedicated to doing exactly that, as we review the
important characteristics of the standard components and controls that Visual Studio provides.

Adding Components and Controls to Forms

Adding components and controls to forms at design time is easy. You simply double−click the item to add it,
or drag it from the Toolbox (as shown in Chapter 3) to the form. The control is added to the form with the
specified location and size, which are easy to set in the Properties window or in code. However, you may have
a need to add controls and components at run time. This is easy to do because, as you know, controls and
components are objects that can simply be instantiated at run time and aggregated to the Form object.

The following example adds a TextBox control to the form whenever a certain Button control is clicked. You
provide the method that handles the Click event and then programmatically adds the control, as show here:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim MyText As New TextBox()
 MyText.Location = New Point(25, 25)
 Me.Controls.Add(MyText)
End Sub

Nonvisual controls can be added at design time and run time, as previously shown. Some controls, however,
do not have a visual element or any visual properties, so you cannot see them on the grid when they are
aggregated to the form. In the past, OCX, VBX, and VCL nonvisual components were typically represented
by a button on the form that becomes invisible at compile time. This is no longer the case with the Visual
Studio .NET form designer. Instead, nonvisual controls and components, such as menus, are placed into a tray
that is anchored at the bottom of the designer.

Once a nonvisual control has been added to the component tray, you can select the component and set its
properties as you would any other control on the form. This is demonstrated in Figure 16−6, which shows the
addition of a Timer control to the form.

 Components and Controls

583

Figure 16−6: Adding a nonvisual control to the form's component tray
Tip Components often have control−specific properties that must be set. In the case of the Timer

control, you need to enable it via its Enabled property. The interval of the timer also defaults
to 100 milliseconds.

To add such a component to a Windows Form programmatically, you would write code like this:

Dim MainFormTimer As New Timer()

You can also add the control to a component collection by adding the following elements in your declaration:

Dim MainFormTimer As New Timer(Me.components)

Layout and Grouping

The Toolbox provides several controls or components that you can use for layout and to group controls in the
UI. For example, you would use a GroupBox as a container in which to group a collection of EditBox
controls that serve a common purpose, such as representing the fields of an Address table in a database.

The layout and grouping controls provided are as follows:

Panels Panels cordon off a portion of form real estate to identify a collection of controls that belong
together.

•

GroupBoxes Like panels, group boxes also collect together a number of controls that serve a
common task.

•

Tabs Tabs are used to group controls onto separate pages and hide the controls on a tab that is not in
focus. The analogy is a tabbed notebook or a tabbed folder in a filing cabinet.

•

ScrollBars These are used to group controls, but the canvas is made scrollable so that you can hide
controls in a space that is longer or wider than the current form or screen's bounds. Scroll bars are
typical in text editors in which you scroll down from page to page rather than tabbing from page to
page.

•

Splitters These elements let you change the width or height of panels relative to other panels or
windows they are docked up against.

•

 Layout and Grouping

584

Panels

Panels not only give the user information about a collection of controls on a forma visual cuethey are also
useful as a design−time tool. Once you have aggregated a collection of controls to a Panel object, you can
simply move the panel, and all contents of the panel move with it. This is essentially aggregation cranked up
several notches: the Panel object is aggregated to the Form object and the controls are aggregated to the
Panel object.

The Panel control and the GroupBox control are used for the same purpose, but Panels can be given scroll
bars, which allows them to hold a large number of controls while the dimensions remain the same. Panels
also do not have captions, which GroupBox controls do. To display the scroll bars of a Panel, you need to set
its AutoScroll property to True.

Panels can also be easily customized by setting the BackColor, BackgroundImage, and BorderStyle
properties. The BorderStyle property enhances the visual element of the panel. It can be set to show no
visible border (its default), in which case the user does not see the panel at all, or it can be given plain borders
(FixedSingle) or a shadowed border (Fixed3D).

You can also use a Panel to group collections of controls, such as a group of RadioButton controls. The
Panel control's Enabled property can also be used to enable or disable all the controls that it contains, which
is a useful utility for referencing the entire collection of controls at the same time.

The following code adds a Panel control to the IdxSearchForm and adds a Label and a TextBox control to
the Panel. The Panel control's borders are set to display three−dimensionally so that you can distinguish
where the Panel control is located on the form in relation to other objects.

Me.Panel1.Controls.AddRange(New System.Windows.Forms.Control() _
{Me.Label1, Me.TextBox1})
Me.Panel1.Location = New System.Drawing.Point(16, 24)
Me.Panel1.Name = "Panel1"
Me.Panel1.Size = New System.Drawing.Size(296, 160)
Me.Panel1.TabIndex = 2
Me.Panel1.BorderStyle = BorderStyle.Fixed3

Figure 16−7 shows the provision of the Panel in the IdxSearchForm.

Figure 16−7: A Panel object containing a Label object and a TextBox object
GroupBox

The GroupBox controls are also used to provide an identifiable grouping for other controls. GroupBox
controls are used to collect controls in a group by function, such as all the text entry fields of a particular
collection of columns in a table. Like the Panel control, if you move the GroupBox control, all its contained

Layout and Grouping

585

controls move, too.

The GroupBox also displays a frame around a group of controls with or without the caption. The useful
property of the GroupBox is that the controls within it operate exclusively from other controls on the form or
other GroupBox components. At the class or object level, the components are simply nested or inner classes
of the GroupBox class, so they do not see the controls of other GroupBox classes that are composed at the
same level on the form (see Chapter 9, "Aggregation and Composition: Reuse by Containment"). In other
words, if you contain a logical group of RadioButton controls, changing their toggle values has no effect on
the RadioButtons of other GroupBoxes.

You can add controls to the GroupBox with the Add method, but you cannot reference a GroupBox control
to receive focus. Use the Properties window to inspect the properties of the GroupBox. The GroupBox is
shown in Figure 16−8.

Figure 16−8: The GroupBox object
The following example instantiates a GroupBox and two RadioButtons. The RadioButton objects are
aggregated to the GroupBox, which is in turn aggregated to the Form object's Controls collection.

Private Sub AddInitializeMyGroupBox()
 Dim grpBox1 As New GroupBox()
 Dim rdoButton1 As New RadioButton()
 Dim rdoButton2 As New RadioButton()
 grpBox1.FlatStyle = FlatStyle.System
 grpBox1.Controls.Add(rdoButton1)
 grpBox1.Controls.Add(rdoButton2)
 Me.Controls.Add(grpBox1)
End Sub

TabControl

TabControl objects display multiple tabs, like the dividers in a notebook or the folders in a filing cabinet.
The tabs themselves are objects, so they can contain pictures and even other controls. You typically use the
Tab control to simulate a multiple−page dialog box that appears many places in the Windows OS, such as the
Connection Status dialog box of your networking resources.

The most important property of the TabControl, however, is its TabPages, which contain the individual tabs.
Each individual tab is a TabPage object and, when clicked, the Click event is raised in the TabPage object.
Adding a TabPage can be done interactively as demonstrated in Figure 16−9, or as shown programatically by
the code that follows.

Layout and Grouping

586

Figure 16−9: Adding TabControl and TabPage objects
Me.TabControl1.Controls.AddRange(New System.Windows.Forms.Control() _
{Me.TabPage1})
Me.TabControl1.Name = "TabControl1"
Me.TabControl1.SelectedIndex = 0
Me.TabControl1.Size = New System.Drawing.Size(352, 248)
Me.TabControl1.TabIndex = 0
Me.TabPage1.Location = New System.Drawing.Point(4, 22)
Me.TabPage1.Name = "TabPage1"
Me.TabPage1.Size = New System.Drawing.Size(344, 222)
Me.TabPage1.TabIndex = 0
Me.TabPage1.Text = "TabPage1"

ScrollBar

ScrollBar objects are a little different from the objects discussed earlier, which derive from various base
objects when you declare them. To create your own scroll bar class, you first need to inherit from either the
VScrollBar or HScrollBar class (representing vertical or horizontal scrolling actions, respectively).

You can adjust the scroll range of the scroll bar control by setting its Minimum and Maximum properties.
You can also adjust the distance the ScrollBar scrolls with each click of its scroll buttons, by setting its
SmallChange and LargeChange properties. To adjust the starting point of your ScrollBar, set its Value
property when the control is initially displayed.

The following code adds a vertical scrollbar to the Panel object.

Me.Panel1.Controls.AddRange(New System.Windows.Forms.Control() _
{Me.VScrollBar1, Me.Label1, Me.TextBox1})

By the way, before you rush to add scroll bars everywhere, check first if the controls are not automatically
composed of them. This is the case with many controls, and thus the ScrollBar's interface and properties are
simply merged with the interface of its container.

Splitter

A Splitter control lets you resize docked controls at run time. For example, if you have two panels docked
against each other and to all sides, the Splitter lets you resize the controls that are docked to the edges of the
Splitter. When you hover the mouse pointer over the Splitter control, your cursor changes to indicate that the
controls docked to the Splitter control can be resized. So, if PanelA's width decreases by 10 pixels, PanelB's
width increases by 10 pixels.

Layout and Grouping

587

We will use a Splitter to resize the Panels in the workspace. To do this, create a form, add the Panel controls
to the form, and set the Dock property to DockStyle.Left. Add a Splitter control to the form and set its Dock
property to DockStyle.Left as well. Then add another Panel to the form and set its Dock property to
DockStyle.Right. When you are done the Splitter arrangement will resemble the example shown in Figure
16−10.

Figure 16−10: Splitter and docked panels arrangement
The code behind the Splitter is as follows:

Me.RightPanel.Dock = System.Windows.Forms.DockStyle.Right
Me.RightPanel.Location = New System.Drawing.Point(156, 0)
Me.RightPanel.Name = "Details"
Me.RightPanel.Size = New System.Drawing.Size(200, 252)
Me.RightPanel.TabIndex = 2
Me.Splitter.Location = New System.Drawing.Point(136, 0)
Me.Splitter.Name = "Splitter"
Me.Splitter.Size = New System.Drawing.Size(3, 252)
Me.Splitter.TabIndex = 1
Me.Splitter.TabStop = False
Me.LeftPanel.Dock = System.Windows.Forms.DockStyle.Left
Me.LeftPanel.Name = "Tree"
Me.LeftPanel.Size = New System.Drawing.Size(136, 252)
Me.LeftPanel.TabIndex = 0

Note Resizing a control using the Splitter control can only be done using the mouse. It is not possible to
access the Splitter control using the keyboard.

Positioning Controls

Positioning a control on the canvas of the form is simple enough to do with the mouse. For more control, you
can use the arrow keys. You can also position a control via its properties interactively in the Properties
window or in code.

To set the properties interactively, type values for the Location property, separated by a comma, to the
location within its container. The first number (X) is the distance from the left border of the container area; the
second number (Y) is the distance from the upper border of the container area. The measurements are all in
pixels. You can also expand the Location property to type the X and Y values individually.

Setting the location in code can be done as follows:

OpenButton.Location = New Point (100, 100)

As discussed for earlier controls that aggregate Point objects, do not try to implicitly set the X and Y
coordinates of the Point type, because it only represents the control's location; it does not affect the location

 Positioning Controls

588

of the control.

Setting a Single Property for Multiple Controls

You can select more than one type of control and specify the same value for all the controls. This technique
can be useful, for example, if you add several Button controls to a form and you want to make sure they are
all the same size, or all aligned left or right, and so on. You can select multiple controls of different types, but
the Properties window displays only the properties that are common to all the selected controls, such as
Width and Height.

To select all the controls at the same time, hold down the CTRL key and click each control once. You can also
click the left mouse button and drag it over the group of controls, as you do when selecting files in an
Explorer window.

Complex Property Pages

Some controls, like HTML tables, are complex and require the services of advanced property pages for
interactive manipulation. Some maintain collections of objects, such as ListBoxes. The property pages are
represented in custom dialog boxes. To access the property page for a control, select the control whose
property page you want to access. Then, in the Properties window, click the button of the Property that
indicates a Property Pages button. The Property Pages dialog box for the control is displayed.

You can, however, still provide the data in code, and for complex property pages, I prefer to set my own
properties in code. For example, providing a large collection of values for a DropDown list is much easier
and quicker to do in code. Setting up an HTML table, for the most part, is far too complex and buggy to set up
via its property pages. The following code shows how to generate a search results HTML table in code, a task
that is very frustrating to do interactively. (Frankly, the property pages for HTML controls are nearly useless
in my opinion, and you need to just get down to typing it all out, as the following example demonstrates.)

Public Sub CreateTable(ByVal cursor As Integer, _
 ByVal rows As Integer)
 Dim numCells As Integer
 Dim rowNum As Integer
 Try
 While rowNum <= rows 1
 Dim newRow As New HtmlTableRow()
 While numCells <= maxCells 1
 Dim newCell As New HtmlTableCell()
 newRow.Cells.Add(newCell)
 numCells += 1
 End While
 TABLE1.Rows.Add(newRow)
 numCells = 0
 rowNum += 1
 End While
 AddData(cursor, rows)
 Catch Except As Exception
 exceptInfo = Except.Message
 End Try
End Sub

 Setting a Single Property for Multiple Controls

589

Using The Property Grid

The property grid that is shown in the Properties window is itself an object of the type PropertyGrid, and
you can create a new instance of it at will. It can be placed on the parent control, and you set its
SelectedObject to the object to display the properties for. The information displayed in the grid is a
once−only retrieval of the properties at the time the object is assigned to the grid. So, if a property value of the
object specified by the SelectedObject is changed in code at run time, the new value is not displayed in the
grid until it is refreshed, which can be done by reselecting the object to reference or by simply dereferencing
the grid and instantiating a new one.

The property tabs within the property grid appear as buttons on the toolbar at the top of the PropertyGrid.
They vary in scope, as defined in the PropertyTabScope enumeration. To use the PropertyGrid, you need to
add it to the Toolbox in the IDE because it is not one of the default controls. Once you add a PropertyGrid to
the Toolbox, you can drag and drop it onto the form like any other control. Of course, you can bypass the
Toolbox work and declare an instance of the PropertyGrid class in your code.

The following example illustrates creating a PropertyGrid and setting its location on a form. This example
assumes a form with a TextBox on it.

Public Sub New()
 Dim propGrid As New PropertyGrid()
 propGrid.CommandsVisibleIfAvailable = True
 propGrid.Location = New Point(10, 20)
 propGrid.Size = New System.Drawing.Size(400, 300)
 propGrid.TabIndex = 1
 propGrid.Text = "Property Grid"
 Me.Controls.Add(propGrid)
 propGrid.SelectedObject = seachEdit
End Sub

Note Refer to Chapter 3 for specific information about the Toolbox window.

Menus and Toolbars

Adding and working with shortcut menus, status bars, and toolbars, either interactively or programmatically,
is not difficult at all. Menus typically provide commands, grouped by a common theme such as file
operations, to your users. Toolbars use buttons to expose the same functionality in the menus or any
frequently required operations. Context menus "pop up" in response to a right−click of a mouse and present
options in the context in which they were requested. Status bars are used to indicate the application state or to
provide information about processing in the application, such as a document that is printing or data that is
being transmitted or received.

Adding Menus and Menu Items Programmatically

To add a menu to a Windows Form programmatically, define a method that includes the code to add the
menu to your form:

Public Sub AddMenu()
 Dim mnuFile As New MainMenu()
 Me.Menu = mnuFile
End Sub

Once you have added the code for the menu to your form, you need to add child or submenu items to it. Menu

 Using The Property Grid

590

contents are kept within a collection, so you can add menu items to a menu at run time by simply adding
MenuItem objects to the collection.

Within the method, you create the child menus to the MainMenu object's collection as follows:

Dim menuItemFile As New MenuItem("&File")
Dim menuItemNew As New MenuItem("&New")

A MainMenu object contains no menu items, so once you add the first menu item to the object, it becomes
the menu's heading. This is why the Text property of menuItemFile in the example is set to &File. Within
the method, assign the top−level menu item and add subsequent menu items to it as shown here:

menuItemFile.MenuItems.Add(menuItemNew)
menuItemNew.MenuItems.Add(menuItemProject)

To create submenus, you can simply add MenuItem objects to the MenuItems collection of the parent
MenuItem. So, to add a third menu item (menuItemOpen) as a submenu of the second menu item
(menuItemNew) shown here, just add the following line of code:

menuItemNew.MenuItems.Add(menuItemOpen)

Menu items can also be dynamically added to the collection in the same code that creates them. The following
example shows you how to add another menu item to the preceding collection:

menuItemFile.MenuItems.Add("Save &As")

As demonstrated earlier in this chapter, in the section "MDI Applications," you provide functionality for the
menu items through an event handler that is provided under the MenuItem's.Click event.

Context−Changing Menus

The following example shows how to create a menu arrangement that changes state according to the activities
of the user. When the application starts, it will have only a traditional File menu with New, Open, and Exit
commands. But as soon as the user selects either the New or Open menu item, the application state changes
and the menu items change accordingly.

To do this for your application, create a multicast event handler called GetMenu for the New and Open menu
items. This is a multicast delegate that will respond to the Click events of both menu items. Enter the
following code in the GetMenu event handler:

Private Sub GetMenu(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MenuItem1.Click
 LoadAlternateMenu()
End Sub

Now we can switch focus to the second menu on the response of the click handler with the following code:

Private Sub LoadAlternateMenu()
 Me.Menu = MainMenu1
End Sub

You can make a copy of the top−level menu item and all of its submenu items by simply dragging another
MainMenu component from the Toolbox to the form. Then, in the Menu Designer, right−click the "Type

 Context−Changing Menus

591

Here" area and choose Paste. The menu items you previously selected from the first MainMenu component
are pasted into the second.

To test the application, run the debugger. The form first shows a menu that contains File, New, Open, and Exit
menu items. But as soon as you click New or Open, an event is raised by which the GetMenu event handler
(among others) processes the code related to the event. The application state changes and the new menus are
swapped in.

Moving menu items between menus or within menus is made possible because the item objects are
maintained in a collection. At design time, you can move entire menu structures around within the Menu
Designer. But at run time, menu items can be moved between MainMenu objects or MenuItem objects,
which allows for some measure of customization.

To move a menu item programmatically, at run time, simply change the index position of the MenuIitem
object as shown here:

Public Sub ChangeMenuItem ()
 Me.Menu.MenuItems(0).MenuItems(0).Index += 1
End Sub

Menus can also be copied, cut, and pasted from the designer, which automatically takes care of referencing
issues for you. In code, however, it can get a bit tricky because the menu operations are often duplicated in
context menus, or toolbar buttons and shortcuts. You can, however, use the CloneMenu method of the
MenuItem class to make a copy of the menu in code, and then work with its members as a separate class.

Copying menu items preserves property settings and event handlers you have established with the original
menu items, so that the new menu items you have created use these same event handlers. This occurs because
the entire MenuItem object is cloned, along with everything connected to it.

You can also enable and disable menu items to channel a user's activities or limit and broaden them as they
progress with the application. All menu items are enabled by default when created, but you can disable them
by setting the Enabled property to False. You can also access the property interactively in the Properties
window.

To disable a menu item programmatically in code, the following line is all you need:

MenuItem1.Enabled = False

However, if you disable the first or top−level menu item in a menu (for example, the File menu item in a
traditional File menu), you end up disabling all the menu items contained within the menu because you are in
effect disabling the collection. This is the proper behavior, and disabling a submenu item that has
sub−submenu items disables all the sub−submenu items as well.

But rather than hiding menu commands that are unavailable to the user by setting the Visible property to
False, you can hide the entire menu tree by setting the topmost menu item Visible property to False. This not
only obviates the need to enable and disable menu items, and the effort involved in tracking the state, but it is
better to hide and disable the entire menu because this keeps the UI clean and free of clutter. Besides, users
often click a disabled menu item; I have seen this done numerous times. If you decide to hide a menu chain,
you must also disable the menu, because hiding does not prevent access to a menu command via other routes,
such as a shortcut key.

 Context−Changing Menus

592

To hide a menu item programmatically, you can use the following line of code:

MenuItem1.Visible = False

You can also merge menu items programmatically, which is common in MDI applications where the menus of
the children are merged with the parent form's menus. The following example shows how this is done in code:

Public Sub MergeMenus()
 childMenu.MergeMenu(parentMenu)
End Sub

As mentioned earlier in the section "MDI Applications," two properties, MergeType and MergeOrder, are
used to determine how individual menu items are handled during the merge and the order of their placement
relative to the other MenuItem in the newly merged menu. You can set these properties on MenuItems
individually or collectively to determine the items' presence and location within a menu merge. The following
example sets these two properties for a menu item, MenuItemMain:

Public Sub MainMenuMergeProperties()
 MenuItemMain.MergeType = MenuMerge.Add
 MenuItemMain.MergeOrder = 1
End Sub

Enhancing Menus

There are four built−in enhancements that can dress up menus in a way that conveys more information to
users:

Check marks These can be used to designate whether a feature on a menu is turned on or off, such
as whether certain toolbars in an application are visible, or to indicate which of a list of files or
windows is visible to the user or available.

•

Shortcut keys These are keyboard commands that let you access menu items within an application.
The access keys allow direct access to keyboard commands usually by way of combining the ALT
key and the underlined access key that is hooked to the desired menu or menu item. A good example
is the ALT−F4 combination used to close the window or application.

•

Separator bars These are used to group related commands within a menu, which makes the menus
easier to follow.

•

RadioChecks When a property of a menu item is set to True, it displays a small dot (•) next to the
itemwhich indicates that the item is selected.

•

To add a check mark to a menu item programmatically, reference the menu item in code and set the Checked
property to True as follows:

MenuItemMain.Checked = True

To add a shortcut key to a menu item programmatically, add the following code to set the Shortcut property
to one of the values of the Shortcut enumeration:

MenuItemMain.Shortcut = System.Windows.Forms.Shortcut.F4

Adding an access key is done when you set the Text property (in the Properties window, in the Menu
Designer, or in code), by prefixing the letter that will stand as the key with an ampersand (&). This underlines
the letter to signify that it is the key. For example, typing F&ile as the Text property of a menu item causes

 Enhancing Menus

593

the text label to be written as File. To navigate to this menu item, press ALT−I. Alternatively, you can also
provide an access key to the superior level, which would obviate the need to press ALT in the sublevel. For
example, if under the File menu we provided a Close label on a menu item (Cl&ose), all the user would need
to do is press ALT−I−O to select the Close menu item. This is standard Windows navigation stuff that has
been around since the 16−bit era.

To add a separator bar as a menu item, right−click the location where you want a separator bar, and choose
New Separator. Or when setting the Text property interactively or in code, providing a dash () makes the
menu item a separator bar.

Besides the preceding four enhancements, you can also designate one of the items as the default item. This is
done by simply setting its DefaultItem property to True. The default item then appears in bold text.

A menu item's Checked property can also be set to either True or False, which indicates whether or not the
menu item is selected. If its RadioCheck property is set to True, a radio button appears next to the item.

Adding a check mark to a menu item at design time involves nothing more than clicking the area to the left of
the menu item. This sets the Checked property to True without the need to select the property in the
Properties window. Naturally, all of these properties can be set in code.

Finally, just as with earlier versions of Visual Studio and Visual Basic, you can indicate to the compiler that
your code will undertake to draw the menu item. This is done by setting the OwnerDraw property to True.
Use OwnerDraw to provide your own code to render the menu item. With some time and dedication, you can
perform some magic with the menus, such as adding icons, changing colors and fonts, and more.

Note To set these dynamic properties interactively, navigate to the DynamicProperties option on the menu's
items properties and click the Property Pages button to open the Dynamic Properties dialog box.

The Menu Class

This class is the base class for the MainMenu, MenuItem, and ContextMenu classes. You cannot create an
instance of this class, but you can extend it as in the preceding classes. The menus for an application are
comprised of aggregated or composite MenuItem objects. The MenuItem objects are contained in the
MainMenu and presented as an entire menu structure for a form or a ContextMenu that is used to list
shortcuts and context−sensitive options.

Unlike many base classes, the Menu base class delegates to its derived classes to define its properties. In
addition to the properties that are provided for all of the derived menu classes, the Menu class also provides
methods, such as CloneMenu and MergeMenu, that provide the implementation to create new menus from
existing menus, or to merge two menu structures together, and the like.

The Menu class also exposes the composite class Menu.MenuItemCollection. This class defines the
collection of MenuItem objects used by the MenuItems property. You can use the methods of the
Menu.MenuItemCollection class to add and remove menu items from a MainMenu, ContextMenu, or
MenuItem, as shown earlier.

Responding to User Input

As we learned in Chapter 14, an event handler is a method that is bound to an event. When the event is
triggered, usually in response to a message from the Windows subsystem, such as a keypress or a mouse click,

 The Menu Class

594

the code within the event handler is executed.

Each event handler lists two parameters that are used in the handle of the event. The following example shows
an event handler for a Button control's Click event:

Private Sub button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button1.Click
 'And . . .
End Sub

The first parameter expects an argument that passes a reference to the object that raised the event. The second
parameter (e in the preceding example) passes an object specific to the event that is being handled, which
connects the event to information relative to the event. By obtaining a reference to the sender in this fashion,
you can provide the facility to gain access to the sender's properties and public methods. This can be used to
obtain information such as the location of the mouse for mouse events or data being transferred in
drag−and−drop events.

UI events comprise the bulk of your interface logic and are thus the most complex code constructs you will
need to concern yourself with in the UI. Everything else involves little more than setting and getting
properties.

To create a UI event handler, switch to View Code mode and from the Class Name drop−down box (refer to
Chapter 3) above your code to the left (under the Editor tab), select the control that you want to add a specific
event handler to (remember, controls are classes). From the Method Name drop−down box on the right, select
the event for which you want to add a specific handler (when you select the control's class in the left
drop−down box, all events in that class, if any, are listed in the Method Name drop−down box to the right).
Choose the event, and the Code Editor automatically inserts the appropriate event handler into your code and
positions the insertion point within the method. The following example provides the Click event for the
Button control:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
'Add Event Handler Code Here
End Sub

You can also generate the handler by double−clicking the control on the form. There will come a time when
you have done this enough times to know how to wire up the event code manually. I find that I can wire up
events faster in the Code Editor than by switching between windows, modes, and drop−down list boxes.

Binding Events Dynamically

In line with what I just said about wiring up an application manually, you can provide code to create event
handlers at run time. This practice serves to wire up the events at run time, which lets you control which event
handlers are activated depending on the condition or state of the application at a certain time. Similar to late
binding, you can think of this as "late wiring."

Hot Spots

Hot spots are regions in your application that can be referenced by a cursor's tracking position. By default, the
hot spot is set to the upper−left corner of the cursor (coordinates 0,0). So, as soon as the cursor hits the
coordinates specified in the hot spot, an event can be raised. To set a cursor's hot spot you use Visual Studio's
Image Editor toolbar, which is accessed from the Tools, Customize menu. Select the Set Hotspot tool and then

 Binding Events Dynamically

595

click the pixels you want to designate as the cursor's hot spot. The Hotspot property in the Properties window
displays the new coordinates.

Tip Tooltips can be made to appear when you hover your cursor over a toolbar button. These tips can
help you identify the function of each button.

Mouse and Keyboard Events

Mice can do a lot more than nibble cheese. In a Windows UI, they can let you know when one of their buttons
has been clicked or released, or when the mouse pointer leaves or enters some part of the application. This
information is provided in the form of MouseDown, MouseUp, MouseMove, MouseEnter, MouseLeave,
and MouseHover events.

KeyPress events also bubble up from the OS and are made available to you in KeyPress, KeyDown, and
KeyUp events. Mouse event handlers receive an argument of type EventArgs containing data related to their
events; however, key−press event handlers receive an argument of type KeyEventArgs (a derivative of
EventArgs) containing data specific to the keypress or key release events.

When wiring up mouse events, you can also change the mouse cursor. You typically marry the ability to
change the cursor to the MouseEnter and MouseLeave events. These are used to provide feedback to the user
that something is happening, not happening, or that certain areas are offlimits or welcome to the explorative
nature of your cursor. The event is exposed in the following code example:

Public Event MouseDown As MouseEventHandler

Table 16−3 lists the MouseEventArgs properties to provide information specific to the mouse event.

Mouse events occur in the following order:

MouseEnter1.
MouseMove2.
MouseHover/MouseDown/MouseWheel3.
MouseUp4.
MouseLeave5.

Table 16−3: MouseEventArgs Properties

Property Purpose

Button Tells you which mouse button was pressed

Clicks Tells you how many times the mouse button was pressed and released

Delta Retrieves a signed count of the number of detents the mouse wheel has rotated. A
detent is one notch of the mouse wheel.

X Retrieves the X coordinate of a mouse click

Y Retrieves the Y coordinate of a mouse click

 Mouse and Keyboard Events

596

Keyboard Events

Keyboard events are fired when a key is pressed in a control that has the focus. The code for a keyboard event
looks like this:

Public Event KeyPress As KeyPressEventHandler

The key event handler receives an argument of type KeyPressEventArgs containing data related to this
keypress event. Table 16−4 lists the KeyPressEventArgs properties that provide information related to the
event received.

Table 16−4: KeyPressEvenArgs Properties

Property Purpose

Handled Retrieves or returns a value to the property indicating whether the KeyPress event was
handled

KeyChar Retrieves the KeyChar (character pressed) value corresponding to the key pressed
Key events occur in the following order:

KeyDown1.
KeyPress2.
KeyUp3.

Using a Timer to Fire Events

A timer can also be used to raise events at regular intervals. The component discussed here is designed for
UIs, but the server−based timer is also available in the .NET Framework (see the SDK documentation).

The timer is switched on when you set its Enabled property to True, and the default interval of 100
milliseconds can be changed in the Interval property. Each Tick event is raised at every interval, which is
where you add the code you want executed.

A Timer control is started and stopped by calling its Start and Stop methods, respectively. Stopping a timer
has the effect of pausing it. Timers on forms are typically used for single−threaded algorithms, where the UI
threads are used to perform some processing. The timer thus requires that you maintain the UI message pump
and always operate from the same thread, or marshal the call onto another thread.

Collecting User Input

Many controls and components are designed to collect information from the user or to prompt the user to
generate actions and events in the UI. These include the controls listed in Table 16−5.

Buttons

The most common control used to elicit a user response is a Button control. Button press events let you place
code in the Click event handler to perform any action defined in the button event. The following example
instantiates a Button, sets its DialogResult property to DialogResult.OK, and adds it to a Form:

 Keyboard Events

597

Private Sub AddAButton()
 Dim button1 As New Button()
 button1.DialogResult = DialogResult.OK
 Me.Controls.Add(button1)
End Sub

Table 16−5: User Interface Controls for Soliciting and Obtaining Input

Control Purpose

Buttons Button press events let you place code in the Click event handler to
perform any action defined in the button event. The analogy is clicking
a physical VCR button.

Text Edit boxes Lets the user enter text in a field−like container

Check boxes Lets the user choose items on a check list

Radio buttons Provide a toggle facility (only one may be on at any time)

Combo boxes Provide a list of items to choose from

DomainUpDownBox A combination of a text box and a pair of buttons for moving up or
down through a list without having to expand it

NumericUpDownBox A combination of a text box and a pair of buttons for moving up or
down through a list of numbers

DateAndTimePicker A control for interactively selecting a single item from a list of dates or
times

Calendar A control of some graphical proportions that allows a user to view and
set date information. The analogy is a calendar hanging on the wall.

Palette A preconfigured dialog box that allows the user to select a color from a
palette and to add custom colors to that palette

List Box A control that displays a list of items from which the user can choose

CheckedListBox A control that displays a list of items the user can check to signify a
selection

ListView A list of items in a container, such as the list of files in a folder

TreeView A collection of items organized in a hierarchical fashion, with roots,
branches, and leaf nodes

TrackBar A control that lets you set positions on a notched scale

ToolBar A form−like object that contains and enumerates buttons representing
menu options and events

Edit Text Boxes

The TextBox control lets your user provide text input to an application. The control provided by .NET
includes additional functionality not found in the standard Windows TextBox control. For example, it
provides multiline editing and password character masking combined into a single control. In other words, the
framework has combined the functions of a classic edit box with a text box (which is why you will not find a
TextBox control in the Toolbox).

However, the TextBox is mainly used to display, or accept, a single line of text. The Multiline and
ScrollBars properties are used to enable multiple lines of text to be displayed or entered. Setting the
AcceptsTab and AcceptsReturn properties to True allows enhanced text manipulation and turns the control
into a multiline TextBox, as shown in Figure 16−11.

 Edit Text Boxes

598

Figure 16−11: The TextBox control configured as a multiline "text editor" with scroll bars
The code for the TextBox control shown in Figure 16−11 is as follows:

Me.TextBox1.Location = New System.Drawing.Point(8, 8)
Me.TextBox1.Multiline = True
Me.TextBox1.Name = "TextBox1"
Me.TextBox1.ScrollBars = System.Windows.Forms.ScrollBars.Vertical
Me.TextBox1.Size = New System.Drawing.Size(344, 240)
Me.TextBox1.TabIndex = 0
Me.TextBox1.Text = "TextBox1"

You can also limit the amount of text entered into the TextBox control by setting its MaxLength property to
a specific number of characters. Masking features let the TextBox control be used for passwords and other
user−defined information. Use the PasswordChar property to mask characters entered in a single−line
version of the control, as demonstrated in the following code. Regardless of what the user enters, it is
displayed as a star (asterisk) on Windows versions prior to Windows XP and .NET Server (the latter displays
a blob instead of the asterisk).

Private Sub InitializeTextBox ()
 'Add text into the control at startup.
 TextBox1.Text = "Add noise word."
End Sub

You also have the option of setting the insertion point in a TextBox control by setting the SelectionStart
property to the desired value. Zero places the insertion point immediately to the left of the first character. If
you set the SelectionLength property to the length of the text you want to select, the control cannot be written
to. The following code always returns the insertion point to 0. The TextBox1_Enter event handler must be
bound to the control.

Private Sub TextBox1_Enter(ByVal sender As Object, ByVal e As
System.EventArgs) Handles TextBox1.Enter
 TextBox1.SelectionStart = 0
 TextBox1.SelectionLength = 0
End Sub

You can also use the TextBox control as a read−only control. For example, the TextBox may display a value
that is typically editable, but the control can be set to prevent the user from changing the value, until the
read−only state changes. To create a read−only text box, simply set the TextBox control's ReadOnly property
to True. With the property set to True, users can still scroll and highlight text in a text box. They just can't
make changes. Copying is also possible from a text box, but cutting and pasting are not. You would typically
use the RichEdit control for cut−and−paste operations, as shown later in this chapter.

 Edit Text Boxes

599

Incidentally, the ReadOnly property only affects user input. You can still change the text box text at run time
by changing the Text property.

When you need to show quotation marks (" ") in the text, as in this example:

Examples: "&, (, #, %, $"

insert two quotation marks in a row as an embedded quotation mark, as follows:

Private Sub InsertQuote()
 TextBox1.Text = "Examples: ""&,(,*,%,$"" "
End Sub

Alternatively, you can insert the ASCII or Unicode character for a quotation mark, as shown in the following
example:

Private Sub InsertAscii()
 TextBox1.Text = "Examples: " & Chr(34) & "&,(,*,%,$" & Chr(34)
End Sub

You can also define a constant for the character, and use it where needed:

Const OpenQuote As String = """
Const CloseQuote As String = """
TextBox1.Text = "Examples: " & OpenQuote & "&,(,*,%,$" & CloseQuote

You can also write code to select text in the TextBox control. You write code that searches the text value for a
particular String, or use a string−manipulation method to alert the user to the string's position in the box.
Then, you can write code to select the text by setting the SelectionStart property to the beginning of the text
string found. The SelectionStart property is an ordinal value that indicates the insertion point in the text, with
0 being the leftmost position, and the length of the string after the last character being the rightmost position.
If the SelectionStart property is set to a value equal to or greater than the number of characters in the text
box, the insertion point is placed after the last character.

You can also set the SelectionLength property to the length of the text to be selected. The SelectionLength
property is also an ordinal value that sets the width of the insertion point. If you set the SelectionLength to a
number greater than 0, it will cause that number of characters to be selectedand the selection starts from the
current insertion point.

The following code selects the contents of a text box when the control's Enter event occurs:

Private Sub TextBox1_Enter(ByVal sender As Object, ByVal e As
System.EventArgs) Handles TextBox1.Enter
 TextBox1.SelectionStart = 0
 TextBox1.SelectionLength = TextBox1.Text.Length
End Sub

Check Boxes

The CheckBox control indicates whether or not a particular item is selected. It is commonly used to present
multiple choice (Yes/No or True/False) selections to a user. You can use CheckBox controls in groups to
display multiple choices from which the user can select one or more.

 Check Boxes

600

Radio Buttons

The RadioButton controls present a set of two or more mutually exclusive choices to your user. A radio
button is like an on/off toggle switch. When one button is on, all others that are part of the same container are
off. Radio buttons in separate containers, such as a group in a panel, are isolated from the condition of the
other group because their scope of visibility in the container is blocked by the bounding class.

Combo Boxes

The ComboBox control is used to display data in a drop−down combo box. By default, the ComboBox
control appears in two parts: the top part is a text box that allows the user to type a list item; the second part is
a list box that displays a list of items from which the user can select one item.

DomainUpDown

The DomainUpDown control looks like a combination of a text box and a pair of buttons for iterating up or
down through a list. This control displays and sets the current text from the list of choices in the control. The
user can select the string by clicking the Up and Down buttons to move through the list, by pressing the UP
ARROw and DOWN ARROW keys, or by typing a string that matches an item in the list. You might consider
using this control for selecting items from an alphabetically sorted list of names, and you can sort the list by
setting its Sorted property to True. This control is very similar to the ListBox or ComboBox controls and is
a lot simpler to use, as shown in Figure 16−12.

Figure 16−12: The DomainUpDown control

NumericUpDown

The NumericUpDown control works like the DomainUpDown control. The NumericUpDown control
displays and sets a single numeric value from its list of choices. Your user can increment and decrement the
number by pressing Up and Down buttons, by pressing the UP ARROW and DOWN ARROW keys, or by
typing a number. Pressing the UP ARROW key moves the value toward the maximum; pressing the DOWN
ARROW key moves the value toward the minimum. NumericUpDown controls are used in many Windows
Control Panel applications. The numbers displayed may be in a variety of formats, including hexadecimal.

Date and Time Picker

The DateTimePicker control lets the user select a single item from a list of dates or times. When used to
represent a date, it appears in two parts: a drop−down list with a date represented in text, and a grid that
appears when you click the down arrow next to the list. The grid looks like the MonthCalendar control,
which can be used for selecting multiple dates. An alternative to the grid, useful for editing times instead of
dates, are the Up and Down buttons that appear when the ShowUpDown property is set to True.

 Radio Buttons

601

Calendar

The MonthCalendar provides an intuitive graphical interface in the form of a calendar to allow you to view
and set date information. The control displays a calendar that contains the numbered days of the month,
arranged in columns underneath the days of the week, with the selected range of dates highlighted. The
control is illustrated in Figure 16−13.

Figure 16−13: The MonthCalendar control
The user can select a different month by clicking the arrow buttons that appear on either side of the month
caption. This control lets the user select more than one date, whereas the DateTimeControl does not.

You might consider using a DateTimePicker control instead of a MonthCalendar if you need custom and
possibly programmatic date formatting or need to enforce a single selection for input.

A Palette

The ColorDialog component is a preconfigured dialog box containing a palette that lets the user select a color
from the palette and to add custom colors to that palette. This is a common dialog box that you see in all other
Windows applications that offer color selection, including Visual Studio. It makes sense to use this palette
instead of configuring a new palette.

Like the other common dialog boxes, this control has certain read/write properties that will be set to default
values. You can, however, change these values in the dialog box's constructor.

List Boxes

The ListBox control is an old favorite in Windows applications. It displays a list of items to your users and
allows them to select one or more items. This control has an embedded vertical scroll box that is displayed if
the total number of items exceeds the number that can be displayed. The control can also show multiple
columns when you set its MultiColumn property to True. If you set the ScrollAlwaysVisible to True, the
scroll bars appear regardless of the number of items or columns. You can also code against the
SelectionMode property to determine the number of list items that can be selected at a time.

CheckedListBox

The CheckedListBox control extends the ListBox control with the ability to check off items in the lists. The
checked list boxes can only have one item, but a selected item is not the same thing as a checked item. These
controls can also be data bound, like list boxes, by programming against the DataSource property. They can

 Calendar

602

also obtain their items from a collection, using the Items property.

ListView

The ListView control displays a list of items with the option of including an icon with each item. The typical
use of the ListView control is to create the details facility in a Windows Explorerstyle application. There are
four modes to use with the basic version of this control: LargeIcon, SmallIcon, List, and Details. LargeIcon
mode displays large icons next to the item text; the items appear in multiple columns if the control is large
enough. SmallIcon mode is just a small−icon version of LargeIcon mode.

List mode displays the small icons, and the list is presented as a single column. Details mode shows the items
in multiple columns with details represented in the columns. You can add columns to this control in your
code. You also have the option of setting the View property in this control. The view modes provide the
ability to display images from image lists. See the SDK for more specifics.

Trackbars (Sliders)

TrackBar controls, often known as "slider" controls, are used mostly for adjusting a numeric value. The
TrackBar control has two parts: the slider, or thumb, and the notches. The slider is the part that can be
adjusted by sliding from side to side or up and down. Its position on the control provides the facility to return
the Value property. The notches indicate a range of values placed at evenly spaced position on the scale.

Toolbars

The ToolBar control is used as a staging area for displaying a row of drop−down menus and bitmapped
buttons. Toolbar buttons may be mapped to menu item commands and can be configured to appear and
behave as push buttons, drop−down menus, or separators. Typically, a toolbar provides quick access to the
application's most frequently used facilities.

A ToolBar control may be "docked" along the top of its parent window, which is its usual place. It may also
be docked to any side of the window, or it may float. You can also change the size of the ToolBar and drag it.
The toolbar can display tooltips. To display ToolTips, the ShowToolTips property of the control must be set
to True (see "ToolTip" later in this chapter).

TreeView

The TreeView control displays a hierarchy of tree nodes exactly like the hierarchy of classes in the Object
Browser. Each node can contain child nodes and parent nodes, and child nodes can themselves be parent
nodes. The tree can also be expanded or collapsed.

The TreeView control also provides the ability to display check boxes next to the nodes. This can be done by
programming against the tree view's CheckBoxes property. Selecting or clearing nodes is achieved by setting
the node's Checked property to True or False.

Presentation and Informational Controls

Some controls and components are designed to present information to users. These include the controls listed
in Table 16−6.

 ListView

603

Labeling

Labels are used to display text or images that cannot be edited. They are used to identify objects on a form.
They provide descriptions of what certain controls do, provide instruction, and simply identify controls for the
user. Labels are used to describe text boxes, list boxes, combo boxes, and more.

Table 16−6: Informational Controls

Control Purpose

Label Displays text or images that cannot be edited

LinkLabel Allows you to add Web−style links to Forms applications

StatusBar Used on forms to display status information

NotifyIcon Typically used to display icons for processes that run in the background and do
not show a UI much of the time

PictureBox Used to display bitmaps, GIFs, JPEGs, metafiles, or icons

ImageList Provides a container to store images

ProgressBar Visually indicates the progress of a lengthy operation

Grids Displays data in a series of rows and columns

ToolTip Displays text when the user points at certain controls

ErrorProvider Alerts the user in a nonintrusive way to errors

HelpProvider Used to display help information
Labels can also be manipulated at run time to respond to event and application state. For example, if your
application takes a few minutes to process a change, you can display a processing−status message in a label
and then change it when the job is done.

To set the text displayed by a control programmatically, set the Text property to a string. To create an
underlined access key like those shown in the earlier menu examples, simply include an ampersand (&) before
the access letter designated as the access key. You can also set the Font property by assigning the font to an
object of type System.Drawing.Font, as shown here:

Button1.Font = New Font("Arial", 10, FontStyle.Bold,
GraphicsUnit.Point)

LinkLabel

This control is used like a label but it doubles as a hyperlink that can connect the user to other applications or
a Web page. You can change the control's link color and set the part of the link that activates the jump. The
LinkColor, VisitedLinkColor, and ActiveLinkColor properties let you set the colors of the link so that it
behaves just like an HTML link. It even has a LinkClicked event that enables you to wire up an event handler
when the link text is selected.

The following example creates a LinkLabel control that displays a link, and displays the Microsoft Web site
in the default browser when the link defined in the control's text is clicked. The example defines a method that
initializes the LinkLabel control as well as a method that will handle the LinkClicked event of the control.
The event handler of the LinkClicked event uses the LinkData property of the LinkLabel.Link class to
determine the URL to display in the default browser. This example assumes that it is located within a Form
class.

 Labeling

604

Status Bar

StatusBar controls belong in every UI. They are a marvelous facility for keeping the user regularly informed
on the state of things in the application. You typically dock it to the bottom of your application's main
window.

The StatusBar control acts as a container for status bar panels that are aggregated into the bar. These panels
display text, icons, and various objects to indicate state and so on. You can also embed animation icons in the
panels to indicate a process churning away in the background. You are no doubt familiar with Internet
Explorer's status bar, which publishes the URL of a page when the mouse rolls over the hyperlink. To see a
status bar in action, have a look at the one in Visual Studio.

Icons

The NotifyIcon component is typically used to display icons for processes that run in the background. An
example of such a process is a backup facility that can be accessed by clicking its icon in the status
notification area of a taskbar.

Each NotifyIcon component displays a single icon in the status area. If you have three background processes
and wish to display an icon for each, you must add three NotifyIcon components to the form. The key
properties of the NotifyIcon component are Icon and Visible. The Icon property sets the icon that appears in
the status area. In order for the icon to appear, the Visible property must be set to True. Icons can have
associated ToolTips and context menus.

PictureBox

PictureBox controls are used to display graphics in bitmap, GIF, JPEG, metafile, or icon formats. The picture
that is displayed is determined by the Image property, which you can set at run time or design time. The
SizeMode property controls how the image and control fit with each other.

ImageList

The ImageList component is used to store the aforementioned images in a structure that provides a controlled
access for controls that use images. For example, you can create a control that alternates the display of various
images by iterating through the collection at certain intervals.

One ImageList control can be associated with multiple controls. For example, your ListView icons and
TreeView icons access the same list of icons in the image.

The ImageList uses a handle to manage the list of images. The Handle is not created until certain operations,
including getting the Images, getting the Handle, and calling Draw, are performed on the image list.

Progress Bars

A ProgressBar control provides information about how a lengthy progress is proceeding. The control shows a
bar that fills in from left to right like a thermometer or a barometer gauge. The progress bar can be set to show
in a system highlight color as an operation progresses. It can also display a label showing the percentage
complete.

 Status Bar

605

The benefit of the progress bar is that it keeps your users informed of how an application is progressing with a
particular task. Otherwise, the user might think the application has crashed or frozen. A good example is
downloading Visual Studio .NET from MSDN. You can watch the progress bar as the download progresses
over a 72+ hour operation.

Grids

Grids display data in a series of rows and columns. The available DataGrid displays information from a table
in a database it is bound to. Data from the table fills the rows and columns, in the same fashion that it appears
in the table.

The DataGrid can be bound to data with multiple related tables, and if navigation is enabled on the grid, the
grid will display expanders in each row. An expander allows navigation from a parent table to a child table.
Clicking a node displays the child table, and clicking the Back button displays the original parent table. In this
fashion, the grid displays the hierarchical or referential relationships between tables. The DataGrid also
provides a UI for a dataset, navigation between related tables, and rich formatting and editing capabilities.

The display and manipulation of data have been separated into two function domains: the control handles the
UI to present the data, whereas the data updates are handled by the data−binding architecture and the
ADO.NET data providers.

ToolTip

ToolTips are useful components that display text when you point to a control or element in the UI. ToolTips
are applicable to any control on your form. The control is very useful as a screen real−estate saver. In older
versions of Windows, we would add a label to further explain the purpose of a button or a similar control. The
label would take up a lot of space, and in a UI with an extensive toolbar, the excessive use of labels under
buttons became a management burden. With tooltips, you can display a small icon on a button and use a
ToolTip to explain the button's function.

To use the ToolTip component, you can code against its ToolTip property, which can be applied to multiple
controls on a Form or some other container. In other words, one ToolTip control is sufficient for a TextBox
control and a nearby button.

The ErrorProvider Control

ErrorProvider control lets you show the user in a nonintrusive way that something is wrong somewhere.
You would use this control when validating user input on a form, or displaying errors within a dataset. The
error provider is a better alternative than displaying an error message in a message box, because it is easy to
forget about the error after the OK button on the message box has been clicked. With this control, you can
keep the error message visible until the user has cleared the error. It is also far better than a message box to
connect the user to the exact element causing a problem, such as a missing value in a text box that must
collect a value from the user, like a LastName edit box.

You can also wire a ToolTip to the error so that when the user positions the mouse pointer over the error icon,
the ToolTip will appear and provide more information about what needs to be done to clear the error.

ErrorProviders are invaluable when used in tandem with data−bound controls. When using ErrorProvider
with data−bound controls, you need to specify the ContainerControl, either in the constructor or by setting
the ContainerControl property.

 Grids

606

Help Provider

HelpProvider components are used to associate an HTML Help 1.x Help file (CHM files, produced with the
HTML Help Workshop, or HTM files) with your application. You can provide help resources in the following
ways:

Context−sensitive Help This help would be applied to controls on your forms.•
Dialog box context−sensitive Help This type of help is associated with a particular dialog box or
specific controls on a dialog box.

•

Open Help files Classic help that lets you open to a location in a help file, or to the help system's
Table of Contents, Index, or Search facility.

•

Printing Support

For simple printing support, you can use the built−in PrintDialog component, which is a preconfigured dialog
box that your user can use to select a printer, choose the pages to print, and determine other print−related
settings in Windows applications.

This standard control can be used to let your users print selected pages, print all pages, print selected ranges,
or print selections. In short, it lets your users print via a facility they are probably familiar with, because this
dialog box is used by almost all applications that provide printing support.

Drag and Drop

Drag−and−drop operations are often required in your applications. This facility is achieved by programming
against events, such as DragEnter, DragLeave, and DragDrop. You can easily wire up a drag−drop facility
in your application by accessing and evaluating the information provided in the event arguments of the
aforementioned events.

Dragging Data

You begin drag−and−drop routines by dragging. It all starts with the implementation provided in the
DoDragDrop method of your control. In the following example, the MouseDown starts the drag operation
(any event can be used to initiate the drag−and−drop procedure):

Private Sub Button1_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs)_
Handles Button1.MouseDown
 Button1.DoDragDrop(Button1.Text, DragDropEffects.Copy _
 Or DragDropEffects.Move)
End Sub

The results of the drag are determined by the arguments provided to the DoDragDrop method. This method
interoperates with the DataEventArgs.Data property and the DataEventArgs.AllowedEffect Property to
facilitate the event handling.

Any data can be used as a parameter in the DoDragDrop method. In the preceding example, the Text
property of the Button control is used (rather than hard−coding a value or retrieving data from a dataset)
because the property is related to the location being dragged from (the Button control).

 Help Provider

607

While a drag operation is underway, you can work with the QueryContinueDrag event, which queries the
system for permission to continue dragging. When handling this method, it is also the appropriate point for
you to call methods that will have an effect on the drag operation, such as expanding a TreeNode in a
TreeView control when the cursor lands on it.

Dropping Data

Dragging operations usually end with the data being dropped somewhere, such as a location on the form or on
a control. You can change the cursor when it crosses into an area of the form or when it hovers over a region
occupied by a control that is correctly configured for dropping data. Any area on a form or control can be
configured to accept dropped data by setting the AllowDrop property. You then handle DragEnter and
DragDrop events on the destination. Adding drop support to the target begins with setting the AllowDrop
property to True.

To do this, access the DragEnter event for the control where the drop will occur, and use an If statement to
do type−checking to ensure the data being dragged is of an acceptable data type for the target. The code then
sets the effect that will happen when the drop occurs to a value in the DragDropEffects enumeration. This is
shown in the following code:

Private Sub TextBox1_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles TextBox1.DragEnter
 If (e.Data.GetDataPresent(DataFormats.Text)) Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If
End Sub

You can also define your own DataFormats. This is as simple as specifying your own object as the Object
parameter of the SetData method. The object must be specified as serializable, which you can do with
Serializable attributes. The DragDrop event also lets you access the data dragged using the GetData method.
In the following example, the target of the drag is a TextBox control. The code sets the Text property of the
TextBox control equal to the data being dragged.

Private Sub TextBox1_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles TextBox1.DragDrop
 TextBox1.Text = e.Data.GetData(DataFormats.Text).ToString
End Sub

You can also code the DragDrop facility to the KeyState property, so that you can make certain things
happen during the drag−and−drop operation based on what CTRL key is pressed.

Note Dragging and dropping between applications is no different than drag−drop between the controls in an
application. You just need to make sure the applications on either side of the drag−drop behave
according to the "contract" established between the AllowedEffect and Effect properties as shown in the
above code.

 Dropping Data

608

Using the Clipboard

To store data in the Clipboard facility, you can use the SetDataObject method to send the data to the
Clipboard object. The following sends the text of a TextBox control to the Clipboard:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Clipboard.SetDataObject(TextBox1.Text)
End Sub

To retrieve information from the Clipboard simply drag a TextBox control and a Button control to the form.
Double−click the Button to create the Click event handler where you will write your code.

You still need to write code to get the data from the Clipboard using the GetDataObject method. You can
also test the data using the GetDataPresent method. This will tell you what DataFormats object is being
used. The last step will be to set the Text property of the TextBox control to the string represented in the data.
This you will do using the GetData method. Here's an example of how this is done:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim aDataObj As IDataObject = Clipboard.GetDataObject()
 If (aDataObj.GetDataPresent(DataFormats.Text)) Then
 TextBox1.Text = aDataObj.GetData(DataFormats.Text).ToString()
 End If
End Sub

Observation

Putting together a sophisticated UI is not an easy task. I have developed several extensive UIs in the past
decade and the job does not seem to get easier. This is due in large to the sophisticated technology available to
us, which keeps getting more and more advanced. Still, the advice I offered in this book's introduction and in
several other places stands: You should separate application and business logic from the UI logic.

You also need to get up to speed on the foundations of the language and the data structures before tackling UI
logic. Of course, if you are part of an experienced team, the responsibilities of the UI can be delegated to
people who have experience putting together sophisticated UIs.

Finally, a word about OCX controls. These components are easily wrapped but they tend to be heavy. All
.NET controls can replace the legacy OCX controls, and where charting is needed, such as in the utility of the
MSChart OCX, continue to use the OCX until you have managed to replace it with native .NET controls,
which will always be faster and easier to use, especially for applications that require scalability.

 Using the Clipboard

609

Chapter 17: Getting Ready to Release

Overview

For the most part, our investigation into the core programming facilities and software constructs of Visual
Basic .NET and the .NET Framework are behind us. Now it's time for you to dig into the subjects of
enterprise−level programming with Visual Basic .NET, quality control and assurance, debugging, application
deployment, and security. These are all extensive subjects and I would not be able to do them justice in this
book if I tried.

For now, you may be getting ready to rapidly move applications out of your development environments and
into the hands of beta testers, those QA/QC engineers and end users who knowingly or contractually have
committed to being your guinea pigs. This chapter gives you the know−how for preparing your code for this
next critical level.

Chapter 16 investigated the user interface, but it also "coupled" the functionality in the unseen critical code
with the human user. At this point, we must be aware of an important fact: No matter how well−designed or
well "coded" an application, you will lose customers when your applications consistently crash or lose the
user's data.

Over the past few decades, much has been said about how to write quality software. This book has nothing
new to add to discussions and debates on testing, quality control, and quality assurance. If you are starting to
study developing, I recommend that you get up to speed on debugging concepts and techniques before
tackling the Visual Studio .NET debugging tools. Still, this chapter is designed to acquaint you with the
variety of debugging aids in the .NET Framework and Visual Studio that can be used with Visual Basic .NET.

We have discussed themes and concepts for defensive programming throughout this book. These include
conditional constructs, exception handling, documentation, pseudocode, modeling, iterative design, private
variables, and protected methods. We have discussed the code construction business as if the possibility of
bugs were as remote as Saturn's moons. To conserve space, the code examples in this book have not been
littered with debug symbols, debug statements, and comments. But we all know that software can never be
bug−free.

A computer science professor once told me that in every million lines of code there were sufficient errors in
logic, design, and semantics to require 30 million years of revision before the software could be considered
"defect−free." I am not sure how the professor came up with this theory, but the point is that software can
never be defect−free. However, you should approach quality control and assurance without fear and
understand that a well−written application means achieving certain levels of usability and reliability. Those
levels are the goals you set for making an acceptable product. Once you have objectives for a stable product,
how do you ensure that your software lives up to its promise? The question cannot be answered fully in this
book. Nothing in the .NET Framework or Visual Studio .NET can magically ensure software is usable and
meets a certain standard. Only you and your programming team can ensure that your software is as error−free
as possible beginning with the first class diagram you create.

A development environment would not be worth its hype if it did not provide a sophisticated set of tools that
helps you find errors when things do go wrong. This chapter introduces two facilities to help you find defects
as quickly as possible: the System.Diagnostics namespace and Visual Studio .NET's symbolic debugger.

The chapter will also introduce you to tracing, compiling release builds, and setting up configuration files.
First, let's investigate the resources we have at our disposal when somewhere, sometime, someone screams,

610

"It doesn't work!"

Thinking in Debug Terms

Before you can debug a .NET Framework application, the compiler and the run−time environment must be
configured for the debug "state of mind." Visual Studio does this for you automatically when you place your
application in Debug mode, as described shortly. This configuration is essential to enable a debugger to attach
to the application for the purpose of producing symbols and line maps for your source code and the Microsoft
Intermediate Language (MSIL) that presents it to the CLR.

Released software, which is debugged for release candidate builds, can then be profiled to boost performance.
The job of the profiler, a software tool, is to evaluate and describe the lines of source code that generate the
most frequently executed code, and then estimate how much time it takes to execute them.

In addition to Visual Studio's debugging utilities, you can examine and improve the performance of .NET
Framework applications using the following resources:

Classes in the Systems.Diagnostics namespace This chapter investigates the Debug and Trace
classes in this namespace in some depth.

•

Runtime Debugger (Cordbg.exe) This is Microsoft's standard .NET command−line debugger,
which is not covered in this book.

•

Microsoft Common Language Runtime Debugger (DbgCLR.exe) This debugger ships with the
.NET SDK and is not covered in this book.

•

You can use the System.Diagnostics classes for tracing execution flow, and you can use the Process,
EventLog, and PerformanceCounter classes for profiling code. You can also use the Cordbg.exe
command−line debugger to debug managed code from the command−line interpreter. If you prefer not to
labor on the command line, the DbgCLR.exe can be accessed in a familiar Windows interface. Both compilers
are used for debugging managed code. The latter is located in the %\FrameworkSDK\GuiDebug folder, while
the former can be found in the Microsoft Visual Studio .NET\FrameworkSDK\Bin folder.

The System.Diagnostics Namespace

To get you on the road to proving that your code works, the .NET Framework provides a namespace
jam−packed with classes and various components specifically designed to allow you to interact with system
processes, event logs, performance counters, and other run−time elements. This namespace also includes a
collection of services used with thread management (see Chapter 16) and a special classDebugspecifically
used to help debug your code on a line−by−line basis. The Debug class is further discussed later in this
section.

Tables 17−1 and 17−2 list the resources in this namespace and briefly describe the services they provide.

Table 17−1: Base and Final Classes in the System.Diagnostics Namespace

Class
[*]

Description

BooleanSwitch A Boolean construct that you can use for conditional
elements in your code. It provides conditions logic for

 Thinking in Debug Terms

611

control debugging and tracing output.

ConditionalAttribute An attribute that indicates to compilers that a method is
callable only if a specified preprocessing identifier is
applied to it. This attribute is thus especially useful for
ensuring the compiler keeps certain debug information in
the assembly during run time, because debug information
is typically stripped out in the release build.

CounterCreationData Used to define and create custom counter objects. With
this class, you can specify the counter type, name, and
help string for a custom counter.

CounterCreationDataCollection Used to create strongly typed collections of
CounterCreationData objects

CounterSampleCalculator Contains a single static method for computing raw
performance counter data

Debug The main debug class that provides a set of methods and
properties that you will use as an aid in debugging code

DebuggableAttribute An attribute that modifies code generation for run−time
just−in−time (JIT) debugging. This attribute can be used
to specify how the CLR gathers debug information at run
time.

Debugger Allows you to communicate directly with the debugger.
For example, it contains a method called Launch that fires
up the debugger from within your code.

DebuggerHiddenAttribute Specifies the DebuggerHiddenAttribute

DebuggerStepThroughAttribute Specifies the DebuggerStepThroughAttribute

DefaultTraceListener The main class that provides the default output methods
and behavior for tracing (see "Tracing and the Trace
Class" later in this chapter)

EntryWrittenEventArgs The event data target for the EntryWritten event

EventLog Provides the interaction with Windows event logs

EventLogEntry Encapsulates a single record in the event log

EventLogEntryCollection Defines size and enumerators for a collection of
EventLogEntry instances

EventLogInstaller Used for installing and configuring an event log that your
application reads from or writes to when running. This
class can be used by an installation utility (for example,
InstallUtil.exe) when installing an event log

EventLogPermission Allows control of code access permissions for event
logging

EventLogPermissionAttribute Contains the attribute for allowing declarative permission
checks for event logging

EventLogPermissionEntry Defines the smallest unit of a code access security
permission that is set for an EventLog

EventLogPermissionEntryCollection Contains a strongly typed collection of
EventLogPermissionEntry objects

EventLogTraceListener

 Thinking in Debug Terms

612

Provides a simple listener that directs tracing or debugging
output to an EventLog

FileVersionInfo Used to access version information for a file on disk

InstanceData. Holds instance data associated with a performance counter
sample

InstanceDataCollection Provides a strongly typed collection of InstanceData
objects

InstanceDataCollectionCollection Provides a strongly typed collection of
InstanceDataCollection objects

MonitoringDescriptionAttribute Contains an attribute that specifies a description for a
property or event

PerformanceCounter Represents a Windows NT performance counter
component

PerformanceCounterCategory Represents a performance object, which defines a category
of performance counters

PerformanceCounterInstaller Specifies an installer for the PerformanceCounter
component

PerformanceCounterPermission Allows control of code access permissions for a
PerformanceCounter

PerformanceCounterPermission− Attribute Allows declarative performance counter permission
checks

PerformanceCounterPermissionEntry Defines the smallest unit of a code access security
permission that is set for a PerformanceCounter

PerformanceCounterPermissionEntry
Collection

Contains a strongly typed collection of
PerformanceCounterPermissionEntry objects

Process Provides access to local and remote processes and enables
you to start and stop local system processes

ProcessModule Represents a DLL or EXE file that is loaded into a
particular process

ProcessModuleCollection Provides a strongly typed collection of ProcessModule
objects

ProcessStartInfo Specifies a set of values used when starting a process

ProcessThread Represents an operating system process thread

ProcessThreadCollection Provides a strongly typed collection of ProcessThread
objects

StackFrame Provides information about a StackFrame

StackTrace Acquires a stack trace

Switch (a) A base class for creating new debugging and tracing
switches

TextWriterTraceListener Directs tracing or debugging output to a TextWriter or to
a Stream object

Trace (fi) Provides a set of methods and properties that help you
trace the execution of your code

TraceListener (a) A base class for the listeners who monitor trace and debug
output

 Thinking in Debug Terms

613

TraceListenerCollection (abstract) A base class that provides a thread−safe list of
TraceListener objects

TraceSwitch Provides a multilevel switch to control tracing and debug
output without recompiling your code

CounterSample (struct) A class that defines a structure holding the raw data for a
performance counter

EntryWrittenEventHandler (d) An event handler (Delegate) that represents the method
that will handle the EntryWritten event of an EventLog

[*] These classes are split between System and mscorlib assemblies.

Table 17−2: Enumerations Available to the System.Diagnostics Namespace

Enumerations Description

EventLogEntryType Specifies the event type of an event log entry

EventLogPermissionAccess Defines access levels used by EventLog permission
classes

PerformanceCounterPermissionAccess Defines access levels used by PerformanceCounter
permission classes

PerformanceCounterType Specifies the formula used to calculate the NextValue
method for a PerformanceCounter instance

ProcessPriorityClass Indicates the priority that the system associates with a
process. This value, together with the priority value of
each thread of the process, determines each thread's
base priority level.

ProcessWindowStyle Specifies how a new window should appear when the
system starts a process

ThreadPriorityLevel Specifies the priority level of a thread

ThreadState Specifies the current execution state of the thread

ThreadWaitReason Specifies the reason a thread is waiting

TraceLevel Specifies what messages to output for the Debug,
Trace, and TraceSwitch classes

The Debug class is one of the most important classes in this namespace, and we have seen it in action in
several places in this book. You will use the method and properties of the Debug class to print debugging
information and check your logic with assertions. One of the best features of this class is that it can help you
track errors and assure quality without having to bloat a file with all manner of debug information that will
only impact the performance and code size of your final version.

Note When you use the Trace facility to debug applications, no additional code is generated and
inserted into your classes, so you can compile Trace support directly into release builds.

The BooleanSwitch and TraceSwitch classes are used to provide a means to dynamically control tracing
output. You also have the ability to modify the values of these switches in a configuration file that is instantly
loaded at run time. So, you don't have to recompile your application to change a value from False to True.
More information about these facilities is presented in the "Run−time Configuration Files" section later in this
chapter.

The section "Tracing and the Trace Class" will also show you how to customize the tracing output's target
with TraceListener instances or remove instances from the Listeners collection. As described in Table 17−1,

 Thinking in Debug Terms

614

the DefaultTraceListener class emits trace output it collects from your trace statements.

Enabling Debugging

Before you can test or debug software in Visual Studioin fact, before you can write software at allyou need to
place the development environment into a debug mode. There are two modes that Visual Studio .NET (and
most IDEs) supports: Debug mode for debug builds, and Release mode for release builds. These two
fundamental modes can be specified in Visual Studio, in your code, at the command line, or in configuration
files.

Before we examine these alternative locations for debug specifications, consider what it means to be in
"Debug mode." When you compile and execute applications or build libraries, you and the development
environment place myriad elements and symbols into your code and into your assemblies as debugging aids.
These elements comprise switches, conditional constructs, asserts, compiler directives, and the like that add to
the final footprint of the application or library.

You will also provide elements in your code that materialize at run time, such as information written to event
logs, performance monitors, and dialog boxes. These are certainly elements you would not want to have
compiled into your final release. It's especially damaging for an error that could have passed harmlessly to a
log file to pop in front of your paying customer's face with all manner of obscene language (it's amazing how
often that happens).

Unless an end user explicitly opts into being a guinea pig for you as a beta tester or a release candidate user,
you will want to strip the debug elements from the final deliverables without affecting how it runs. Not only
will the release build footprint of the final versions be much lighter than the debug build, the application will
load a lot faster, run a lot faster, and, most important, won't risk offending anyone. It will also be more secure,
because many horror stories have surfaced over the years that relate how a hacker cracked some code by
getting in through a debug element that left the door open.

Also, you cannot use the debugging aids that are included in the IDE if the application is not in Debug mode.
For example, you can't set breakpoints at lines in the code and step through or over statements.

To switch modes from Visual Studio, go to the Build menu and select Configuration Manager. The dialog box
in Figure 17−1 loads.

Figure 17−1: Configuration Manager is used to set Debug mode or Release mode in the application's
configuration.
The shortcut to switching configurations and accessing Configuration Manager is via the Solution
Configuration drop−down box on the standard toolbar (it's usually positioned between the Window and Help
menus).

 Enabling Debugging

615

To enable debugging from the command line, add the /d:DEBUG=True flag to the compiler command line.

You can also enclose segments of your code in Debug mode. The following example uses the Debug class to
indicate the beginning and ending of a program's execution. The example also uses Indent and Unindent to
distinguish the tracing output.

Public Function Main(args() As String) As Integer
 Debug.Listeners.Add(New TextWriterTraceListener(Console.Out))
 Debug.AutoFlush = True
 Debug.Indent()
 Debug.WriteLine("Entering Main")
 Console.WriteLine("Working...")
 Debug.WriteLine("Exiting Main")
 Debug.Unindent()
 Return 0
End Function 'Main

Configuration Manager essentially places Debug mode or Release mode information into the configuration
file that accompanies your deliverables. We'll cover the configuration files in the following section.

For the most part, you can simply choose the mode from Configuration Manager. If you are working through
the examples in this book, you will not need to concern yourself with tailoring the configuration files or
building complex command−line compiler solution files, as we will discuss shortly. (In other words, you do
not need to freak out about these configurations just to get cracking writing debug build code as soon as
possible or just to learn Visual Basic .NET.)

When you start programming and use Visual Studio to create projects with the variety of wizards and
templates that come with the product, the IDE automatically creates separate debug and release configurations
and sets them up with appropriate default options and sundry other settings as follows:

Debug configuration Specifies that you will compile your code with full symbolic debug
information in Microsoft format and without optimization (optimization complicates debugging, since
the relationship between the source code and debugger−generated instructions is more complex).

•

Release configuration Specifies that your release code will be fully optimized and contains no
symbolic debug information. Debug information, however, may still be generated in the separate PDB
(Program Debug Database) files, which are stored in your project's debug folders (refer to Chapter 3).

•

You can also change the settings for a configuration using the Solution Property Pages dialog box
(Configuration folder).

Run−time Configuration Files

A small collection of CLR−loaded XML−based configuration files can be used to change settings that
influence application processing without the need to recompile applications. Your applications will run even if
these files are not included because the CLR does not depend on them to bootstrap your assemblies, but they
are extremely lightweight and their loading does not impact the CLR or your resources in any way. These files
are listed as follows:

Machine configuration files These files (Machine.config) contain settings that apply to a specific
computer.

•

Application configuration files These files contain settings specific to an application.•

 Run−time Configuration Files

616

Security configuration files These files contain information about the code group hierarchy and
permission sets associated with a policy level (see Chapter 2).

•

Machine Configuration File

The machine configuration files are located in the %runtime install path%\Config directory of the computer.
They contain configuration settings for machine−wide assembly binding, built−in remoting channels, and
ASP.NET−specific information. System administrators deploying and maintaining .NET Framework
environments will usually manage these files under the guidance of your oh so wonderfully written
documentation.

The configuration system of the CLR will first look in the machine configuration file for any <appSettings>
elements and other configuration sections you might consider defining. Then it goes to the application
configuration file.

While you can place application−specific information in this file, it is suggested you keep the machine
configuration file small and manageable and stick the application− specific settings in the application
configuration file.

However, it may make more sense to place application−specific information that more than one application
needs into the machine configuration file. Think of this file as the return of your long−lost INI file in the days
of DOS and Windows 3.Xand you're probably also thinking, "Gee, we've come so far to be back where we
started."

If you have a number of applications that require the same settings, the machine configuration file obviates the
need to have these settings in more than one location.

Application Configuration File

This file contains all the configuration settings that the CLR reads (such as assembly binding policy, remoting
objects, and so on) in order to "manage" your application. It also provides the settings that the application
needs to read.

Where you place this file and what you name it depends on the name of the application using it and the
location and host of the actual application. As we discussed in Chapter 2, the host can be one of the following:

Standard managed executable The configuration file location for an application hosted by the
standard executable host of a machine is the same directory as the application. You will also name the
configuration file with the same name as the application and give it the .config extension. For
example, the ShuttleInjectorUI.exe application discussed in Chapter 9 is associated with
ShuttleInjectorUI.exe.config. If you are like most normal developers and are reading this chapter last,
doing a machine−wide search for configuration files will turn up several dozen (along with all the
Java ones that belong to that "other" run−time environment).

•

ASP.NET−hosted application The ASP.NET configuration files are called Web.config; ASP.NET
applications inherit the settings of configuration files in the URL path. For example, if you are given
the URL www.sdamag.com/netbooks/netb, where /netb is the Web application, the configuration file
associated with the application is located at the /netb path.

•

Internet Explorer−hosted application Applications hosted in Internet Explorer also have a
configuration file. Its location is specified in a <link> tag with the following syntax:

<link rel="ConfigurationFileName" href="location">

•

 Machine Configuration File

617

In this tag, location is a URL to the configuration file. This sets the application base. The configuration file
must be located on the same Web site as the application.

Security Configuration File

This file contains important security information. You should use the .NET Framework Configuration tool
(Mscorcfg.msc), which is installed into the Control Panel's Administrative Tools folder, or the Code Access
Security Policy tool (Caspol.exe) to modify security policy. This ensures that policy changes do not corrupt
the security configuration files, which could lead to a breakdown in security or a collapse in run−time
integrity.

Working with Configuration Files

The .NET Framework provides the necessary facilities for reading configuration files directly from your
applications in the System.Configuration namespace. The CLR and your applications can read from these
files but you cannot write to them from this API. Writing to configuration files is not difficult, especially if
you have a flair for all things XML.

The configuration files contain XML format elements, which are the logical data structures that encapsulate
your configuration information. The tags are used to mark the beginning and ending of configuration
segments. You can use a standard XML editor (such as the popular XML Spy) or Visual Studio's XML
Designer, which was introduced in Chapter 15, "XML I/O," to edit the files and check their integrity.

An example of a configuration file tag is the <runtime> element, which consists of the <runtime>child
elements</runtime> fields. As with all XML files, empty elements have a start tag, but no end tag.

You specify configuration settings using predefined attributes, which are name/ value pairs inside an element's
<start> tag. The following example specifies two attributes (version and href) for the <codeBase> element,
which specifies where the runtime can locate an assembly

<codeBase version="2.0.0.0"
href="http://www.sdamag.com/myAssembly.dll"/>

Note Configuration files are case−sensitive.
The following XML code is an example extracted for the Debug mode directives in the application
configuration file:

<configuration>
 <system.diagnostics>
 <debug autoflush="true" indentsize="7" />
 </system.diagnostics>
</configuration>

The full compliment of configuration file tags is available in the .NET Framework SDK.

Working with the Debug Class

The System.Diagnostics.Debug class provides a collection of useful methods and properties that help you
track and eliminate errors and logic problems in your code. To use the class, simply import it into your class
(as described in many places in this book). Most of the time, simply placing your projects into Debug mode
implicitly provides access to the System.Diagnostics namespace.

 Security Configuration File

618

The Debug class is obviously static or shared and, of course, provides a consolidated collection of static
operations. You thus don't need to do much (such as instantiation) to use the class and its methods.

The Debug Write Methods

One of the first methods seen in various places in this book is the WriteLine method, which is a similar
construct to the DebugPrint method in classic VB. WriteLine simply writes debug information to the Output
window as described in Chapter 4.

You will use this method most often with assertion and conditional logic used in testing, as you have seen in
many places in this book. It has no measurable performance impact in your code. It also does little harm to
leave Debug statements in your code, because they are not accessible in the release version of your software.
When you compile in Release mode Visual Studio strips out the Debug statements.

Other Write methods include the following:

Write An overloaded method that overwrites to the current line information about the debug to the
trace listeners in the Listeners collection.

•

WriteLine An overloaded method that writes to a new line information about the debug to the trace
listeners in the Listeners collection.

•

WriteIf An overloaded method that overwrites to the current line information about the debug to the
trace listeners in the Listeners collection but only if a condition is true.

•

WriteLineIf An overloaded method that writes information to a new line about the debug to the
Output window or to a trace listener if a condition is true.

Note The Write methods are discussed throughout Chapter 15.

•

The Debug class also provides an assert method to display an Assert dialog box and emit an assertion that will
always activate on False. Before we discuss this further, let's review what we know about an assert construct
(experienced programmers may skip this next part).

Assertion

Assertions have been used in routines long before the OOP rave, even before the structured programming
years took root. An "assertion" is a method used as a programming aid to test if certain assumptions about the
program's state, condition, and data are true at a certain point in its execution.

The assertion, or Assert statement, tests a condition, which you specify as an argument to the Assert method.
If the condition evaluates to True, no action occurs. If the condition evaluates to False, the assertion fails and
the assertion logic is processed. If you are running under the debugger, your program enters Break mode on
failure. The overloaded signatures for the Debug.Assert are as follows:

Public Shared Sub Assert(Boolean) Checks for a condition and outputs the call stack if the
condition is False.

•

Public Shared Sub Assert(Boolean, String) Checks for a condition and displays a message if the
condition is False.

•

Public Shared Sub Assert(Boolean, String, String) Checks for a condition and displays both
specified messages if the condition is False.

Note You can use the Assert method from either the Debug class or the Trace class (both of which

•

 The Debug Write Methods

619

are included in the System.Diagnostics namespace). Debug class methods are not included in a
release version of your program, so they do not increase the size or reduce the speed of your
release code.

In the preceding methods, the first argument, which is mandatory, represents the condition that you want to
check. If you call Assert with only one argument, as described in the preceding list, the method will check the
condition and, if it turns out to be False, transmit the contents of the call stack to the Assert message box. The
following example demonstrates calling Assert and passing one argument to the single−parameter version:

Debug.Assert(index < 0)

In this case the index value was greater than 0 and the message box shown in the illustration is displayed.

You can see the Assert at work in the following code snippet at a location that might make sense as an
exception throw point:

Public Sub RemoveAt(ByVal index As Integer) Implements IList.RemoveAt
 Try
 Debug.Assert(index <= 0)
 If (index < 0 Or index >= Count) Then
 Throw New ArgumentOutOfRangeException()
 End If
'...
End Sub

Tip If you prefer a less obnoxious failure notification than the Assert message box there are a few things you
can do. The DefaultTraceListener (see the "Tracing and the Trace Class" section coming up) controls
the output for the Assert method so you can turn off the message box (see the "Setting Assertions in
Configuration Files" towards the end of this section. The output can be directed to the Debug Output
window, other listeners, log files, and so on. You can also control the listeners directly in your code (see
the section "Tracing and the Trace Class" coming up).

As you can see from the following examples, both second and third parameters take String arguments.
Calling Assert with two or three arguments forces Assert to check the condition and, if the result is False,
output one or two Strings to the Output window. The following examples demonstrate calling Assert and
passing in two or three arguments:

Debug.Assert(index < 0, "Index points to nothing at the tail.")
Debug.Assert(index > count 1), "Index points to nothing at the _
 head.", Format(size, "G"))

You will use the Debug.Assert method to test conditions that should hold true if your code is correct. In the
following example, I used Assert to debug the Singleton pattern implementation:

Shared Function GetInstance() As Singleton
 Singleton = New Singleton()
 Singleton.Number += 1

 Debug.Assert(Singleton.Number > 1)
 If (Singleton.Number > 1) Then
 'I have no exception to use here yet

 The Debug Write Methods

620

 End If
 Return Singleton
 End If
End Function

When you run this code under the watchful eye of the debugger, the assertion method is activated. But in the
release version it is not, so there is no additional overhead. However, while debugging the code it's convenient
to abort out of the method if no exception handler is present, or you don't want the overhead of handling the
exception. Exception handling during debugging often involves having to traipse through the exception
handler stack, which can be a tedious process.

Since Debug methods vanish when you compile to the release build of your code, you should replace
Debug.Assert methods with Trace.Assert methods, which persist in the release version. In other words,
Debug.Assert is not applicable for error checking that may respond to exceptions in release software. If you
want to create an assertion method you can include in your code, create a new class and encapsulate your own
release Assert method in that class. The compiler could not care less about your custom code (if it's all right).

It's rather easy to code asserts that do pretty much the same thing as the asserts in the System.Diagnostics
namespace. The only reason really to create your own is in the event you want to provide some specialized
functionality because the Debug and Trace classes are sealed and you have no means of overriding anything.
To create your own assert, create a static class and toss the static collection of overloaded static assert
methods into the file.

Here is an example of an assert method implementation:

Public Sub Assert(ByVal assertion As Boolean, message As String)
 If Not assertion Then
 Beep()
 Debug.WriteLine(message)
 End
 End If
End Sub

Okay, so Assert fails. Now what? You can do a number of things on the False condition. You can, for
example, display a message box or write something to the file system, a log file, or a database. You can
program the Assert to write results to a console window, which provides you a window into the world of the
method you are checking, you can have it write to the operating system's standard event log or you can have it
write to a log file. See the section "Tracing and the Trace Class" for more information on these features.

Using a log file for Assert output is useful because it allows you to examine persistent data. You can easily
add time and date information as well as source object and method identifiers to guide your way through the
log file.

When you use Debug.Assert, make sure that any code inside the Assert does not change the results of the
program if the Assert is removed. Otherwise, you may accidentally introduce a bug that only shows up in the
release build of your application. Handle Assert statements that contain method calls with care.

Be careful of writing an Assert method that, for example, results in an incrementing of a variable your
algorithm depends on. In Debug mode, the Assert is harmless, but when you build the release version, you
end up with a bug in the code because the Assert is eliminated. To avoid such problems, avoid using Assert
as a substitute for the formal conditional structures discussed in Chapter 6. It's a debugging aid, no more and
no less.

 The Debug Write Methods

621

You may even be tempted to use Trace.Assert, which, unlike Debug.Assert, does not go AWOL in the
release code. While Trace.Assert is safe, you should not fall into the habit of using this construct in this
manner. After all, the transition to Debug and disaster is only a class identifier away.

Assert can be called to run in a so−called User Interface mode to display the Assertion Failed message box
when the condition fails. The actions that occur when an assertion fails are controlled by the Debug.Listeners
or Trace.Listeners property.

The output behavior can be customized by adding a TraceListener object to the Listeners collection, by
removing a TraceListener from the Listeners collection, or by overriding the Fail method of an existing
TraceListener. For example, Fail can be overridden in a specialized implementation and programmed to
write to an event log or a file instead of displaying the Assertion Failed dialog box.

Setting Assertions in Configuration Files

If you prefer, you can set an assertion in your program configuration file instead of in your code. The Assert
method's metadata must be in the configuration file corresponding to the name of your application. The
metadata in the file can be used to enable and disable the Assert method and even set the name of its log file.
The following is an example of the configuration file Assert method set for User Interface mode (uienabled):

<configuration>
 <system.diagnostics>
 <switches>
 <assert assertuienabled="true" logfilename="c:\\myFile.log" />
 </switches>
 </system.diagnostics>
</configuration>

Fail

The Debug.Fail method simply transmits an error message of your choosing. The method signature is
overloaded as follows:

Public Shared Sub Fail(String) Transmits a single error message.•
Public Shared Sub Fail(String, String) Transmits two error messages. The first is typically the base
error message, while the second string can be used to provide additional information.

•

The following example uses the Fail method to print a message during exception handling:

Catch e As Exception
 Debug.Fail("Invalid data: " + Data.ToString(), _
 "Failed in BaseNodeCollections.Insert method.")
End Try

You can also use the Fail method in a conditional statement:

Public Function Encrypt(ByVal level As Integer, ByVal obj As Object) As Object
 Select Case level
 Case 0
 Encrypt = Cipher.EncryptLowBit(obj)
 Case 1
 Encrypt = Cipher.EncryptMediumBit(obj)
 Case 2
 Encrypt = Cipher.EncryptHighBit(obj)

Assertion

622

 Case Else
 Debug.Fail("level arg not provided " & level, _
 "in class Encipher")
 End Select
End Function

Tracing and the Trace Class

The .NET Framework's System.Diagnostics namespace provides a sophisticated API that lets you monitor the
execution and performance of your applications while they are running, in both debug and release builds. This
facility is called tracing and it is underpinned by the Trace and Debug classes.

As we just discussed, the Debug class provides access to constructs that are only available to the debug builds
of your software. The compiler automatically strips the debug statements out when you compile the release
build. If you want to build tracing support into releasable software, then you need to implement the tracing
facility via the System.Diagnostics.Trace class.

The Trace class, and the tracing support, lets you record and monitor information while a released application
is running. Information trapped by the special listening objects can "pipe" the information out to log files, text
files, databases, and consoles and monitor windows for real−time and archival analysis.

The members of the Trace class are identical to the members of the Debug class, so we don't need to go into
them in any detail. Even the Assert works the same. The only difference, as mentioned, is that Trace code
survives release build compilation.

The fact that tracing and instrumentation are also available to ASP.NET applications opens up a whole new
host of opportunities for building highly scaleable and reliable Web and e−commerce applications.

Instrumentation

The .NET Framework uses the term instrumentation to refer to the ability to monitor or measure the level of
an application's or algorithm's performance and for diagnostics. Instrumentation thus gives you the ability to
incorporate the following support in your deliverables:

Code tracing The ability to receive information about the execution of an application during run
time.

•

Performance counters These are objects or components that are used to collect information about
the performance of your applications.

•

Event logs These are log files, both custom and operating system, that receive and organize any
events in the execution of your application that you need to persist for analysis, archival, and
documentation purposes.

•

If you have been developing Web applications you know that getting real−time data from the application
(such as number of connections) is extremely difficult and complex. The tracing and diagnostics support in
.NET changes everything to a point where migration from classic VB and ASP is taken for granted simply
because so much more power and control are available to both developers and system administrators.

In a distributed applications environment, for example, you will find tracing invaluable under circumstances
where it is almost impossible to test and monitor the application in the field. How often have you had to guess
at how an application will perform in the field, and how often have you had to enlist the services of your

 Tracing and the Trace Class

623

customer to volunteer or expose itself to situations that will allow you to monitor your code?

It is not always possible to monitor how a distributed application will respond to high volumes, different
setups, and unique end−user behaviors. Also, much software today has no user interface or console that can
provide a window to an application's internals. This is very much in line with the software development
philosophy I have expounded in this book, whereby much of the operational and business logic of a complex
application is disconnected or decoupled from the user interface; it operates "behind the scenes." This is very
much the case with Web and distributed applications and thin clients (not browser−based clients) that access
so−called "Web−services" over HTTP.

By instrumenting the applicationthat is, by placing trace statements at strategic locations in your codethe
objects that do all the hard work in the background can publish information about their operations to system
administrators, QA/QC staff, testers, and developers. Location, as previously mentioned, is not an issue
because the trace information can be sent wherever the network takes you, with sufficient bandwidth.

Trace statements make it so that you don't have to worry about loading the original source code on site, or try
to modify it, recompile it, and otherwise attempt to reproduce errors within the debugging environment, which
is usually not accurate, and does not represent the real operating circumstances.

Placing trace statements in your code is usually facilitated by the incorporation of trace switches. These
conditional elements let you control whether tracing occurs and how extensive it is. In a production
environment, using configuration files as discussed earlier lets you control how the switches are used in the
field or at the customer's location.

Understanding the Phases of Code Tracing

Typically, three phases are involved in supporting tracing in your application:

Instrumentation This is the phase where you add tracing code to your application; that is, methods
that will activate Trace class operations.

•

Tracing This is the phase where the tracing code pipes information to specified "listeners."•
Analysis This is the phase where you evaluate the tracing information to identify and understand
problems in the application or how it is performing.

•

The default output mechanism during the development stages is the Output window in Visual Studio .NET. In
a deployed application, you'll switch the output of the methods to the target listeners you specify.

Note Like the placing of Debug statements, placing Trace statements requires care and common sense.

Listening to Your Code

The output from Trace statements is collected in objects called listeners. Listeners derive from the base
TraceListener class, which we will investigate shortly. The System.Diagnostics namespace provides
pluggable listeners you can use (discussed very briefly in the class tables near the beginning of this chapter).
Listeners receive the trace output and write it to an output device. The output devices can be windows,
consoles, logs, text files, the network, and so on.

When you create a trace listener, you can add it to the Trace.Listeners collection, allowing the listener to
receive all trace output from any trace statement sending output to the collection. You can also manage the
collection as you would any collection that implements the ICollections interface, as discussed in Chapter 13.

 Understanding the Phases of Code Tracing

624

All listeners in the Listeners collection receive the messages described in Table 17−1, but how they play out
the inbound messages depends on the listener and the device it implements. For example, the
DefaultTraceListener displays the Assert dialog box when it receives a Fail notification, or a failed Assert
notification, while the TextWriterTraceListener writes the output to a TextWriter object or a stream.

The three predefined listeners are described as follows:

TextWriterTraceListener Directs output to an instance of the TextWriter class or to anything that
is a derivative or specialization of the Stream class. It can also write to the console or to a file,
because these are specialized Stream classes. (Refer to Chapter 15 for a full discussion of streams
and the Stream class.)

•

EventLogTraceListener Redirects output to an event log.•
DefaultTraceListener Sends Write and WriteLine messages to the OutputDebugString and to the
Debugger.Log facility. Visual Studio picks up these messages and sends them to the Output window,
as you may have already noticed.

•

If you want any listener besides the DefaultTraceListener to receive Debug and Trace output, you must add
it to the Listeners collection described shortly.

A DefaultTraceListener is also provided as a means of giving you at least one listener to write to. It's useful
in situations where other listeners are no longer receiving output or have gone offline for some reason. If for
some reason you nix the DefaultTraceListener and are left with no listeners in the collection, the output is
simply lost. You won't crash your application, because trace output is backing up inside somewhere with
nowhere to go.

However, Fail and failed Assert messages are also delivered to the OutputDebugString facility (the
Windows API) and the Debugger.Log facility. They also pop up a message box. This behavior is the default
behavior for Debug and Trace messages, because DefaultTraceListener is automatically included in every
Listeners collection and is the only listener automatically included. (See the section "Adding Listeners to a
Collection" later in this chapter.)

The following code listing shows you how to send output to the Listeners collection:

Debug.WriteLine("Number of nodes = " & List.Count)
'Use this example when tracing.
Trace.WriteLine("Item inserted is: " & CurrentNode.Data)

Note Debug and Trace share the same Listeners collection. Adding a listener object to a Debug.Listeners
collection in your application means both classes get the benefit of the trace.

The following code redirects trace information to a console:

'First get rid of left−overs
Trace.Listeners.Clear()
'and then send new data to the console
Trace.Listeners.Add(New TextWriterTraceListener(Console.Out))

Adding Listeners to a Collection

Adding listeners is simply a matter of referencing the Trace.Listeners collection and calling its Add method.
This is demonstrated in the following code:

Trace.Listeners.Add(New TextWriterTraceListener(Console.Out))

Listening to Your Code

625

Any listener in the Listeners collection gets the same messages from the trace output methods. For example,
you can set up two listeners, such as a TextWriterTraceListener and an EventLogTraceListener. Both
these listeners receive the same message. However, the TextWriterTraceListener directs its output to a
stream, while EventLogTraceListener directs its output to an event log.

Whenever tracing or debugging is enabled, the DefaultTraceListener is automatically created and initialized.
But to direct to more than the default source, you must create and initialize additional trace listeners.

The listeners you create should reflect your individual needs. For example, you might want a text record of all
trace output. In this case, you would create a listener that writes all output to a new text file when enabled. On
the other hand, you might only want to view output during application execution. In that case, you might
create a listener that directs all output to a console window.

Creating and initializing your trace listener is simple. First you declare your trace listener. Then, if the
particular listener you are creating requires any other objects, you declare them as well. The following
example shows how to create a listener that writes to a text file:

' Visual Basic
' Creates the text file that the trace listener will write to.
Dim WarpLog as New System.IO.FileStream("C:\warplog.txt", _
 IO.FileMode.OpenOrCreate)
' Creates the new trace listener
Dim warpLogListener As New TextWriterTraceListener(WarpLog)

If you want your listener to receive all trace output, add your trace listener to the Listeners collection. The
following example shows how to do this:

Trace.Listeners.Add(warpLogListener)

If you do not want your listener to receive trace output, do not add it to the Listeners collection. You can
make sure that output is transmitted through a listener independent of the Listeners collection. This is
achieved by simply calling the listener's own output methods. The following example shows how to write a
line to a listener that is not in the Listeners collection:

warpLogListener.WriteLine("Warp Log Started.")

If your listener is not a member of the Listeners collection, it may be necessary to call the Flush method to
record your output by flushing the buffers of all listeners in the Listeners collection:

Trace.Flush()
warpLogListener.Flush()

Adding a Listener to the Configuration File

To set the level of your listener, edit the configuration file that corresponds to the name of your application.
Within this file, you can add a listener and set its type and its parameter, remove a listener, or clear all the
listeners previously set by the application. The configuration file should be formatted similar to the following
example:

<configuration>
 <system.diagnostics>
 <switches>
 <add name="MagicTraceSwitch" value="3" />

Listening to Your Code

626

 </switches>
 <trace autoflush="false" indentsize="4">
 <listeners>
 <add name="myListener"
 type= "System.Diagnostics.TextWriterTraceListener,System"
 initializeData="c:\myListener.log" />
 <remove type="System.Diagnostics.DefaultTraceListener,System"/>
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

Developer−Defined Listeners

You can define your own listeners by inheriting from the TraceListener base class and overriding its methods
with your customized methods. Table 17−3 lists the members of this class.

Table 17−3: Members of the TraceListener Class

Member Description

IndentLevel Provides or retrieves the indent level

IndentSize Provides or retrieves the number of spaces in an indent

Name Provides or retrieves a name for this TraceListener

Close When overridden in a derived class, closes the output stream so it no longer
receives tracing or debugging output

Dispose Releases the resources used by the TraceListener

Fail Emits error messages to the listener you create when you implement the
TraceListener class

Flush When overridden in a derived class, flushes the output buffer

Write Writes a message, category name, or the value of an object's ToString method
to the listener you create when you implement the TraceListener class.

WriteLine Writes a message, category name, or the value of an object's ToString method
to the listener you create when you implement the TraceListener class,
followed by a line terminator.

NeedIndent Provides or retrieves a value indicating whether to indent the output

WriteIndent Writes the indent to the listener you create when you implement this class, and
resets the NeedIndent property to false

You can also customize your tracing environment by implementing your own listener objects. Your custom
trace listener might, for example, choose a database server as its output device and add messages to a table, or
it could package up the trace data and e−mail it somewhere (remember to throw an exception if your boss is
on the e−mail list). Your custom listeners should support the six overridable methods listed in Table 17−3.

Trace Switches

To filter tracing output or filter based on certain conditions in your code, you use objects called trace
switches. With these switches, you can enable, disable, and filter tracing output as you need. Without these
switches, your applications would transmit trace information until the cows come home. Switches do not have
to litter your code, either; they can be configured externally in the application configuration file.

 Developer−Defined Listeners

627

The .NET Framework provides two types of trace switches, which work together as a team: BooleanSwitch
and TraceSwitch. The BooleanSwitch class is like a toggle switch (on/off) that you use as a gate to enter
regions of your code that will transmit the trace information. The TraceSwitch class lets you enable the trace
switch for a particular tracing level. All trace messages specified for or below the level will be transmitted to
the listener. (You can also implement your own switches by deriving from the abstract class Switch.)

How would you use the trace switches? The following example lets you receive all the trace data in the
TraceTest method as well as any error messages in the rest of the application:

Dim warpTraceSwitch as New TraceSwitch("Warp Trace Switch", _
 "Class: BaseInjector")
warpTraceSwitch.Level = TraceLevel.Info
MessageBox.Show(warpTraceSwitch.TraceWarning.ToString())
MessageBox.Show(warpTraceSwitch.TraceVerbose.ToString())

As you can see, we are using one trace switch for the TestTrace method and one switch for the rest of the
code. Using the CONFIG file to configure the switches to the appropriate settings is not difficult and provides
you the facility to achieve the same result with the flexibility of a CONFIG file.

With switches, you can leave trace directives in your code without fear that trace information will be streamed
out until every hard disk in the universe is full. It will also be a good idea to deploy an application with tracing
disabled and then enable the tracing with switches in the configuration file when you need to get information
centered around an application running at a customer's site. Tracing is switched on by simply stopping the
application, changing the information in the configuration file, and then restarting the application.

Trace Levels

A TraceSwitch object contains four properties that return Boolean values to indicate the level that a certain
switch is set at. The properties are listed as follows:

TraceSwitch.TraceError•
TraceSwitch.TraceWarning•
TraceSwitch.TraceInfo•
TraceSwitch.TraceVerbose•

These levels allow you to tailor tracing information and limit the output to the information you need for the
problem at hand. As you can see, the level of detail you want is achieved by merely setting the trace switches
to the appropriate trace level of tracing output. You can also opt not to "hear" messages at all.

The properties in the preceding list correspond to the values 1 through 4 of the TraceLevel enumeration that
is provided in Table 17−4.

Table 17−4: TraceLevel Enumeration and Its Values

Enumeration Description

Off, 0 Trace is off

Error, 1 Send only error messages

Warning, 2 Send warning messages and error messages only

Info, 3 Send informational messages, warning messages, and error messages only

Trace Switches

628

Verbose, 4 Send verbose messages, informational messages, warning messages, and error
messages only

The TraceSwitch properties are cumulative and thus direct the maximum trace level for a switch. For
example, if you set TraceInfo to True, then TraceError and TraceWarning are automatically True.
TraceVerbose will, however, be False.

Debugging with Visual Studio .NET

This section is not intended to be a definitive guide to debugging with Visual Studio .NET but rather a short
guide to get you started. This book does not have the scope to cover the "art" of debugging with Visual
Studio. I emphasize the word "art" because often debugging is just that. It is also a discipline. It is well known
that debugging is not the strongest point of many programmers. In fact, research has shown that perhaps only
10 percent of gainfully employed programmers can effectively debug an application.

Debugging .NET applications for the most part is no different from debugging applications written in other
languages, unmanaged code, other virtual−machine runtimes, and even midrange and mainframe computing
environments. There is also a large school of thought that debugging should be an exercise of last resort
because programs should be well thought out and modeled completely.

There is also a school of thought that believes the best debugging tool you have is your mind. This school
believes that, based on good design, good programmers can mentally "debug" their applications line for line
and "trace" their thoughts to the origin of the bugwithout debugging aids. I very much believe that your mind
is the best debugger, and in many cases the only one. But mentally stepping through code without debugging
tools? I don't think so.

Visual Studio .NET provides a rich collection of debugging aids that can help you find the errors and defects
in your code. Errors are inevitable in every application, and the tools you have at your disposal will help you
connect your thoughts and understanding about your code, with the actual lines of code in the IDE (as
opposed to the lines of code you "see" in your mind).

What Species Is Your Bug

Bugs come in three species: syntax, semantic, and logic. The most common type of bug you are likely to
encounter is the syntax one. These bugs are not too dangerous, because they are common, seen a lot, and can
be squished very easily. They occur when the code you write does not conform to the so−called "rules of
grammar" of the language you have chosen to write in.

Syntax bugs are the easiest to find and fix, and the compiler, which checks your code as you write it and tells
you what's wrong, can mostly knock out and automatically fry these critters as they show up. So powerful is
Visual Basic .NET's background compiler that syntax bugs are for all intents and purposes eliminated as they
appear. You can change that power, however, so that you learn by your mistakes. Just try to type 50 lines of
code in "Visual Notepad .NET" and see how far you get.

Visual Studio pumps syntax error messages to the Output window. And the ones it does not automatically
correct are flagged with the location of a syntax error (line number and file) and a terse description of the
problem. Sometimes the compiler is not accurate and only gives you enough bait to go fishing with. At that
point, you need to fish in your mind and mentally trace your way to the location of the error that is causing the
bug.

 Debugging with Visual Studio .NET

629

Semantic bugs are more subtle and thus more difficult to find. These errors occur even when the syntax of
your code is correct, but the semantics or meaning leads to results that were not exactly intended (to put it
mildly). Because they are unrelated to syntax errors, they are not caught by the compiler, so it can't tell you
where they are.

It is important to remember that compilers and interpreters concern themselves only with the structure of the
code you write, not the semantics or meaning. Semantic errors can be very subtle and go unnoticed for many
full moons. Others are more dangerous and can create disaster for everyone concerned.

The third type of bug, which no debugger can catch, is the logic bug. It's a killer that can bring down an
elephant of an application. And the reason is simple: Not even the full resources of the U.S. Government will
be able to invent a debugger that steps through the lines of code in your mind.

Logic errors occur when the code is syntactically and semantically correct but the logic of the program
performs certain operations that you did not intend or expect. The simplest, and most dangerous, logic errors
occur when variables do not represent valid data. Your program continues to process normally, but the
eventual outcome may be (at the least) incorrect data or (at the worst) system or process failure.

You can only eliminate logic errors with the model or specification in one hand, the debugging aids in the
other hand, and your mind at peak concentration levels.

The only way to detect logic errors is to test your program. This can be done manually by you or independent
testers, or automatically with testing software that can be scripted to "test drive" your code from every
possible angle until something goes wrong. Testing is best done by people independent of the programmers,
because the programmers generally are not objective enough or are not sufficiently disconnected from the
source code in the source files and the source code in their minds.

Testing should be an integral part of your software development process, but it also has its limitations. Testing
may turn up errors, or it may even cause system failure, but finding the error that caused the failure or
detected the fault while the software was undergoing testing isn't easy. Testing coupled with tracing can help
you find the source of the error. You then need a debugging aid to find the offending variable, statement, or
expression and change it. You will then use your debugging toolsand their amazing ability to step through the
actual codein a controlled execution, to determine if the changes you made were the correct ones to make.

Debugging Aids

Debugging aids are tools that allow you to observe the run−time behavior of your program, to determine the
location of errors, and to monitor what an application is doing at any given point in its running time.

Most new programmers learn to debug by first injecting standard programming constructs into their code,
such as writes to the console or to message boxes (my favorite is to sound one beep if code went into the If,
and two beeps if did not). While this works, removing these elements at run time is a drag, which is why we
have the Debug and Trace classes to make such efforts easier to manage. Not removing them can also cause
unexpected results.

Debugging aids let you examine the content of variable fields, insert a breakpoint in your code to stop
execution at a point of interest, step over statements, step through statements, and so on. When a program is
stopped at a line in your code, you are afforded the opportunity to examine local variables and other relevant
data while the application is in a frozen state. Computers process data fast, and without the ability to freeze
them at any point or trace the results of their execution and examine the state the software and its data are in,
it would be impossible to find the cause of even the most simple errors.

 Debugging Aids

630

Breakpoints

The most common means of examining the state and behavior of your application is by setting breakpoints.
These are typically set in a Visual Studio source window. You can also choose to set them in the debugger's
Disassembly window. You can also use the Stop keyword to halt execution in Debug mode. However, setting
breakpoints does not add anything to your code, and thus it is a cleaner means of halting execution at any
appropriate line in the code.

The Disassembly window collects and presents the instructions created from your source code while the
application is running. It is useful for examining how your source code is translated into the intermediate code
that will eventually be converted to machine−readable code. You will use the Disassembly to see how your
source code translates into resource−intensive instructions, such as how certain statements can result in too
much boxing and unboxing activity (refer to Chapter 8).

The following list provides descriptions of the various debugger features and utilities:

Autos Window This window automatically shows you the variables used in the current statement, in
the three statements before the current statement and in the three statements after the current
statement.

•

Execution control Visual Studio provides you with the ability to control execution of your program.
The debugger lets you start (or continue) execution, break execution, stop execution, step through
your code, run to a specified location in your code, and set execution points.

•

Attach to a running program or multiple programs Visual Studio provides the ability to attach to
programs that are running in processes outside of Visual Studio. You can use this attach capability to
debug a program that was not created in Visual Studio. You can also debug multiple programs
simultaneously, debug programs running on remote machines, or debug programs in separate
processes (such as DLLs) that cannot easily be started from Visual Studio. You can also use this
ability to start the debugger automatically when a program crashes while running outside of the
development environment, even on another machine.

•

Just−in−time debugging Visual Studio provides the ability to perform JIT debugging (a technique
for debugging a program that is started outside of Visual Studio). JIT debugging can also be
implemented from a remote machine.

•

Automatic launching Visual Studio provides the ability to start it when you start the application
from Windows. The IDE loads your application in Debug mode, ready for your command to start
execution. This facility is useful for debugging services and COM out−of−process servers.

•

Dumps Visual Studio provides the ability to dump to disk files that include instructions. Dumps are
used to test a program on a machine or location that does not have access to the IDE or source code,
such as your customer's site. When a crash occurs, you can save a dump file and debug it later on the
machine that has the source files and the IDE.

•

Breakpoints Visual Studio provides the full range of breakpoint options, such as setting, disabling,
removing, and editing breakpoints in various debugger windows.

•

Call Stack window This window lets you view the calls current on the call stack, byte offsets and
other call related information.

•

Exception handling Visual Studio provides the ability to debug exception handlers. You have the
ability to change the handling and to see where the exception occurred and then examine the variable
contents.

•

Disassembly window This window in Visual Studio displays the basic instructions that represent
your source code. A disassembler takes machine code and coverts it back to an assembly−language
form, the step between source code and machine or CLR−readable code.

•

Locals window This windows displays variables local to the current context.•

 Breakpoints

631

Me window This window displays the data members of the current object containing the method the
code is currently executing.

•

Memory windows These windows (there are four of them) can be used to view large buffers, strings,
and other data that does not display well in the Watch or Variables window.

•

Modules window This window provides information about the DLL files and EXE used by the
current application.

•

Registers window The Registers window displays the contents of a register. It is useful to keep the
Registers window open as you step through your code because it lets you see register values change
as your code executes.

•

Running Documents window This window provides information related to any script files used by
the current application.

•

Threads window This window lets you access the threads that are currently running in your
application.

•

Watch window The Watch window is used to evaluate variables and expressions and keep the
results. The Watch window can also be used to edit the value of a variable or register.

•

QuickWatch dialog box The QuickWatch dialog box can be used to quickly evaluate a variable or
expression. It is simpler to use than the Watch window.

Note Edit and Continue is a feature of Visual Studio that lets you change your source code while your
program is in Break mode and then apply those changes without having to end the debug session
and rebuild your program. This feature was available to Visual Studio 6 and was made available
to Visual Basic 6 programmers. Unfortunately, it is a feature only available to C++ programmers
as of the first release of Visual Studio .NET, and we pray it will return to the Visual Basic
language side of the house as soon as possible.

•

Getting Started

Your first debugging activity will likely be to set breakpoints in your code and step through your application.
The following is the order of the steps you will take through your code:

Start execution.1.
Break execution (halt execution).2.
Continue (resume execution).3.
Stop execution.4.
Step through the application.5.
Run to a specified location.6.
Set the execution point.7.

To set a breakpoint in your code, place your cursor at a valid line for a breakpoint and then double−click in
the left margin of the source code editor. A breakpoint, represented by a large round blob, is inserted, as
illusrated here.

Alternatively, if you don't have the source code file open in front of you, you can set a breakpoint in the New
Breakpoint dialog box. As illustrated in Figure 17−2, this dialog box can be opened by selecting the Debug
menu and choosing New Breakpoint.

 Getting Started

632

Figure 17−2: The New Breakpoint dialog box
As stated earlier, you can also set a breakpoint in the Disassembly window after the application has been
started and is in Break mode. This window, shown in Figure 17−3, can be accessed by selecting from the
Debug, Windows, Disassembly menu item.

Figure 17−3: The Disassembly window with a breakpoint set
As soon as the application breaks, you can start debugging from the options presented on the Debug menu.
These include Step Into, Step Over, and Step Out. You can also right−click in the source window and choose
various options in the shortcut/context− sensitive menu.

When you choose Start, your application starts and runs until it reaches the breakpoint your have set. But if
you then choose Step Into or Step Over, your application starts, executes, and then breaks on the first
breakpoint.

If you choose Run To Cursor, your application will start as usual and then it will run until it reaches either the
breakpoint or the cursor location, whichever comes first. You can set the cursor location in a source window,
which is the easiest method. When a break fails to occur, it could mean that execution never reached the code
where the cursor was set.

Your solution may contain more than one project, and you can choose the startup project that will be launched
by the Debug menu execution commands. You can also set the default startup application from your project
folders in Solution Explorer and build one of a collection of many projects in the solution.

When you are debugging an application with the Visual Studio debugger, your application is either running
(executing) or has been stopped on a break. Many debugger features, such as evaluating expressions in the
Watch window, the memory windows, the Disassembly, and so on, only become available when your
application has been stopped on a break. You can also break execution of your program manually from the
Debug menu by choosing the menu option Break All. This option becomes disabled as soon as your
application stops.

 Getting Started

633

To change break behavior when debugging multiple programs, you can choose Tools, Options. The Options
dialog box contains a Debugging folder. Drill down to the General page and select or clear the option "In
break mode, only stop execution of the current process." This property page is illustrated in Figure 17−4.

Figure 17−4: The General page in the Debugging folder of the project's Options dialog box
Stopping execution means terminating (or detaching from) the program you are debugging and ending the
debugging session. It should not be confused with breaking execution, which temporarily halts execution of
the program you are debugging but leaves the debugging session active.

Step Into and Step Over differ in the way they handle method calls. When the line about to be executed
contains a method call, Step Into executes only the call itself, and then halts at the first line of code inside the
method. Step Over, on the other hand, processes the entire method code. It then stops at the first line after the
method call. Use Step Into if you want to go into the method call, and use Step Over if you want to avoid
stepping into the methods.

On a nested method call, Step Into steps into the most deeply nested function. If you use Step Into on a call
like Method1(Method2()), the debugger steps into the method Method2. Use Step Out when you are inside
the method and want to return to the calling method. Step Out resumes execution of your code until the
method returns. It then breaks at the return point in the calling method.

You will learn that there are times when you should not (or need not) set a breakpoint. The Visual Studio
debugger provides specific commands to run to the cursor location or to a specified method. You can also
move the execution point to set the next statement of code (or assembly−language instruction) to be executed.

A yellow arrowhead in the margin of a source or Disassembly window identifies the current location of the
execution point in the source code or disassembled code. You can move the execution point, and thus skip
over a portion of code to execute. You can also return to a line that was previously executed. You can use this
feature to skip a section of code, such as a sector that contains a known bug, and continue debugging
elsewhere.

Note In managed code, you cannot change the execution point after an exception has occurred.

To set the next statement to execute, perform the following: In a source window or Disassembly window,
right−click the statement or assembly language instruction you want to execute next and choose Set Next
Statement from the shortcut menu. If the current execution point is in the same source file as the statement
you want to set, you can move the execution point by dragging the marker arrow. Or you can go to the source
code, click the execution point marker (yellow arrowhead), and drag it to a location in the same source file
where you want to set the next statement to be executed.

 Getting Started

634

The Visual Basic .NET Compiler

The Visual Basic .NET Compiler compiles your class files to an intermediate language or IL (see the
Microsoft Intermediate Language discussion is Chapter 2). You can invoke the compiler either from the
command line, which is what we are going to kick off with here, or from within the Visual Studio .NET
Integrated Development Environment (IDE), as discussed in the final section on the compiler, "Using the
Visual Studio Build Commands."

Note As we discussed earlier, the compiler is named VBC and is a single executable file that resides in the
folders of the .NET Frameworkusually at C:\Windows\ Microsoft.Net\ Framework\
v1.0.3512\VBC.EXE.

To invoke the compiler, simply reference the path to it in a DOS batch file or from the command line as VBC,
as described earlier in the "Getting Started" section. The command−line directives of the VBC are described
in Table 17−5.

Table 17−5: The VBC Command−Line Compiler Directives

Directives Purpose VS .NET Example/Usage

@ Use to specify a response file, which
obviates the need for a complex DOS batch
file.

N/A See the section "Using a
Response File for
Compilation" after this
table

/? Displays compiler command−line options
in the console and short−circuits
compilation.

N/A c:\..\vbc /?

/addmodule Lets you compile a class into a module,
which contains no metadata about the class
the module contains. You can then add the
module to the project you are currently
compiling.

No Vbc
/addmodule:t1.
netmodule t2.vb

/baseaddress Lets you specify the base address of a
DLL.

Yes (in Property
Pages)

Set programmatically

/bugreport Use to produce a file that contains bug
report information.

No vbc /bugreport:
bugs.txt
nodals.vb

/debug Use to produce debugging information. Yes (in Property
Pages)

vbc /debug /out:
Nodals.txt
Nodals.vb

/define Lets you define constants that can be used
for conditional compilation.

No, use #Const Vbc /define:
DEBUGMODE=True,TR
APERRORS=False
test.vb

/delaysign Allows you to decide later if your assembly
will be fully or partially signed.

N/A (use Strong
Name Tool)

Set programmatically

/help Displays compiler command−line options
in the console and short−circuits

N/A c:\..\vbc /help

 The Visual Basic .NET Compiler

635

compilation. See the ? directive in this
table.

/imports Use for referencing classes in a namespace
from a specified assembly.

Same as using
Imports in your
code, or settings
in Project
Properties Dialog
Box

Set programmatically

/keycontainer Lets you specify the key container for a
key pair to give an assembly a strong
name.

See /delaysign vbc/keycontainer:
key1 nodals.vb

/keyfile Lets you specify the key file containing a
key or key pair to give an assembly a
strong name.

See /delaysign vbc /keyfile:
myfile.sn
nodals.vb

/libpath Lets you specify the location of assemblies
referenced via the /reference option.

Yes. See Project
Properties Dialog
Box

vbc /libpath:c:\
/reference:nodes.
dll nodals.vb

/linkresource Lets you create a link to a managed
resource.

N/A vbc /linkresource:
rf.resource
uiapp.vb

/main Lets you specify the class that contains the
Sub Main required at startup. See the
section on assemblies in this chapter.

Yes. See Project
Properties Dialog
Box

vbc nodals.vb
list.vb
/main:nodals

/nologo Lets you switch off the Microsoft
copyright information.

N/A vbc /nologo
nodals.vb

/nowarn Lets you switch off the compiler's
warnings generator.

Yes. See Project
Properties Dialog
Box

vbc /nowarn
nodals.vb

/optimize Toggles code optimization. Yes, See Project
Properties Dialog
Box

Optimize or optimize+ to
enable, or optimizeto
suppress

/optioncompare Lets you specify whether string
comparisons in your classes should be
binary or should use locale−specific text
semantics.

Yes, See Project
Properties Dialog
Box

See Chapter 4, for Options
Directives

/optionexplicit Lets you specify that code requires explicit
declaration of variables.

Yes. See Project
Properties Dialog
Box

See Chapter 4, Option
Directives

/optionstrict Lets you specify that strict language
semantics are enforced in your code.

Yes. See Project
Properties Dialog
Box

See Chapter 4, Option
Directives

/out Lets you specify the output file. Yes. See Project
Properties Dialog
Box

vbc nodals.vb
/out:demo.exe

/quite The compiler will not display
syntax−related errors and warnings.

N/A vbc /quiet
nodals.vb

/recurse Lets you specify subfolders to search forN/A /recurse:Test\ABC

 The Visual Basic .NET Compiler

636

source files to compile. *.vb

/reference Lets you import metadata from an
assembly.

Yes. See Add
Referencs dialog
box

vbc /reference:
metad1.dll

/removechecks Lets you disable integer overflow
checking.

Yes. See Project
Properties Dialog
Box

vbc /remove
intchecks+
nodals.vb

/resource Lets you embed a managed resource in an
assembly.

Yes vbc /res:
rf.resource
node.vb

/rootnamespace Lets you specify a namespace for all type
declarations.

Yes. See Add
References dialog
box

See the Namespaces
section in Chapter 4 and
the Assemblies section in
Chapters 2 and 3

/target Lets you specify the format of the output
file using one of four options:
/target:exe
/target:library
/target:module
/target:winexe

Yes. See Project
Properties Dialog
Box

exe = console app library
= class library module =
no manifest winexe = Win
app

/utf8output Lets you display compiler output using
UTF−8 encoding.

N/A vbc /utf8output
nodes.vb

/verbose Lets you specify to display all information
generated during compilation.

N/A vbc /verbose
nodes.vb

/warnaserror Lets you promote warnings to errors. Yes. See Project
Properties Dialog
Box

vbc /warnaserror
nodes.vb

/win32icon Lets you insert a ICO file (icon) into the
output file.

Yes. See Project
Properties Dialog
Box

vbc /win32icon:
rf.ico in.vb

/win32resource Lets you insert a Win32 resource into the
output file.

N/A vbc /win32
resource:rf.res
injui.vb

Compiling from the command line can be very useful, especially when you make changes to a collection of
files you are maintaining in a library. A number of options from the command line are not available in Visual
Studio using the "visual compiler" and are explained further in this chapter.

Using a Response File for Compilation

A response file (RSP) is essential for compiling from the command line with a number of compiler options or
to specify a collection of files. The response file obviates the need to concoct a complex DOS batch file to
send commands to the compiler. It lets you specify input, output, and conditional directives for the compiler.
You can also place more than one response file on the command line, or type a list into a batch file.

Command−line commands for the compiler must be placed on a single line in the response file. You can
specify multiple files and options on the line, but your best bet is to keep the lines short, because complex
lines are hard to maintain.

 Using a Response File for Compilation

637

Response files can also be documented using the pound sign (#) to signify the comment line the compiler
must ignore. The following code example demonstrates compiling the welcome.vb source files from a
response file:

#the first file compiled for the comp ref.
/target:exe
/out:e:\VB7CR\Ch2\welcome.exe
#**********The file/s to compile***********
e:\VB7cr\Welcome\welcome.vb

The preceding code in the response file specifies that the target is a standard executable (EXE) that is a
console application. This is specified on the /target line. It also specifies the output folder on the /out line.

Tip The VBC does not like spaces and complex paths like "e:\All my vb files\chapter 2." So, save yourself the
aggravation and stick with simple spaceless paths, as demonstrated in the preceding code. Spaces after the
options (such as /out: c:\path) also cause the VBC problems. I have found it best to forgo the fancy folder
VS sets up under Documents and Settings and create a stand−alone folder system of simple names and
structure. See also the discussion of the /libpath compiler directive in the next section.

Managing a Class Library from the Command Line

Using the response file system previously discussed can make it easier for you to place all of your class files
into their respective namespaces and then specify the assembly name to package everything. In this section,
we will go through the steps to create such a library with a weak name (strong naming is further discussed in
Chapter 19).

The following collection of class files were developed for Visual Basic .NET Developer's Headstart
(McGraw−Hill/Osborne, 2001), the precursor to Visual Basic .NET Complete Reference:

Crew.vb•
Engineer.vb•
IcrewSecurity.vb•

These files can thus be placed into their own namespace, called Vb7hs.Ch5. The files are maintained in a
folder called VB7HS.Ch5, which mirrors the namespace on the file system. This is not required; it is just a
convenient method of organizing class files on the file system hierarchy as they should appear in the
namespace. The assembly name for the classes is called Vb7hscode.dll.

Now the response file includes the root /namespace for the files and is thus constructed as follows:

#the demo assembly for the Visual Basic.NET Headstart.
/target:library
/out:c:\VB7HS\Ch5\Vb7hscode.dll
/rootnamespace:Vb7hs.Ch5
#**********The file/s to compile***********
c:\VB7HS\Ch5\Crew.vb
c:\VB7HS\Ch5\Engineer.vb
c:\VB7HS\Ch5\ICrewSecurity.vb

That's all there is to creating a class library for distribution from the command line.

 Managing a Class Library from the Command Line

638

Conditional Compilation Directives

You can use conditional compilation to choose certain sections of code to compile over other sections. For
example, you may want to compile versions of your software for Windows 98 and other versions for
Windows 2000 and Windows XP. You may also want to compile regions of code over other regions (say, to
test how one method implementation performs over another), or you may want to localize an application for
multiple languages or cultures. Conditional compilation statements run during compile time, but remain sterile
at run time.

To declare a conditional compiler constant in code, use the #Const directive around the regions of code to be
conditionally compiled. The conditional statement to use is the #If...Then...#Else directive.

Here's an example to create U.S. and U.K. versions of the same application from the same source code with
alternative messages for each culture. Simply embed platform− specific code segments in #If...Then
statements using the predefined constants USVersion and UKVersion. The following example demonstrates
how to do this:

#If USVersion Then
 ' <code specific to the French language version>.
#ElseIf UKVersion Then
 ' <code specific to the German language version>.
#Else
 ' <code specific to other versions>.
#End If

Now when you set the value of the USVersion constant to True at compile time, the conditional code for the
USVersion version is compiled. But if you set the value of the UKVersion constant to True (and leave
USVersion to False), the compiler uses the UKVersion. Setting neither to True forces the code in the last
Else block to be compiled.

You can set conditional compilation constants in one of three ways:

In the Property Pages dialog box•
At the command line when using the command−line compiler•
In your code•

Conditional compilation constants have a special scope that cannot be accessed from standard code in any
way. The scope of a conditional compilation constant is dependent on the way it is set. To set constants in the
Property Pages dialog box, do so before creating your executable file.

To set constants at the command line, use the /d switch to enter conditional compilation constants, as in the
following example:

vbc Engineer.vb /d:USVersion=1:conANSI=0

No space is required between the /d switch and the first constant.

Make a note that command−line declarations override declarations entered in the Property Pages dialog box,
but they do not cancel or reset them. In other words, the arguments set in the Property Pages dialog box
remain in effect for subsequent compilations but are quashed as long as you issue directives at the command
line.

 Conditional Compilation Directives

639

When writing constants in the code itself, there are no strict rules as to their placement, since their scope is the
entire module in which they are declared. To set constants in your code, place the constants in the declaration
block of the module or class in which they are used. This helps keep your code organized and easier to read.

Observations

This chapter focused on the art of debugging, and described how the Debug and Trace classes can be used for
defect management and quality control. We also discussed how to use the classes in debug versions and
release versions of your code.

Looking back, you may now think that this discussion would have been better earlier in the book, especially if
you are new to the concepts of debugging. But I felt it would have detracted from the lessons at hand, and
injecting debug statements in the example code would have been distracting. As a result, I also removed most
debug statements from the code in this book and replaced many Debug.Write and Debug .WriteLine calls
with the Console class and Trace class equivalents of these methods.

We also briefly discussed using the Visual Studio .NET debugging tools. But our discussion was just a small
taste of what is a very complex and comprehensive discussion.

We have come a long way after all these pages. As you have seen, this book focuses mostly on the core
programming concepts and constructs. If you have read every chapter and have gone over the source code
examples, you will be ready to start writing your own applications and tackle more complex subjects like
creating enterprise applications with ASP.NET and ADO.NET, employing advanced graphics applications
using the GDI+ libraries, and discovering distributed computing solutions using the .NET Remoting classes,
Web Services, and network libraries.

 Observations

640

List of Figures

Chapter 1: Software Development and Visual Basic .NET

Figure 1−1: Cohesive, loosely coupled units send messages to each other
Figure 1−2: Applications are collections of loosely coupled classes
Figure 1−3: Classes that depend on other classes for global data are harderto manage

Chapter 2: Visual Basic .NET and the .NET Framework

Figure 2−1: The CTS type model, which is the basis for object model and hierarchy
Figure 2−2: The CLR and its relationship to other runtime environments
Figure 2−3: Following the IL
Figure 2−4: The IL Disassembler Application
Figure 2−5: n assembly can comprise several files

Chapter 3: The Visual Basic .NET Development Environment

Figure 3−1: An empty Visual Studio .NET IDE when started up
Figure 3−2: The IDE with all windows "hiding"
Figure 3−3: The Object Browser
Figure 3−4: Where do you want to go . . . before you program
Figure 3−5: The dialog box for creating a blank solution
Figure 3−6: The Solutions Properties dialog box
Figure 3−7: Creating a new project container in an existing Solution Container
Figure 3−8: The Add Reference dialog box

Chapter 4: The Elements of Visual Basic .NET

Figure 4−1: The .NET class and its three key spaces

Chapter 6: Software Design, Conditional Structures, and
Control Flow

Figure 6−1: Execution transfer as a result of a method call always returns
Figure 6−2: The Nassi−Schneiderman (NS) charts for graphically designing algorithms
Figure 6−3: NS Chart for designing the process to step through the array
Figure 6−4: The flowchart for stepping through the array
Figure 6−5: The If syntax flowchart
Figure 6−6: The Else syntax flowchart
Figure 6−7: The Else If flowchart
Figure 6−8: The Select Case flowchart

641

Chapter 7: Methods

Figure 7−1: The System namespace in the mscorlib assembly
Figure 7−2: Browsing the members of the Math class

Chapter 8: Types, Structures, and Enumerations

Figure 8−1: Using WinCV to look at the built−in enumerations

Chapter 9: Classes

Figure 9−1: Classes are the blueprints of objects
Figure 9−2: The basic class represented in UML
Figure 9−3: The ShutAppDown class
Figure 9−4: The ShutAppDown class with additional variables
Figure 9−5: The UML graphical notation for expressing the relationships among
Figure 9−6: A system of classes and their relationships, roles, and responsibilities
Figure 9−7: ShuttleInjector inherits from BaseInjector
Figure 9−8: The Crew class
Figure 9−9: Multiple inheritance
Figure 9−10: Control and ownership in class hierarchies
Figure 9−11: The difference between inheritance and aggregation/composition
Figure 9−12: The burger patty factory

Chapter 10: Interfaces

Figure 10−1: To access an object, you reference its interface
Figure 10−2: The implicit interface and the implementation behind it
Figure 10−3: Loosely coupled modules separating interface from implementation
Figure 10−4: Implementing the interface in the class that needs it
Figure 10−5: Implementing the interface in another class for access by indirection
Figure 10−6: The class that instantiates a LinkedList object also instantiates a reference to an IIterator
interface in order to access the functionality of the IIterator for the list in question

Chapter 12: Collections, Arrays, and Other Data Structures

Figure 12−1: Objects on a stack can only be accessed last−in, first−out from the end of the stack
Figure 12−2: Objects in a queue can only be accessed first−in, first−out from the front of the queue
Figure 12−3: A simple one−dimensional array
Figure 12−4: Arrays are underpinned by an index, also known as a subscript, which gives you direct and
random access to any element in the array
Figure 12−5: The array injectorsAlarms is a five−element array
Figure 12−6: oAlarms and sAlarms refer to the same object
Figure 12−7: A multidimensional array of two dimensions

 Chapter 7: Methods

642

Figure 12−8: The jagged array
Figure 12−9: Use a math pad if necessary to "sketch" the actions the sort must take
Figure 12−10: The array after it has been partitioned
Figure 12−11: The unsorted array
Figure 12−12: Elements 83 and 23 are the values earmarked for swapping
Figure 12−13: The positions of the elements after the swap
Figure 12−14: The array after all elements are swapped
Figure 12−15: The array after the pivot has been moved to the intersection
Figure 12−16: Accessing five arrays at the same subscript at the same time
Figure 12−17: The hash code used as the index of the hash table
Figure 12−18: Mailboxes are easier to locate with a number
Figure 12−19: URLs represented by key and value in a hash table
Figure 12−20: Hash buckets and chains

Chapter 13: Advanced Design Concepts: Patterns, Roles, and
Relationships

Figure 13−1: The Singleton pattern class structure
Figure 13−2: Multiple implementations of the abstract parent
Figure 13−3: For each type of spacecraft we need to implement a new subclass (nested generalizations)
Figure 13−4: Separate class hierarchies connected to a common root via an interface "bridge"
Figure 13−5: The Strategy pattern
Figure 13−6: A hierarchy of state objects for a warp drive
Figure 13−7: The class maintains the current state of the injector at all times by referencing a state object
Figure 13−8: The BaseNodeCollection's container−class hierarchy
Figure 13−9: A Node object with its aggregated data and link objects
Figure 13−10: The Node class is the inner or nested class, and is thus part of the outer BaseNodeCollection
class. Node itself contains objects.
Figure 13−11: Implementation of the BaseNodeCollection
Figure 13−12: Inspecting the objects in the Locals windows during debugging (see Chapter 17) shows the
linked list in action, the head of the list, the tail, and the body
Figure 13−13: The shuffling of nodes that takes place when you insert into a list

Chapter 14: Advanced Interface Patterns: Adapters, Delegates,
and Events

Figure 14−1: The Adapter class or object adapts the interface of a Receiver
Figure 14−2: The Adaptee is the interface to an Adapter
Figure 14−3: Bridging the .NET (managed) reality to COM
Figure 14−4: Bridging the COM (unmanaged) reality to .NET
Figure 14−5: An Adapter is able to act as the interface to the Receiver object on behalf of a client that cannot
call the Receiver object directly
Figure 14−6: The Adapter object is a subclass or inner (composite) class of the Adaptee
Figure 14−7: Class Dog begets subclasses Labrador, GermanShepherd, and Collie; all require the BARK
method
Figure 14−8: Various subclasses of Dog can delegate to the MedServices class when they need operations
that help them to play the roles of medical−rescue dogs

 Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships

643

Chapter 16: Interfacing with the End User

Figure 16−1: The fat form's logic is hard to maintain, reuse, extend, and debug
Figure 16−2: The light form and its objects are easier to maintain, reuse, extend, and debug
Figure 16−3: Multiple Thread objects means concurrent processing
Figure 16−4: The new MDI parent form and initial menus
Figure 16−5: An MDI application with child windows
Figure 16−6: Adding a nonvisual control to the form's component tray
Figure 16−7: A Panel object containing a Label object and a TextBox object
Figure 16−8: The GroupBox object
Figure 16−9: Adding TabControl and TabPage objects
Figure 16−10: Splitter and docked panels arrangement
Figure 16−11: The TextBox control configured as a multiline "text editor" with scroll bars
Figure 16−12: The DomainUpDown control
Figure 16−13: The MonthCalendar control

Chapter 17: Getting Ready to Release

Figure 17−1: Configuration Manager is used to set Debug mode or Release mode in the application's
configuration.
Figure 17−2: The New Breakpoint dialog box
Figure 17−3: The Disassembly window with a breakpoint set
Figure 17−4: The General page in the Debugging folder of the project's Options dialog box

 Chapter 16: Interfacing with the End User

644

List of Tables

Chapter 2: Visual Basic .NET and the .NET Framework

Table 2−1: Abridged Version of the CLS

Chapter 3: The Visual Basic .NET Development Environment

Table 3−1: The Solution Folder Hierarchy for Each Project the Solution Contains
Table 3−2: Common File Extensions Used with the Visual Basic Projects

Chapter 4: The Elements of Visual Basic .NET

Table 4−1: Lexical Elements and Grammar
Table 4−2: Preprocessing Directives
Table 4−3: General Concepts
Table 4−4: Option, Imports, and Namespace Directives
Table 4−5: Types of .NET Applications
Table 4−6: Type Members
Table 4−7: Statements and Statement Blocks
Table 4−8: Expressions
Table 4−9: Operators
Table 4−10: Capitalization Rules
Table 4−11: Attributable Elements of Visual Basic .NET (and Any CLS−Compliant Language)
Table 4−12: Visual Basic .NET Fundamentals Signed Value Types
Table 4−13: Value Type Literal Identifiers and their Respective Literal Type Character
Table 4−14: Safe Conversion and Target Value Types
Table 4−15: Classic VB Conversion Functions and Framework Conversion Methods
Table 4−16: Default Initialization Values for Value Types

Chapter 5: Visual Basic .NET Operators

Table 5−1: Operator Precedence Table (*The ++ or − − Unary Operators are Not Accessible in VB .NET)
Table 5−2: Visual Basic .NET Arithmetic Operators
Table 5−3: Arithmetic Exceptions
Table 5−4: Assignment Operators
Table 5−5: Comparison Operators Supported in Visual Basic .NET
Table 5−6: Logical Operators and Their Functions, and C# and JScript Equivalents (** Not ApplicableAll
Logical Operators in JScript or C# Short−Circuit)
Table 5−7: Conditions upon which Logical Operators Return True or False
Table 5−8: Bitwise Operators and the Values They Return; the C# and JScript Equivalents
Table 5−9: Resulting Decimal and Its Corresponding Binary Representation After Shifting Numbers by 1 or
More
Table 5−10: Specialized Operators

645

Table 5−11: Pattern Matching Mask Characters for Comparing Strings
Table 5−12: Referenced Exceptions

Chapter 6: Software Design, Conditional Structures, and
Control Flow

Table 6−1: Conditional Statements

Chapter 7: Methods

Table 7−1: Parameter Types Excepted at Methods
Table 7−2: Legacy Functions in the Microsoft.VisualBasic.Interaction Class
Table 7−3: Legacy Functions in the Microsoft.VisualBasic.VbMath Class
Table 7−4: Access Modifiers and the Purpose for Each
Table 7−5: Access Modifiers and How They Restrict Access
Table 7−6: The Access and Implementation Characteristics of Class Members
Table 7−7: Constants of System.Math
Table 7−8: Methods (static) of System.Math
Table 7−9: Exceptions for System.Math

Chapter 8: Types, Structures, and Enumerations

Table 8−1: Member of System.Enum
Table 8−2: Options for the Format Method's Parameter Value

Chapter 9: Classes

Table 9−1: The Characteristics of .NET Classes

Chapter 10: Interfaces

Table 10−1: Legal and Illegal Access and Polymorphism Modifiers in Interfaces and on the Implemented
Members

Chapter 11: Exceptions: Handling and Classes

Table 11−1: Methods and Properties of an Exception Object
Table 11−2: The .NET Framework Runtime Exception Hierarchy

 Chapter 6: Software Design, Conditional Structures, and Control Flow

646

Chapter 12: Collections, Arrays, and Other Data Structures

Table 12−1: Interface Members of the System.Collections Namespace
Table 12−2: Collection Classes (Array is not a member of System.Collections)
Table 12−3: Classes in System.Collections.Specialized
Table 12−4: The Members of System.Array (Excludes Members Inherited from Object)
Table 12−5: Array Exceptions
Table 12−6: The members of Hashtable. The class implements ICollection, IEnumerable, and IList

Chapter 15: Data Processing and I/O

Table 15−1: String Manipulation Methods and Properties (Several are Static)
Table 15−2: Compare Method's Return Codes
Table 15−3: Classic Functions Wrapped by the Microsoft.VisualBasic.Strings Class
Table 15−4: The Built−in Formatters, or Format Providers, that Implement IFormatProvider
Table 15−5: The Standard DateTime Formatters and property/patterns associated with the current thread or
by a specified format provider
Table 15−6: Formatters for the DateTime Object
Table 15−7: Members of the StringBuilder Class
Table 15−8: Members of the RegularExpressions Class
Table 15−9: The Static Methods of File
Table 15−10: Members of the Path Operations Class
Table 15−11: File Enumeration Classes
Table 15−12: Constants for the FileAccess Attributes Parameter
Table 15−13: Constants for the FileAttributes Parameter
Table 15−14: Constants for the FileMode Parameter
Table 15−15: Constants for the FileShare Parameter
Table 15−16: The Static Members of the Directory Class
Table 15−17: The Members of the FileInfo Class
Table 15−18: The Instance Members of the DirectoryInfo Object
Table 15−19: The Properties of the Drive Class in the File System Object
Table 15−20: The Members of the FileSystemWatcher Class
Table 15−21: Members of the NotifyFilters Enumeration
Table 15−22: The Constants of the FileSystemWatcher Enumeration
Table 15−23: The Members of FileStream
Table 15−24: Exceptions That Can Be Generated on a BeginRead Operation
Table 15−25: Exceptions That Can Be Generated on a Seek Operation
Table 15−26: Constants of the SeekOrigin Enumeration
Table 15−27: The Members of the StringReader Class
Table 15−28: The Members of the StringWriter Class
Table 15−29: The Members of the StreamReader Class
Table 15−30: The Pertinent Members of StreamWriter
Table 15−31: The Members of the XMLTextReader Class
Table 15−32: XML Node Types
Table 15−33: The Pertinent Members of the XmlTextWriter Class

 Chapter 12: Collections, Arrays, and Other Data Structures

647

Chapter 16: Interfacing with the End User

Table 16−1: Abridged Listing of Classes in the System.Threading Namespace
Table 16−2: Border Styles for Forms
Table 16−3: MouseEventArgs Properties
Table 16−4: KeyPressEvenArgs Properties
Table 16−5: User Interface Controls for Soliciting and Obtaining Input
Table 16−6: Informational Controls

Chapter 17: Getting Ready to Release

Table 17−1: Base and Final Classes in the System.Diagnostics Namespace
Table 17−2: Enumerations Available to the System.Diagnostics Namespace
Table 17−3: Members of the TraceListener Class
Table 17−4: TraceLevel Enumeration and Its Values
Table 17−5: The VBC Command−Line Compiler Directives

 Chapter 16: Interfacing with the End User

648

List of Sidebars

Chapter 5: Visual Basic .NET Operators

IEEE 754

Chapter 7: Methods

Call by Reference or Call by Value

649

	Table of Contents
	Visual Basic .NET The Complete Reference
	Foreword
	 Acknowledgments

	Introduction
	 Chapter 1
	 Chapter 2
	 Chapter 3
	 Chapter 4
	 Chapter 5
	 Chapter 6
	 Chapter 7
	 Chapter 8
	 Chapter 9
	 Chapter 10
	 Chapter 11
	 Chapter 12
	 Chapter 13
	 Chapter 14
	 Chapter 15
	 Chapter 16
	 Chapter 17
	 Conventions

	 Part I: Introduction to Visual Basic .NET
	 Chapter 1: Software Development and Visual Basic .NET
	 Overview
	 Visual Basic and the Difficulty of Developing Software
	 Reducing Complexity and Time-to-Market with Reuse

	 Software Development and Software Engineering
	 The Classic Programming Models
	 Structured Programming
	 Bug-Reduced Code
	 Divide and Conquer
	 Reuse
	 Teaming
	 Structural Nada?
	 Object-Based Programming

	 Object-Oriented Software Development
	 Real-World Reflections
	 What Makes a Pure Object-Oriented Language
	 Just Classes
	 Classes for Modularity, Cohesion, and Coupling
	 Classes for Abstraction
	 Classes for Encapsulation
	 Classes for Hiding Information
	 Classes for Classification
	 Class that Beget Classes: Inheritance
	 Classes for Objects: Instantiation
	 Classes for Association, Aggregation, and Composition
	 Classes for Events
	 Classes for Message Passing
	 Classes for Polymorphism
	 Classes for Interfaces

	 Frameworks
	 Patterns
	 Observations

	 Chapter 2: Visual Basic .NET and the .NET Framework
	 Overview
	 Getting to Know the Framework's Runtime
	 The Common Type System
	 The Common Language Specification

	 The Common Language Runtime
	 Microsoft Intermediate Language
	 Metadata
	 Executable Code
	 Managed Execution
	 Side-by-Side Execution
	 Application Domains
	 Automatic Memory Management
	 Just-in-Time Deployment

	 Understanding Assemblies
	 Locating Assemblies, Anytime
	 What's in an Assembly
	 The Roles of the Assembly
	 Attributes, Reflection, and Assemblies
	 Strong Names

	 The .NET Security Model
	 Observations

	 Part II: Visual Basic .NET Fundamentals
	 Chapter 3: The Visual Basic .NET Development Environment
	 Overview
	 Working with the Visual Studio IDE
	 Navigating the IDE
	 Starting from the Start Page

	 Creating a Visual Basic .NET Solution
	 Loading the Vb7cr Solution
	 Creating a New Project
	 Solution Directory Structure
	 File Extensions
	 Working with the Base-Class Library
	 A Minimal Visual Basic .NET Application

	 Observations

	 Chapter 4: The Elements of Visual Basic .NET
	 Overview
	 Visual Basic .NET: The Foundation
	 Lexical Elements
	 Preprocessing Directives
	 General Concepts
	 Option, Imports, and Namespaces Directives
	 Types
	 Type Members
	 Statements and Statement Blocks
	 Expressions
	 Operators

	 Visual Basic .NET Mini Style Guide
	 Naming and Notation
	 Hungarian Notation
	 Word Choice

	 Getting Started
	 Character and Lines
	 Statements and Blocks
	 Nothing for Nothing or Something for Nothing

	 Classes, Types, and Objects: What's the Difference?
	 Classes: The View from Above
	 The Class Declaration Space
	 The Directive Space
	 The Implementation Space
	 Elemental Value Types

	 Working with Numbers
	 Integer Types
	 Visual Basic 6 to Visual Basic .NET

	 Point Types
	 Characters
	 Booleans
	 Literal Notation
	 Type Conversion
	 Working with Variables and Constants
	 Variable and Constant Declaration Shorthand
	 Default Initialization
	 Keeping Data Private
	 Scope
	 Variable and Constant Lifetimes

	 Observations

	 Chapter 5: Visual Basic .NET Operators
	 Overview
	 What an Operator Does
	 Numbering Systems Reviewed
	 Positional Notation
	 Converting from One System to Another

	 Operator Precedence
	 Changing Precedence Order with Parenthesis

	 Unary Operators
	 Arithmetic Operators
	 Assignment Operators
	 Comparison Operators
	 Concatenation Operator
	 Logical Operators
	 Logical And, Or, and Xor
	 Short-Circuit Logical Operators

	 Bitwise Operators
	Flag Sets
	Shifting Bits

	 Specialized Operators
	 Is
	 Like

	 Operator Overloading
	 Exceptions Referenced in this Chapter
	 Observations

	 Chapter 6: Software Design, Conditional Structures, and Control Flow
	 Overview
	 Control Structures
	 Control Flow
	 Fully Sketched Code
	 Step-Form Notation
	 Pseudocode
	 Nassi-Schneiderman Charts
	 Flowcharts
	 Design Pitfalls

	 Conditional Statements
	 If
	 Else
	 Else If
	 Tips for Else and Else If
	 Select Case
	 GoTo
	 OnError

	 Loops
	 DoLoop
	 For. . . Next
	 For Each . . . Next
	 While

	 One or the Other Conditional Functions
	 Choose
	 IIF
	 Switch

	 Pausing, Resuming, and Exiting Iteration
	 Exit Idiosyncrasies

	 Observations

	 Chapter 7: Methods
	 Overview
	 What Is a Method
	 Types of Methods
	 Synchronous vs. Asynchronous Method Calls

	 Method Data
	 Method Data: Global vs. Local
	 Local Declarations
	 Passing Arguments to Parameters
	 Calling Methods
	 Function or Sub Methods

	 Method Access Characteristics
	Public Methods
	Protected Methods
	Friend
	Protected Friend
	Private Methods
	 Controlling Polymorphism Characteristics of Methods

	 Mining the Framework's Methods
	 The Methods of System.Math
	 Programming with the Math Class
	 Math-Related Exceptions

	 Properties
	 Properties vs. Fields
	 Properties vs. Methods

	 Introduction to Exception Handling
	 The Exception Handler
	 Try Catch Blocks

	 Design and Construction of Methods
	 Class and Method Cohesion
	 Method Coupling
	 The Length of a Method

	 Recursive Design of Methods
	 The Base Case
	 The Stopping Condition
	 The Impact of Recursion

	 Understanding Method Performance
	 Observations

	 Part III: Classes and Objects
	 Chapter 8: Types, Structures, and Enumerations
	 Overview
	 The Value-Type Model
	 How Value Types Work
	 Boxing
	 Why are Value Types Objects?
	 Structs and Enums Ahoy: Creating New Value Types

	 Structures
	 Structure Behavior

	 Enumerations
	 Working with System.Enum
	 Flags
	 Final Words on Enums

	 The Object-Reference Model
	Null Reference
	What the Reference Refers To
	 The Object-Reference Model and Equality, Comparison, and Assignment

	 Observations

	 Chapter 9: Classes
	 Overview
	 Getting the Semantics Correct
	 Of Classes and Types
	 Semantics and Notation

	 Modeling
	 Software Modeling
	 Viewpoints
	 Unified Modeling Language
	 UML Diagrams
	 UML Notation for Class Diagrams
	 UML Notation for Class Relationships

	 Modularity
	 Modularity Metrics: Coupling and Cohesion

	 The Classes Are the System
	 Class Characteristics
	 In the Beginning Abstract Classes
	 Factoring Out Commonality
	 The Members of Abstract Classes

	 Inheritance
	 Inheritance and Polymorphism
	 Inheritance and Coupling
	 Multiple Inheritance
	 Order and Control with Inheritance
	 Reduction of Complexity
	 Maintenance
	 Code Reuse

	 Implementing a Space Ship's Fuel Injector Software
	 Instance Fields
	 Instance Constructors
	 Properties
	 Methods
	 Publishing the ShuttleInjector Class
	 Activating the ShuttleInjector Class

	 The Inherited Members of Object
	 Testing for Reference Equality with Equals
	 ToString
	 Cloning
	 GetHashCode
	 GetType
	 ReferenceEquals
	 Finalize

	 Aggregation and Composition: Reuse by Containment
	 More Aggregation at Work: A Form for Testing
	 Ending Inheritance with Sealed Classes
	 Improved Performance with Shared Classes and Modules
	 Observations

	 Chapter 10: Interfaces
	 Overview
	 Abstraction and Interfaces in Object-Oriented Software Design
	 Getting Passionate (or Radical) about Interfaces
	 Interfaces and Inheritance
	 Realizing the Benefits of Interfaces

	 Implicit Interfaces
	 Explicit Interfaces
	 Abstract Class or Explicit Interface

	 An Introduction to Interface Design and Implementation
	 Accessing and Using the Implementation
	 Compound Interfaces

	 Designing and Defining Interfaces
	 Interfaces, Once Published, Must Not Change
	 Interface Invariance
	 Constructing the Interface
	 Getting Started with the Interface Definition

	 Implementing Interfaces
	 Interface Implementation Semantics
	 Implementing ICloneable
	 Implementing IComparable

	 Exceptions Covered in this Chapter
	 Observations

	 Chapter 11: Exceptions: Handling and Classes
	 Overview
	 Why Do We Need Exception Handling?
	 Structured Exception Handling 101
	 Exception-Handling Models
	 The Resumption Model
	 The Termination Model

	 Recovering from Exceptions
	 Exception Statements
	 Try
	 Catch
	 Finally
	 When Filters
	 Nesting Try Blocks
	 Throw

	 Exception-Handling Tips
	 Creating Your Own Exception Classes
	 The .NET Exception Hierarchy
	 Choosing a Base Class from which to Inherit

	 Observations

	 Chapter 12: Collections, Arrays, and Other Data Structures
	 Overview
	 NET's Array and Collections Namespace
	 Specialized Collections
	 ICollection
	 IEnumerator and IEnumerable
	 IList

	 Stacks
	 How to Program Against a Stack

	 Queues
	 How to Program Against a Queue

	 Arrays
	 The Array Class
	 Declaring and Initializing Arrays
	 Declaring Multidimensional Arrays
	 Jagged Arrays
	 Programming Against Arrays
	 The UBound Statement
	 Redeclaring Arrays
	 The Erase Statement
	 The IsArray Function

	 Array Exceptions
	 Passing Arrays to Methods
	 Receiving Arrays from Methods
	 Searching and Sorting Arrays
	 The BinarySearch Method
	 The Basics of Sorting Arrays

	 Bubble Sort
	 Partition and Merge
	 Quicksort
	 Sorting Strings and Other Objects
	 Populating Arrays
	 Arrays for Objects
	 Hash Tables
	 Observations

	 Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships
	 Overview
	 Designs on Classes
	 Singleton
	 Bridge
	 Strategy
	 State

	 Linked Lists and Trees
	 Understanding the Linked List
	 Designing a Base-Container Class for Lists (and Trees)
	 Implementing the Node
	 Implementing the Container
	 Implementing the Iterator

	 Observations

	 Chapter 14: Advanced Interface Patterns: Adapters, Delegates, and Events
	 Overview
	 Adapters and Wrappers
	 Interface Adaptation in ActionCOM- .NET Interop
	 The Adapter Pattern in .NET
	 The Adapter Pattern Event Model
	 Delegation: Please Help Me!
	 Delegates
	 Understanding Delegates
	 Declaring the Delegate
	 Early Bound Delegate Declares
	 Late Bound Delegate Declares

	 Sorting Data with Delegates
	 Multicast Delegates
	 The .NET Framework Event Model: Delegates and Events
	 Getting Ready to Wire-up: The Event Model in a Nutshell
	 Delegate Events vs. Adapter Events
	 Delegates vs. Function Pointers
	 Observations

	 Chapter 15: Data Processing and I/O
	 Overview
	 Data Processing
	 Working with Strings
	 Members of the String Class
	 Clone
	 Compare
	 CompareTo
	 Concat
	 Copy
	 CopyTo
	 EndsWith, StartsWith
	 Equals
	 Format
	 IndexOf, LastIndexOf
	 Insert
	 Intern, IsInterned
	 Join, Split
	 PadLeft, PadRight
	 Remove
	 Replace
	 SubString
	 ToCharArray
	 ToLower, ToUpper
	 Trim, TrimEnd, TrimStart

	 Classic Visual Basic String Functions
	 String Formatting
	 NumberFormatInfo
	 DateTimeFormatInfo
	 Custom Formatters

	 Building Strings with StringBuilder
	 Capacity
	 Append
	 AppendFormat
	 Insert
	 Remove
	 Replace

	 Regular Expressions
	 The .NET Framework Regex Metalanguage

	 File, Stream, and Text IO Operations
	 Files and Directories
	 The File Class
	 Path
	 File Enumerations
	 Basic File Class Operations
	 Directory
	 The FileInfo Class
	 DirectoryInfo
	 Using the Classic File System Object
	 FileSystemWatcher

	 Streams
	 FileStream
	 SeekOrigin Enumeration
	 BufferedStream
	 NetworkStream
	 CryptoStream
	 MemoryStream

	 Readers and Writers
	 Text Encoding
	 StringReader/StringWriter
	 StreamReader/StreamWriter
	 BinaryReader/BinaryWriter

	 XML I/O
	 Reading XML Files
	 Writing XML Files with XMLTextWriter

	 Serialization with XML
	 Activating Serialization at Run Time

	 Observations

	 Part IV: Writing Software with VB .NET
	 Chapter 16: Interfacing with the End User
	 Overview
	 Windows Forms
	 A Form Is an Object
	 The System.Windows.Forms Namespace
	 Automatically Generated Code

	 Introduction to Threading
	 The User Interface and Thread Design
	 The .NET Framework's Thread Model
	 Getting Started with Basic Threading

	 MDI Applications
	 Creating the MDI Parent
	 Creating the MDI Children
	 The Active Child
	 Arranging the Forms
	 Delegating Application Startup and Shutdown
	 Keeping a Form on Top
	 Form Transparency
	 Modality
	 Changing Borders
	 Changing the Size of Forms
	 Screen Location

	 Components and Controls
	 Adding Components and Controls to Forms
	 Layout and Grouping
	 Positioning Controls
	 Setting a Single Property for Multiple Controls
	 Complex Property Pages
	 Using The Property Grid

	 Menus and Toolbars
	 Adding Menus and Menu Items Programmatically
	 Context-Changing Menus
	 Enhancing Menus
	 The Menu Class

	 Responding to User Input
	 Binding Events Dynamically
	 Hot Spots
	 Mouse and Keyboard Events
	 Keyboard Events
	 Using a Timer to Fire Events

	 Collecting User Input
	 Buttons
	 Edit Text Boxes
	 Check Boxes
	 Radio Buttons
	 Combo Boxes
	 DomainUpDown
	 NumericUpDown
	 Date and Time Picker
	 Calendar
	 A Palette
	 List Boxes
	 CheckedListBox
	 ListView
	 Trackbars (Sliders)
	 Toolbars
	 TreeView

	 Presentation and Informational Controls
	 Labeling
	 LinkLabel
	 Status Bar
	 Icons
	 PictureBox
	 ImageList
	 Progress Bars
	 Grids
	 ToolTip
	 The ErrorProvider Control
	 Help Provider
	 Printing Support

	 Drag and Drop
	 Dragging Data
	 Dropping Data

	 Using the Clipboard
	 Observation

	 Chapter 17: Getting Ready to Release
	 Overview
	 Thinking in Debug Terms
	 The System.Diagnostics Namespace
	 Enabling Debugging
	 Run-time Configuration Files
	 Machine Configuration File
	 Application Configuration File
	 Security Configuration File
	 Working with Configuration Files

	 Working with the Debug Class
	 The Debug Write Methods
	 Assertion
	 Fail

	 Tracing and the Trace Class
	 Instrumentation
	 Understanding the Phases of Code Tracing
	 Listening to Your Code
	 Developer-Defined Listeners
	 Trace Switches

	 Debugging with Visual Studio .NET
	 What Species Is Your Bug
	 Debugging Aids
	 Breakpoints
	 Getting Started

	 The Visual Basic .NET Compiler
	 Using a Response File for Compilation
	 Managing a Class Library from the Command Line
	 Conditional Compilation Directives

	 Observations

	Lists
	List of Figures
	 Chapter 1: Software Development and Visual Basic .NET
	 Chapter 2: Visual Basic .NET and the .NET Framework
	 Chapter 3: The Visual Basic .NET Development Environment
	 Chapter 4: The Elements of Visual Basic .NET
	 Chapter 6: Software Design, Conditional Structures, and Control Flow
	 Chapter 7: Methods
	 Chapter 8: Types, Structures, and Enumerations
	 Chapter 9: Classes
	 Chapter 10: Interfaces
	 Chapter 12: Collections, Arrays, and Other Data Structures
	 Chapter 13: Advanced Design Concepts: Patterns, Roles, and Relationships
	 Chapter 14: Advanced Interface Patterns: Adapters, Delegates, and Events
	 Chapter 16: Interfacing with the End User
	 Chapter 17: Getting Ready to Release

	List of Tables
	 Chapter 2: Visual Basic .NET and the .NET Framework
	 Chapter 3: The Visual Basic .NET Development Environment
	 Chapter 4: The Elements of Visual Basic .NET
	 Chapter 5: Visual Basic .NET Operators
	 Chapter 6: Software Design, Conditional Structures, and Control Flow
	 Chapter 7: Methods
	 Chapter 8: Types, Structures, and Enumerations
	 Chapter 9: Classes
	 Chapter 10: Interfaces
	 Chapter 11: Exceptions: Handling and Classes
	 Chapter 12: Collections, Arrays, and Other Data Structures
	 Chapter 15: Data Processing and I/O
	 Chapter 16: Interfacing with the End User
	 Chapter 17: Getting Ready to Release

	List of Sidebars
	 Chapter 5: Visual Basic .NET Operators
	 Chapter 7: Methods

